
DaCache: Memory Divergence-Aware GPU Cache
Management

Bin Wang†, Weikuan Yu†, Xian-He Sun‡, Xinning Wang†
†Department of Computer Science ‡Department of Computer Science

Auburn University Illinois Institute of Technology
Auburn, AL, 36849 Chicago, IL 60616

{bwang,wkyu,xzw0033}@auburn.edu sun@iit.edu

ABSTRACT
The lock-step execution model of GPU requires a warp to have the
data blocks for all its threads before execution. However, there is
a lack of salient cache mechanisms that can recognize the need of
managing GPU cache blocks at the warp level for increasing the
number of warps ready for execution. In addition, warp schedul-
ing is very important for GPU-specific cache management to re-
duce both intra- and inter-warp conflicts and maximize data lo-
cality. In this paper, we propose a Divergence-Aware Cache (Da-
Cache) management that can orchestrate L1D cache management
and warp scheduling together for GPGPUs. In DaCache, the in-
sertion position of an incoming data block depends on the fetch-
ing warp’s scheduling priority. Blocks of warps with lower prior-
ities are inserted closer to the LRU position of the LRU-chain so
that they have shorter lifetime in cache. This fine-grained inser-
tion policy is extended to prioritize coherent loads over divergent
loads so that coherent loads are less vulnerable to both inter- and
intra-warp thrashing. DaCache also adopts a constrained replace-
ment policy with L1D bypassing to sustain a good supply of Fully
Cached Warps (FCW), along with a dynamic mechanism to adjust
FCW during runtime. Our experiments demonstrate that DaCache
achieves 40.4% performance improvement over the baseline GPU
and outperforms two state-of-the-art thrashing-resistant techniques
RRIP and DIP by 40% and 24.9%, respectively.

Categories and Subject Descriptors
C.1.4 [Computer Systems Organization]: Processor Architec-
tures—Parallel Architectures; D.1.3 [Software]: Programming Tech-
niques—Concurrent Programming

General Terms
Design, Performance

Keywords
GPU; Caches; Memory Divergence; Warp Scheduling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS’15, June 8–11, 2015, Newport Beach, CA, USA.
Copyright c© 2015 ACM 978-1-4503-3559-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2751205.2751239 .

1. INTRODUCTION
Graphics Processing Unit (GPU) has proven itself as a viable

technology for a wide variety of applications to exploit its massive
computing capability. It allows an application to be programmed
as thousands of threads running the same code in a lock-step man-
ner, in which warps of 32 threads can be scheduled for execution in
every cycle with zero switching overhead. The massive parallelism
from these Single-Instruction Multiple Data (SIMD) threads helps
GPUs achieve a dramatic improvement in computational power
compared to CPUs. To reduce the latency of memory operations,
GPU has employed multiple levels of data caches to save off-chip
memory bandwidth when there is locality within the accesses.

Due to massive multithreading, per-thread data cache capacity
often diminishes. For example, Fermi supports a maximum of
48 warps (1536 threads) on each Streaming Multiprocessor (SM),
and these warps share 16KB or 48KB L1 Data Cache (L1D) [27].
Thus coalescing each warp’s per-thread global memory accesses
into fewer memory transactions not only minimizes the consump-
tion of memory bandwidth, but also alleviates cache contention.
But when a warp’s accesses cannot be coalesced into one or two
cache blocks, which is referred to as memory divergence, its cache
footprint is often boosted by one order of magnitude, e.g., from 1
to 32 cache blocks. This leads to severe contention among warps,
i.e., inter-warp contention, on limited L1D capacity.

Under the lock-step execution model, a warp is not ready for exe-
cution until all of its threads are ready (e.g., no thread has outstand-
ing memory request). Meanwhile, cache-sensitive GPGPU work-
loads often have high intra-warp locality [32, 33], which means
data blocks are re-referenced by their fetching warps. Intra-warp
locality is often associated with strided accesses [19, 35], which
lead to divergent memory accesses when stride size is large. The
execution model, intra-warp locality, and potential memory diver-
gence together pose a great challenge for GPU cache management,
i.e., data blocks fetched by a divergent load instruction should be
cached as a wholistic group. Otherwise, a warp is not ready for
issuance when its blocks are partially cached. This challenge de-
mands a GPU-specific cache management that can resist inter-warp
contention and minimize partial caching. Though there are many
works on thrashing-resistant cache management for multicore sys-
tems [30, 10, 17, 21], they are all divergence-oblivious, i.e., they
make caching decisions at the per-thread access level rather than at
the per-warp instruction level.

Recently, GPU warp scheduling has been studied to alleviate
inter-warp contention from its source. Several warp scheduling
techniques have been proposed based on various heuristics. For ex-
ample, CCWS [32], DAWS [33], and CBWT [5] rely on detected
L1D locality loss, aggregated cache footprint, and varying on-chip
network latencies, respectively, to throttle concurrency at runtime.

89

Limiting the number of actively scheduled warps directly reduces
inter-warp contention and delivers higher reductions of cache misses
than the Belady [2] replacement algorithm in highly cache-sensitive
GPGPU benchmarks [32]. We observe that coherent loads may also
carry high intra- and inter-warp locality, but are vulnerable to the
thrashing from both inter- and intra-warp divergent loads. How-
ever, warp scheduling can only be exploited to alleviate inter-warp
contention at a coarse granularity, i.e., warp level. Thus there is still
a need of a salient cache mechanism that can manage L1D locality
at both levels and, more importantly, sustain a good supply of Fully
Cached Warps (FCW) to keep warp schedulers busy.

Taken together, for a greater good on reducing cache misses and
maximizing the occupancy of GPU cores, it is imperative to inte-
grate warp scheduling with the GPU-specific cache management
for a combined scheme that can overcome the inefficiency of ex-
isting GPU caches. To this end, we present a Divergence-Aware
Cache (DaCache) management scheme to mitigate the impacts of
memory divergence on L1D locality preservation. Based on the
observation that warp scheduling shapes the locality pattern inside
L1D access stream, DaCache gauges insertion positions of incom-
ing data blocks according to the fetching warp’s scheduling priority.
Specifically, new blocks are inserted into L1D in an orderly manner
based on their issuing warps’ scheduling priorities. DaCache also
prioritizes coherent loads over divergent loads in insertion to alle-
viate intra-warp contention. In addition, cache ways are conceptu-
ally partitioned into two regions, locality region and thrashing re-
gion, and replacement candidates are constrained within thrashing
region to increase thrashing resistance. If no replacement candi-
date is available in thrashing region, L1D bypassing is enabled. We
propose a simple mechanism to dynamically adjust the partitioning.
All these features in our DaCache design need simple modifications
to existing LRU caches.

In summary, this paper makes the following contributions:
• We evaluate caching effectiveness of GPU data caches for

both memory-coherent and memory-divergent GPGPU bench-
marks, and present the problem of partial caching in existing
GPU cache management.
• We propose a Divergence-Aware Cache management tech-

nique, namely DaCache, to orchestrate warp scheduling and
cache management for GPGPUs. By taking prioritization
logic of warp scheduling into cache management, thrashing
traffic can be quickly removed so that cache blocks of the
most prioritized warps can be fully cached in L1D; in turn
the increased number of fully cached loads provides more
ready warps for warp schedulers to execute.
• We design a dynamic partitioning algorithm in DaCache to

increase thrashing resistance and implement it in a cycle-
accurate simulator. Experimental results show that it can
improve caching effectiveness and improve the performance
by 40.4% over baseline GPU architecture, outperform two
thrashing resistance cache management, RRIP and DIP, by
40% and 24.9%, respectively.

The rest of paper is organized as follows: Section 2 introduces
the baseline GPU; Section 3 summarizes the major characteristics
of the evaluated GPGPU benchmarks and our motivation of Da-
Cache; Section 4 details the design of DaCache; Experimental re-
sults and related work are presented in Section 5 and Section 6,
respectively. Section 7 concludes the paper.

2. BASELINE GPU ARCHITECTURE
In this work we study modifications to a Fermi-like baseline

GPU architecture as shown in Figure 1. In each Streaming Mul-
tiprocessor, two hardware warp schedulers independently manage

Streaming Multiprocessor N

Register File

Cores Mem

Warp
Scheduler

W
1

W
3

W
45

���

Acc. Coalesc.

MSHR Sh
M

em

L1D

Warp
Scheduler

W
0

W
44

��� W
2

L1
C

L1
T

Mem. Port

Pipeline Reg

Memory
Partition 1

L2 MC

Memory
Partition 1

L2 MC

Streaming Multiprocessor 1

Register File

Cores LD/ST

Warp
Scheduler

W
1

W
3

W
45

���

MACU

MSHR Sh
M

em

L1D

Warp
Scheduler

W
0

W
44

��� W
2

L1
C

L1
T

Mem. Port
ICNT

Memory
Partition 1

L2 MC

Figure 1: Baseline GPU Architecture.

all active warps. In each cycle, warp scheduler issues one warp
among all the ready warps to execute in cores or Load/Store Unites
(LD/ST) [24, 27, 28], depending on the warp’s pending instruc-
tion. Once a memory instruction to global memory is issued, it’s
first sent to Memory Access Coalescing Unit (MACU) for access
generation. MACU coalesces per-thread memory accesses to min-
imize off-chip memory traffic. For example, when 32 threads of
a warp access 32 consecutive words in a cacheline-aligned data
block, MACU will only generate one memory access to L1D. Oth-
erwise, multiple memory accesses are generated to fetch all needed
data. In the rest of this paper, the memory instructions that incur
more than 2 uncoalescable memory accesses are called divergent
instructions, while the others are called coherent instructions.

The resultant memory accesses from MACU are sequentially
serviced by L1D. For a load access, if there is a cache hit, requested
data are sent to register file; upon cache miss, if there is Missing
Status Holding Register (MSHR) entry available, a request is gen-
erated and buffered into a queue in Memory Port. MSHR tracks in-
flight requests and merges requests to the same missing data block.
An MSHR entry is reclaimed when its corresponding memory re-
quest is back and all accesses to the block are serviced. Accesses
missing in L1D are replayed when no MSHR entries are available.
Cache lines are reserved for outstanding requests. Without coher-
ence support for global data, L1D writes through dirty data and
evicts cache lines on write hits. Buffered memory requests are sent
to target memory partitions via an interconnect (ICNT). Each mem-
ory partition mainly consists of a L2 data cache and a memory con-
troller (MC) that manages off-chip memory devices.

3. MOTIVATION
In this section, we evaluate GPU cache performance to under-

stand application behaviors on a cache hierarchy similar to that in
current GPUs. We use memory intensive benchmarks from Ro-
dinia [4], PolyBench/GPU [11], SHOC [7], and MapReduce [14].
For each benchmark, Table 1 lists a brief description and the input
size that we use for performance evaluation. Benchmark SC repet-
itively invokes the same kernel 290 times with the default input
size (16K points) until the computation completes. Since the sim-
ulation is several orders of magnitude slower than real hardware,
we only enable two kernel invocations in SC so that the simulation
time is reasonable with larger input size (256K points). All of the
other benchmarks, ranging from 70 million to 6.8 billion instruc-
tions, are run to completion. The benchmarks are categorized into
memory-divergent and memory-coherent ones, depending on the
dynamic divergence of load instructions in these benchmarks. In
general, memory-divergent benchmarks are more sensitive to cache

90

0
20
40
60
80

100

C D

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC 2DC 3DC 2MM 3MM COV COR FD GS

Pe
rc

en
ta

ge
 (%

)
32
3~31
2
1
0

Figure 2: Distribution of Misses Per Load Instruction (MPLI) in L1 data cache. MPLIs are categorized into five groups: 0 (MPLI=0),
1 (MPLI=1), 2 (MPLI=2), 3∼31 (36 MPLI 6 31), and 32 (MPLI=32). MPLIs for coherent (C) and divergent (D) load instructions are
accumulated separately. Each of the benchmarks on the right of the figure has only C bar for coherent instructions.

Table 1: GPGPU Benchmarks (CUDA)
Abbr. Application Suite Input Branch

Memory Divergent Benchmarks

1 ATAX matrix-transpose and vector mul. [11] 8K × 8K N
2 BICG kernel of BiCGStab linear solver [11] 8K × 8K N
3 MVT Matrix-vector-product transpose [11] 8K N
4 SYR Symmetric rank-K operations [11] 512 × 512 N
5 SYR2 Symmetric rank-2K operations [11] 256 × 256 N
6 GES Scalar-vector-matrix mul. [11] 4K N
7 KMN Kmeans Clustering [4] 28K 4x features N
8 SC Stream Cluster [4] 256K points N
9 BFS Breadth-First-Search [4] 5M edges Y

10 SPMV Sparse matrix mul. [7] default Y
11 IIX Inverted Index [14] 6.8M Y

12 PVC Page View Count [14] 100K Y

Memory Coherent Benchmarks

13 2DC 2D Convolution [11] default N
14 3DC 3D Convolution [11] default N
15 2MM 2 Matrix Multiply [11] default N
16 3MM 3 Matrix Multiply [11] default N
17 COV Covariance Computation [11] default N
18 COR Correlation Computation [11] default N
19 FD 2D Finite Difference Kernel [11] default N
20 GS Gram-Schmidt Process [11] default N

capacity than memory-coherent benchmarks. Recent works [32,
33, 19, 35] report that high intra-warp L1D locality exists among
these cache-sensitive workloads. In addition, BFS, SPMV, IIX, and
PVC also have rich branch divergence.

3.1 Cache Misses from Divergent Accesses
Within the lock-step execution model, a warp becomes ready

when all of its demanded data is available; warps that have miss-
ing data, regardless of the data size, are excluded for execution.
This execution model of GPU expects that all cache blocks of each
divergent load instruction are cached as a unit when there is local-
ity. However, conventional cache management is unaware of the
GPU execution model and the collective nature of divergent mem-
ory blocks. As a result, some blocks of a divergent instruction can
be evicted while others are still cached, resulting in a varying num-
ber of cache misses for individual loads. Metrics, such as Miss
Rate and Misses Per Kilo Instructions (MPKI), are often used to
evaluate the performance of cache management. In view of the
wide variation of cache misses per instruction, we use Misses Per
Load Instruction (MPLI) to quantify such misses in GPU L1D.
Divergent load instructions that have misses in the range from 1 to
{Req(pc, w)− 1} are considered as being partially cached, where
Req(pc, w) is the number of cache accesses that warp w incurs at
memory instruction pc. If a load instruction has no cache miss,
it’s considered as being fully cached. MPLI can be calculated by
counting the number of cache misses a load instruction experiences
after all of its memory accesses are serviced by L1D.

Figure 2 shows the distribution of MPLIs across the 20 GPGPU
benchmarks we have evaluated in this paper. For simplicity, MPLIs
are categorized into five groups. For divergent loads, the two cat-

egories of 2 (MPLI=2) and 3∼31 (36 MPLI 6 31) in the figure
together describe the existence of partial caching. Note that this
range can only provide a close approximation for partial caching
because branch divergence can reduce the number of uncoalesca-
ble memory accesses a divergent load can generate. For example, a
warp with 16 threads can maximally generate 16 memory accesses
for a divergent load, and an MPLI of 16 indicates full caching
for this load of the warp. As we can see from the figure, coher-
ent loads of the memory-divergent benchmarks do not experience
the problem of partial caching because they all generate one mem-
ory access per instruction. However, divergent load instructions in
these benchmarks greatly suffer from partial caching. Substantial
amount of divergent loads in SYR2, KMN, BFS, SPMV, IIX, and
PVC are partially cached. Memory-coherent benchmarks, such as
2DC, 3DC, COV, COR, and FD, also experience partial caching
(MPLI=1), because their load instructions generate two memory
accesses each time. Besides some cold misses and capacity misses,
such prevalent cache misses due to partial caching can be caused
by severe cache contention, resulting in early evictions of cache
blocks after being used only once.

3.2 Warp scheduling and Cache Contention
In view of the severe cache misses as discussed in Section 3.1,

we have further examined the impact of warp scheduling on L1D
contention. GPU warp scheduling is often driven by a prioritiza-
tion scheme. For example, in the baseline Greedy-Then-Oldest
(GTO) warp scheduling, warps are dynamically prioritized by their
“ages” and the oldest warps are preferentially prioritized at run-
time. In order to quantify the cache contention due to aggres-
sive warp scheduling, we measure the occupancy of warp sched-
ulers by all active warps. Figure 3 shows the Cumulative Distribu-
tion Function (CDF) of warp scheduler occupancy when the eval-
uated benchmarks are scheduled under GTO prioritization. Typ-
ically these benchmarks have one fully divergent load (resulting
in 32 accesses) and one coherent load (resulting in one access) in
the kernel, so the cache footprint of each warp is 33 cache lines
at runtime. Our baseline L1D (32 KB, 256 lines) can fully cache
three warps for each warp scheduler. This means that L1D will in-
evitably be thrashed if the warps with GTO priorities lower than 3
are scheduled. For memory-divergent benchmarks in Figure 3(a),
58%∼91% of the total cycles are occupied by the top 3 prioritized
warps. Since branch divergence reduces the number of accesses
a divergent load can generate, as shown in Figure 3(b), the occu-
pancy drops to 48%∼63% among benchmarks with both memory-
and branch-divergence. Such variation in warp scheduling incurs
immediate cache conflicts.

We categorize conflict misses into intra- and inter-warp misses [19].
An intra-warp miss refers to the case where a thread’s data is evicted
by other threads within the same warp (misses-iwarp); otherwise
a conflict miss is referred to as inter-warp miss (misses-xwarp).

91

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22C
D

F
 o

f
P

ip
e

li
n

e
 O

c
c

u
p

a
n

c
y

 (
%

)

GTO Priority

ATAX

BICG

MVT

SYR

SYR2

GES

KMN

SC

(a) Memory-Divergent

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22C
D

F
 o

f
P

ip
e

li
n

e
 O

c
c

u
p

a
n

c
y

 (
%

)

GTO Priority

BFS

SPMV

IIX

PVC

(b) Memory- and Branch-Divergent

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22C
D

F
 o

f
P

ip
e

li
n

e
 O

c
c

u
p

a
n

c
y

 (
%

)

GTO Priority

2DC

3DC

2MM

3MM

COV

COR

FD

GS

(c) Memory-Coherent
Figure 3: The CDF of warp scheduler occupancy by all active warps. The percentage reflects the frequency that each warp is scheduled.
GTO priority refers to the “age” of each warp. Since each of the two warp schedulers in an SM manages 24 warps, 0 represents the highest
priority, while 23 represents the lowest priority. Our baseline L1D can typically accommodate three divergent warps for each warp scheduler.

0
10
20
30
40
50
60
70
80
90

100

ATAX

BIC
G

M
VT

SYR

SYR2
GES

KM
N

SC
BFS

SPM
V

IIX

PVC

2D
C

3D
C

2M
M

3M
M

COV

COR
FD

GS

Pe
rc

en
ta

ge
s o

f M
is

se
s/

H
its

HIT misses-cold misses-iwarp misses-xwarp

Figure 4: Categorization of L1D thrashing.

Meanwhile, we also present the percentages of cache hits (HIT)
and cold misses (misses-cold). Figure 4 shows that the majority of
cache misses are due to inter-warp conflicts, which in turn cause
high MPLI as shown in Figure 2 and varied occupancy of warp
schedulers as shown in Figure 3.

4. DIVERGENCE-AWARE GPU CACHE
MANAGEMENT

As described in the previous section, divergent load instructions
lead to many cache misses in L1D, especially inter-warp conflict
misses. With more data blocks not being found in L1D, the num-
ber of warps that can be actively scheduled are significantly re-
duced. To address this problem, we propose Divergence-Aware
Cache (DaCache) management for GPU. Based on the observation
that the re-reference interval of cache blocks are shaped by warp
schedulers, DaCache aims to exploit the prioritization information
of warp scheduling, protect the cache blocks of highly prioritized
warps from conflict-triggered eviction and maximize their chance
of staying in L1D. In doing so, DaCache can alleviate the conflict
misses across warps such that more warps can locate all data blocks
from L1D for their load instructions. We refer to such warps as
Fully Cached Warps (FCWs).

4.1 High-level Description of DaCache
Figure 5 shows a conceptual idea of DaCache in maximizing the

number of FCWs. In this example, we assume four warps con-
currently execute a for-loop body that has one divergent load in-
struction. At runtime, each warp generates four cache accesses in
each loop iteration, and the fetched cache blocks are re-referenced
across iterations. This is a common strided access pattern in our
evaluated CUDA benchmarks. Ideally, all loads can hit in L1D due
to high intra-warp locality. But severe cache contention caused by
massive parallelism and scarce L1D capacity can easily thrash the
locality in L1D. In order to resist thrashing, a divergence-oblivious
cache management may fairly treat accesses from all warps, lead-
ing to the scenario that all warps miss one block in current iteration.

W1 W2 W3 W4 W1 W2 W3 W4

Divergence-Oblivious
GPU Cache Management

Divergence-Aware
GPU Cache Management

Hit
Miss

High Low
Scheduling Priority Fully Cached Warps

One load

Figure 5: A conceptual example showing DaCache in maximizing
the number of Fully Cache Warps.

By taking warp scheduling prioritization and memory divergence
into consideration, DaCache aims at cache misses concentrated at
warps that have lower scheduling priorities, such as W3 and W4.
Consequently, warps with higher scheduling priorities, such as W1
and W2, can be fully cached so that they are immediately ready to
execute the next iteration of the for-loop body.

DaCache relies on both warp scheduling-awareness and memory
divergence-awareness to maximize the number of FCWs. This ne-
cessitates several innovative changes on GPU cache management
policies. In general, cache management consists of three compo-
nents: replacement, insertion, and promotion policies [38]. Re-
placement policy decides which block in a set should be evicted
upon a conflicting cache access, insertion policy defines a new
block’s replacement priority, and promotion policy determines how
to update the replacement priority of a re-referenced block. For ex-
ample, in LRU caches, blocks at the LRU position are immediate
replacing candidates; new blocks are inserted into the MRU posi-
tion of the LRU chain; re-referenced blocks are promoted to the
MRU position.

4.2 Gauged Insertion
In conventional LRU caches, since the replacement candidates

are always selected from the LRU ends, blocks in the LRU-chains
have different lifetime to stay in cache. For example, blocks at the
MRU ends have the longest lifetime, while blocks at LRU ends
have shortest lifetime. Based on this characteristic, locality of L1D
blocks can be differentially preserved by inserting blocks at dif-
ferent positions in the LRU-chains according to their re-reference
intervals. For example, blocks can be inserted into MRU, central,
and LRU positions if they will be re-referenced in the immediate,
near, and distant future, respectively. However, it is challenging for
GPU caches to predict re-reference intervals of individual cache
blocks from the thrashing-prone cache access streams.

Since there is often high intra-warp data locality among memory-
divergent GPGPU benchmarks, the cache blocks of frequently sched-
uled warps have short re-reference intervals, while the blocks of
infrequently warps have long re-reference intervals. Under GTO
warp scheduling, old warps are prioritized over young warps and

92

MRU LRU

2 3 1 A C B a b 2 3 1 A C B a b 2 3 1 A C B a b

Access block 4

2 3 1 A C B a 4

Access block D

A D 2 3 B C a 1

Access block c

A B 2 3 C c 1 a

Inserted to LRU Inserted to central Inserted to MRU

to evict to evict to evict

Access block 3 Access block C Access block c

1 2 4 B A a 2 C 1 A D 3 a 2 3 1 A C B a
Promoted by 2 Promoted by 2

Promoted by 2

(a) Oldest warp (b) Median warp (c) Youngest warp

1 block of oldest warp A block of median warp a block of youngest warp

Initial State Initial State Initial State

C B 3 c

Figure 6: Illustrative example of insertion and promotion policies
of DaCache.

thus are more frequently scheduled. Thus we can use each warp’s
GTO scheduling priority to predict its blocks’ reference intervals.
Based on this observation, the insertion position (way) in DaCache
is gauged as:

way = min{WPrio ×NSched ×Width/NSet, Asso− 1} (1)

where WPrio is the issuing warp’s scheduling priority, NSched is
the number of warp schedulers in each SM, NSet is the number
of cache sets in L1D, Width is the SIMD width, and Asso is the
cache associativity. Behind this gauged insertion policy, we as-
sume the accesses from divergent loads (up-to Width accesses)
are equally distributed into Nset sets, and Width/NSet quantifies
average intra-warp concentration in each cache set. Since L1D is
shared by NSched warp schedulers, warps with the same priority
but from different warp schedulers are assigned with the same in-
sertion positions. Thus the cache blocks of consecutive warps from
the same warp scheduler are dispersed by NSched×Width/NSet.
For example, in our baseline GPU (2 warp schedulers per SM; 32
threads per warp; 32 sets per L1D), two warps with priorities of
0 and 2 are assigned insertion positions of 0 and 4, respectively.
The gauged insertion policy is illustrated in Figure 6. In the fig-
ure, data blocks of “oldest warp”, “median warp”, and “youngest
warp” are initially inserted into the MRU, central, and LRU posi-
tions, respectively. At runtime, the majority of the active warps are
infrequently scheduled and share the LRU insertion position. By
doing so, blocks are inserted in the LRU-chain in an orderly man-
ner based on their issuing warps’ scheduling priorities.

GPU programs often have a mix of coherent and divergent loads,
which are assigned with the same insertion positions under the
gauged insertion policy. Consequently, coherent loads will be in-
terleaved with divergent loads. But interleaved insertion can make
coherent loads vulnerable to thrashing from the bursty behaviors
of divergent loads. The thrashing to coherent loads may not be
limited to inter-warp contention. Figure 4 demonstrates the exis-
tence of intra-warp conflict misses in conventional LRU caches.
We propose to explicitly prioritize coherent loads over divergent
loads by inserting blocks of coherent loads into MRU positions,
regardless of their issuing warps’ scheduling priorities. But coher-
ent loads may not carry any locality, and inserting their blocks into
MRU positions is adversary to locality preservation. We use a vic-
tim cache to detect whether coherent loads have intra-warp locality,
and then MRU insertion and LRU insertion are applied to coherent
loads with and without locality, respectively. Motivated by the ob-
servation from Figure 3(b), we empirically use MRU insertion for
divergent load instructions with no more than 5 memory requests.

Each entry of the victim cache has two fields, PC and data block
tag. For a 48bit virtual address space, maximally the PC field needs
45 bits and the tag field needs 41 bits. Since only the mostly prior-
itized warp is sampled at runtime to detect the locality information
of coherent loads, a 16-entry victim cache is sufficient across the
evaluated benchmarks, which incurs only 172B storage overhead
on each SM. The dynamic locality information of each coherent
load is stored in a structure named Coherent Load Profiler (CLP).

CLP entries have two fields, PC field (45 bits) and one flag field (1
bit) to indicate locality information. A 32-entry CLP incurs 184B
storage overhead. Note that, when a load instruction is issued into
LD/ST, memory access coalescing in MACU and CLP lookup can
be executed in parallel. Once the locality information of a coherent
load is determined, victim cache can be bypassed to avoid repetitive
detection. Such storage overhead can be eliminated by embedding
the potential locality information into PTX instructions via com-
piler support. We leave this as our future work.

Note that the insertion policy only gives an initial data layout
in L1D to approximate re-reference intervals. During the runtime,
the initial data layout can be easily disturbed because re-referenced
blocks are directly promoted to the MRU positions, regardless of
their current positions in the LRU-chain. In other words, this MRU
promotion can invert the intention of DaCache insertion policy.
Partially motivated by the incremental promotion in PIPP [38] that
promotes re-referenced block by 1 position along the LRU-chain,
DaCache also adopts a fine-grained promotion policy to cooperate
with the insertion policy. Figure 6 illustrates a promotion granu-
larity of 2 positions. Our experiments in Section 5.6 show that a
promotion granularity of 4 achieves the best performance for the
benchmarks we have evaluated.

4.3 Constrained Replacement
In general, in LRU caches, the block on the LRU end is consid-

ered as the replacement candidate. However, as we model cache
contention by allocating cache block on miss and reserving blocks
for outstanding requests [1], the block at the LRU position may
not be replaceable. Then a replaceable block that is the closest to
the LRU position is selected. Thus the replacement decision is no
longer constrained on the LRU end, and any block in the set may be
a replacement candidate. Such unconstrained replacement position
makes inter-warp cache conflicts very unpredictable.

To protect the intention of gauged insertion, we introduce a con-
strained replacement policy in DaCache so that only a few blocks
close to the LRU end can be replaced. This constrained replace-
ment conceptually partitions the cache ways into two portions, lo-
cality region and thrashing region. Then replacement can only be
made inside the thrashing region. This partitioning (p) can be cal-
culated as: p = Asso×F

SIMD_Width/NSet
− 1, where F is a tuning pa-

rameter in the range between 0 and 1. Denoting the MRU and LRU
ends with the way indexes of 0 and Asso-1, respectively, the lo-
cality region is located in the range from the 0th to the pth way
of a cache set, while the thrashing region occupies the other ways.
We tune the value of F to have the optimal static partitioning p.
Besides, all sets in each L1D are equally partitioned.

Given the gauged insertion policy, this logical partitioning of
L1D accordingly divides all active warps into two groups, local-
ity warps and thrashing warps. If a warp’s scheduling priority is
higher than (p + 1)/NSched, it’s a thrashing warp; else it is a lo-
cality warp. The cache blocks of locality warps are inserted into
the locality region using the gauged insertion policy so that they
can be less vulnerable to thrashing traffic. By doing so, locality
warps have a better chance to be fully cached and immediately
ready for re-scheduling. In order to cooperate with such a con-
strained replacement policy, divergent loads of thrashing warps are
exclusively inserted into LRU positions so that they can not pollute
existing cache blocks in L1D. Though the 3 oldest warps managed
by each warp scheduler, are mostly scheduled as shown in Figure 3,
i.e., p=5 in our baseline, our experiments in Section 5.4 show that
maintaining 2 FCWs per warp scheduler (p=3) actually achieves the
optimal performance with the extended insertion and unconstrained
replacement policies.

93

Start

END

Fully Cached?

CNT == Cmax
&&

FCW<Wmax

FCW--
CNT=Cmax/2

CNT++

CNT-= FCW- GTO_prio

CNT == 0 &&
FCW>1

FCW++
CNT=Cmax/2

GTO_prio <
FCW

CNT--

Yes No

No Yes

No No

Yes Yes

1

2

4 5

6

7

3

Figure 7: Flow of the proposed dynamic partitioning algorithm.
Fully Cached Warps (FCW) is based on the number of fully cached
loads (CNT) and each warp’s GTO scheduling priority (GTO_prio).

With the constrained replacement policy, replacement candidates
may not always be available. Thus we discuss two complemen-
tary approaches to enforce constrained replacement. The first ap-
proach is called Constrained Replacement with L1D Stalling.
It’s possible that a replacement candidate cannot be located within
our baseline cache model, though at a very low frequency. Once
this happens, the cache controller repetitively replays the missing
access until one block in the thrashing region becomes replaceable.
Stalling L1D is the default functionality within our cache model
and then can be used with constrained replacement at no extra cost.

The second approach is called Constrained Replacement with
L1D Bypassing. Instead of waiting for reallocating reserved cache
blocks, bypassing L1D proactively forwards the thrashing traffic
into lower memory hierarchy. Without touching L1D, bypassing
can avoid not only L1D thrashing, but also memory pipeline stalls.
When a bypassed request is back, its data is directly written to reg-
ister file rather than a pre-allocated cache block [19]. In our base-
line architecture, caching in L1D forces the size of missed memory
requests to be cache block size. For each cache access of a diver-
gent load instruction, only a small segment of the cache block are
actually used, depending on the data size and access pattern. With-
out caching, the extra data in the cache block is a pure waste of
memory bandwidth. Thus bypassed memory requests are further
reduced to aligned 32B segments, which is the minimum coalesced
segment size as discussed in [29].

4.4 Dynamic Partitioning of Warps
Our insertion and replacement policies rely on a static partition-

ing p, which incorporates the scheduling priorities of active warps
into the cache management. However, the static choice of p is
not very suitable in two important scenarios. Firstly, branch diver-
gence reduces per-warp cache footprint so that the locality region
is capable of accommodating more warps. It can be observed from
Figure 3(b) that branch divergence enables more warps be actively
scheduled. Secondly, kernels may have multiple divergent load in-
structions so that the capacity of locality region is only enough to
cache one warp from each warp scheduler. For example, SYR2,
GES, and SPMV have two divergent loads, while IIX and PVC
have multiple divergent loads.

Thus we propose a mechanisms for dynamic partitioning of warps
based on the accumulated statistics of fully cached divergent loads.
Figure 7 shows the flow of dynamically adjusting Fully Cached
Warps (FCW) based on the accumulated number of fully cached
loads (CNT) and each warp’s GTO scheduling priority (GTO_prio).
At runtime, CNT is increased by 1 (¶) for each fully cached load.

Table 2: Baseline GPGPU-Sim Configuration

of SMs 30 (15 clusters of 2)
SM Configuration 1400Mhz, Reg #: 32K, Shared Memory: 48KB, SIMD

Width: 16, warp: 32 threads, max threads per SM: 1024
Caches / SM Data: 32KB/128B-line/8-way, Constant: 8KB/64B-

line/24-way, Texture: 12KB/128B-line/2-way
Branching Handling PDOM based method [9]
Warp Scheduling GTO
Interconnect Butterfly, 1400Mhz, 32B channel width
L2 Unified Cache 768KB, 128B line, 16-way
Min. L2 Latency 120 cycles (compute core clock)
Cache Indexing Pseudo-Random Hashing Function [26]
Memory Partitions 6
Memory Banks 16 per memory partition
Memory Controller Out-of-Order (FR-FCFS), max request queue length: 32
GDDR5 Timing tCL = 12, tRP = 12, tRC = 40, tRAS = 28,

tRCD = 12, tRRD = 6, tCDLR = 5, tWR = 12

When CNT is saturated (CNT==Cmax), if FCW has not reached its
maximum value (Wmax), FCW is increased by 1 and accordingly
CNT is reset as Cmax/2 to track fully cached divergent loads under
the new partitioning (·). For partially cached loads (¸), CNT is
decreased differently depending on the issuing warp’s scheduling
priority. For instance, if a warp’s scheduling priority is lower than
FCW, CNT is decreased by 1 (¹); otherwise, CNT is decreased by
FCW-GTO_prio (º) to speed up the process of achieving the op-
timal FCW. When CNT reaches zero, FCW is decreased by 1 so
that less warps are assigned into the locality region (»). In our pro-
posal, each warp scheduler has at least 1 warp in the locality region;
while Wmax is equal to 48, which is the number of physical warps
on each SM. Thus, in the corner cases when FCW is 1 or Wmax
(¼), CNT will not be overflowed if it’s saturated.

In order to implement the logic of dynamic partitioning, we first
use one register (Div-reg) to mark whether a load is divergent or
not, depending on the number of coalesced memory requests. Div-
reg is populated when a new load instruction is serviced by L1D.
We then use another register (FCW-reg) to track whether a load
is fully cached or not. FCW-reg is reset when L1D starts to ser-
vice a new load, and is set when a cache miss happens. When
all the accesses of the load are serviced, FCW-reg being unset in-
dicates a fully cached load. The logic of dynamic partitioning is
triggered when a divergent load retires from the memory stage. We
empirically use a 8-bit counter for CNT so that it can maximally
record 256 consecutive occurrence of fully/partially cached loads,
i.e., Cmax=256 in Figure 7. CNT is initialized as 128 while FCW
is 4. This initial value of FCW is based on our experiments of static
partitioning schemes showing that maintaining two FCWs for each
warp scheduler has the best overall performance.

5. EXPERIMENTAL EVALUATION
We use GPGPU-Sim [1] (version 3.2.1), a cycle-accurate simu-

lator, for the performance evaluation of DaCache. The main char-
acteristics of our baseline GPU architecture are summarized in Ta-
ble 2. The same baseline is also studied in [35, 36]. Jia et al. [19] re-
ported that the default cache indexing method employed by this ver-
sion of GPGPU-Sim can lead to severe intra-warp conflict misses,
thus we use the indexing method from real Fermi GPUs, pseudo-
random hashing function [26]. Actually this indexing method has
been adopted in the latest versions of GPGPU-Sim. The following
cache management techniques are evaluated:

LRU is the baseline cache management. Without further mention-
ing, all performance numbers are normalized to LRU.

DIP [30] consists of both LRU and MRU insertions. Cache misses
are sampled from the sets that are dedicated to LRU and
MRU insertions to determine a winning policy for all other

94

0

0.5

1

1.5

2

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC Gmean 2DC 3DC 2MM 3MM COR COV GS FD Gmean

Memory Divergent Memory Coherent

IP
C

RRIP DIP DaCache-Uncon DaCache-Stall DaCache

Figure 8: IPC of memory-divergent and memory-coherent benchmarks when various cache management techniques are used.

0

10

20

30

40

50

60

70

80

90

100

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC

Fu
lly

 C
ac

he
d

D
iv

. L
oa

ds
 (%

)

LRU
RRIP
DIP
DaCache-Uncon
DaCache-Stall
DaCache

(a) Divergent Loads

0

10

20

30

40

50

60

70

80

90

100

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC

Fu
lly

 C
ac

he
d

C
oh

. L
oa

ds
 (%

)

LRU
RRIP
DIP
DaCache-Uncon
DaCache-Stall
DaCache

(b) Coherent Loads
Figure 9: Percentages of fully cached load instructions in memory divergent benchmarks.

“follower” sets, which is referred as set-dueling. In our eval-
uation, 4 sets are dedicated for each insertion policy and the
other 24 sets are managed by the winning policy.

RRIP [17] uses Re-Reference Prediction Values (RRPV) for in-
sertion and replacement. With an M-bit RRPV-chain, new
blocks are predicted with RRPVs of 2M -1 or 2M -2, depend-
ing on the winning policy from the set-dueling mechanism.
We implement RRIP with a Frequency Priority based promo-
tion and a 3-bit RRPV chain.

DaCache consists of gauged insertion and incremental promotion
(Section 4.2), constrained replacement with L1D bypassing
(Section 4.3), and dynamic partitioning (Section 4.4). By
default, DaCache has a promotion granularity of 4 and the
locality region starts with hosting 2 warps from each warp
scheduler. We evaluate DaCache variants with unconstrained
replacement (DaCache-Uncon) and constrained replacement
with L1D stalling (DaCache-Stall) to demonstrate the impor-
tance of using warp scheduling to guide cache management.

5.1 Instructions Per Cycle (IPC)
Figure 8 compares the performance of various cache manage-

ment techniques for both memory-divergent and memory-coherent
benchmarks. For memory-divergent benchmarks, RRIP on aver-
age has no IPC improvement. The performance gains of RRIP are
balanced out by its loss in ATAX, BICG, MVT, and SYR, which
exhibit LRU-friendly accesses patterns under GTO. Because of the
intra-warp locality, highly prioritized warps leave large amount of
blocks in the locality region that no other warps will re-reference,
i.e., dead blocks, after they retire from LD/ST units. RRIP’s asym-
metric processes of promotion and replacement make it slow to
eliminate the dead blocks, leading to inferior performance in these
LRU-friendly benchmarks. Dynamically adjusting between LRU
and MRU insertions makes DIP capable of both LRU-friendly and
thrashing-prone patterns, thus DIP has 12.4% IPC improvement. In
contrast, DaCache-Uncon, DaCache-Stall, and DaCache have an
improvement of 25.9%, 25.6%, and 40.4%, respectively. The per-
formance advantage of DaCache-Uncon proves the effectiveness of
incorporating warp scheduling into L1D cache management. Based
on this warp scheduling-awareness, constrained replacement with

L1D stalling (DaCache-Stall) has no any extra performance gain.
However, enabling constrained replacement with L1D bypassing
achieves another improvement of 14.5% in DaCache.

Among the memory-coherent benchmarks, DIP has 8% perfor-
mance improvement in GS. This is because GS has inter-kernel
data locality, and inserting new blocks into LRU position when de-
tected locality is low can help to carry data locality across kernels.
We believe this performance improvement will diminish when data
size is large enough. For the others, all of the cache management
techniques have negligible performance impact. By focusing on
memory divergence, DaCache and its variants have no detrimental
impacts on memory coherent workloads. We believe DaCache is
applicable to a large variety of GPGPU workloads.

5.2 Fully Cached Loads
The percentages of fully cached loads (Figure 9) explain the

performance impacts of various cache management techniques on
these memory-divergent benchmarks. As shown in Figure 9(a),
LRU outperforms DIP and RRIP in fully caching divergent loads.
Since GTO warp scheduling essentially generates LRU-friendly
cache access patterns, LRU cache matches the inherent pattern so
that the blocks of divergent loads are inserted into the contiguous
positions of the LRU-chain. In contrast, DIP and RRIP dynami-
cally insert blocks of the same load into different positions of LRU-
chain and RRPV-chain, respectively, making it hard to fully cache
divergent loads. Thus the performance impacts of RRIP and DIP
mainly come from their capabilities in preserving coherent loads.
As shown in Figure 9(b), for ATAX, BICG, MVT, and SYR, RRIP
also achieves less fully cached coherent loads than LRU, thus it has
worse performance than LRU in the four benchmarks; DIP recov-
ers more coherent loads than LRU, but these gains are offset by
loss in caching divergent loads, leading to marginal performance
improvement. For SYR2, GES, KMN, SC, and BFS, RRIP and
DIP improve the effectiveness of caching coherent loads, leading
to the performance improvement in the five benchmarks.

DaCache-Uncon, DaCache-Stall, and DaCache constantly out-
perform LRU, RRIP, and DIP in fully caching loads, except for
benchmark SC. This advantage comes from the following three

95

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC Gmean

N
or

m
al

iz
ed

 M
PK

I
RRIP DIP
DaCache-Uncon DaCache-Stall
DaCache

Figure 10: MPKI of various cache management techniques.

factors. Firstly, guided by the warp scheduling prioritization, the
gauged insertion implicitly enforces LRU-friendliness. Thus DaCache-
Uncon achieves 35.1% more fully cached divergent loads. Sec-
ondly, deliberately prioritizing coherent loads over divergent loads
alleviates the inter- and intra-warp thrashing from divergent loads.
Thus DaCache-Uncon achieves 27.3% more fully cached coher-
ent loads. Thirdly, constrained replacement can effectively im-
prove the caching efficiency for highly prioritized warps. Based
on DaCache-Uncon, constrained replacement with L1D stalling
(DaCache-Stall) achieves 37.2% and 27.6% more fully cached di-
vergent and coherent loads than LRU, respectively; while constrained
replacement with L1D bypassing (DaCache) achieves 70% and
34.1% more fully cached divergent and coherent loads than LRU,
respectively. In SC, the divergent loads come from the references
to arrays of structs outside of a loop, and references to different
members of the struct entry are sequential so that the LRU has the
highest percentage of fully cached divergent loads (48.7%). But di-
vergent loads in SC make up only a small portion of the total loads,
therefore the number of fully cached coherent loads dominates the
performance impacts.

5.3 Misses per Kilo Instructions (MPKI)
We also use MPKI to analyze the performance impacts of various

cache management techniques on these memory-divergent bench-
marks. As shown in Figure 10, except ATAX, BICG, MVT, and
SYR, all of the five techniques are effective in reducing MPKIs.
Because GPUs are throughput-oriented and rely on the number of
fully cached warps to overlap long latency memory accesses, the
significant MPKI increase of DIP in the four benchmarks is toler-
ated so that it doesn’t have negative performance impacts. How-
ever, RRIP incurs on average a 32.5% increase in MPKIs in the
four benchmarks, which leads to 14.5% performance degradation.
Across the 12 benchmarks, on average, RRIP increases MPKIs by
6.4%, while DIP reduces MPKIs by 3.8%.

Meanwhile, DaCache-Uncon, DaCache-Stall, and DaCache con-
sistently achieve MPKI reductions. On average, they reduce MP-
KIs by 20.8%, 22.4%, and 25%, respectively. Though DaCache-
Stall reduces 1.6% more MPKIs than DaCache-Uncon, its poten-
tial performance advantage is compromised by adversely inserted
L1D stall cycles. On the contrary, bypassing L1D in DaCache not
only prevents L1D locality from being thrashed by warps with low
scheduling priorities, but also enables these thrashing warps to di-
rectly access data cached in lower cache hierarchy. So 4.2% more
MPKI reductions of DaCache brings 40.4% IPC improvement.

5.4 Static vs Dynamic Partitioning
Figure 11 examines the performance of DaCache when various

static partitioning schemes and dynamic partitioning are enabled.
For this experiment, the constrained replacement is disabled. Stat-
icN means that N warps are cached in locality region. For example,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC Gmean

IP
C

Static0 Static1 Static2 Static3 Dyn

Figure 11: DaCache under static and dynamic partitioning.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC Gmean

IP
C

S0+Bypass S1+Bypass S2+Bypass S3+Bypass Dyn+Bypass

Figure 12: The impacts of using bypass to complement replace-
ment policy under static and dynamic partitioning. Results are nor-
malized to corresponding partitioning schemes.

in Static0, all blocks fetched by divergent loads are initially inserted
into the LRU positions. Note that our baseline L1D is 8-way asso-
ciative, Static3 and Static4 actually lead to identical insertion posi-
tions for all warps. Thus we only compare dynamic partition (Dyn)
with Static0, Static1, Static2, and Static3.

Without any information from warp scheduling, Static0 blindly
inserts all blocks of divergent loads into LRU positions, thus it be-
comes impossible to predict which warps’ cache block are more
likely to be thrashed. On average, this inefficiency of Static0 in-
curs 0.1% performance loss. On the contrary, by implicitly pro-
tecting 1, 2, and 3 warps for each warp scheduler, Static1, Static2,
and Static3 achieve performance improvement of 23%, 24.7%, and
21.9%, respectively. Note that Static2 equally partitions L1D ca-
pacity into locality and thrashing regions, and the locality region
is sufficient to cache two warps from each warp scheduler. Ex-
cept IIX and PVC, all other benchmarks have maximally two di-
vergent loads in each kernel, thus Static2 has the best performance
improvement. Our dynamic partitioning scheme (Dyn) achieves a
performance improvement of 25.9%, outperforming all static parti-
tioning schemes among the evaluated benchmarks. We expect this
dynamic partitioning scheme can adapt to other L1D configurations
and future GPGPU benchmarks that have diverse branch and mem-
ory divergence.

5.5 Constrained Replacement
Figure 12 explains when bypassing L1D can be an effective com-

plement to replacement policy under static and dynamic partition-
ing. SN is equivalent to StaticN in Figure 11. The results are
normalized to respective partitioning configurations. On average,
constrained replacement with L1D bypassing incurs 0.6%, -5%,
12.8%, 11.4% and 11.6% performance improvement in S0+Bypass,
S1+Bypass, S2+Bypass, S3+Bypass, and Dyn+Bypass, respectively.
Note that these numbers are relative to partition-only configuration
and are mainly used to quantify whether bypassing L1D is a vi-
able complement to replacement policy. The performance degrada-
tion of S1+Bypass are mainly caused by ATAX, BICG, and MVT.

96

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC Gmean

IP
C

Promo1 Promo2 Promo3 Promo4 Promo5 Promo-MRU

Figure 13: The impacts of promotion granularity under dynamic
partitioning. PromoN means re-referenced blocks are promoted by
N positions along the LRU-chain.

We observe that the three benchmarks have a large amount of dead
blocks in L1D. Aggressive bypassing slows down the removal of
dead blocks so that cache capacity is underutilized. We also ana-
lyzed the impact of stalling L1D as a complement to replacement
policy under static and dynamic partitioning. We only observe neg-
ligible performance impacts, thus its results are not presented here
due to the space limit.

5.6 Sensitivity to Promotion Granularity
Figure 13 analyzes the sensitivity of DaCache to the promo-

tion granularity. In this experiment, Promo-MRU immediately pro-
motes re-referenced blocks to the MRU positions, while Promo1,
Promo2, Promo3, Promo4, and Promo5 promote re-referenced blocks
by 1, 2, 3, 4, and 5 positions respectively along the LRU-chain un-
less they reach the MRU position. As we can see, the majority
of the benchmarks are sensitive to promotion granularity. These
dead blocks are gradually demoted into thrashing region by insert-
ing new blocks and/or promoting re-referenced blocks into locality
region. Thus promotion granularity plays a critical role in elimi-
nating dead blocks. Compared with LRU caches that directly pro-
mote re-referenced block to the MRU position, incremental promo-
tion slowly promotes “hot” blocks towards the MRU position. The
performance gap between Promo1 (37.1%) and Promo4 (41.6%)
shows the importance of the promotion policy in DaCache.

6. RELATED WORK
There has been a large body of proposals on cache partition-

ing [12, 15, 16, 38, 3] and replacement policies [13, 31, 34] to
increase the cache performance in CPU systems. However, these
proposals do not handle the memory divergence issue within the
massive parallelism of GPUs. Thus we mainly review the latest
work within the context of GPU cache management.

6.1 Cache Management for GPU Architecture
L1D bypassing has been adopted by multiple proposals to im-

prove the efficiency of GPU caches. Jia et al. [19] observed that cer-
tain GPGPU access patterns experience significant intra-warp con-
flict misses due to the pathological behaviors in conventional cache
indexing methods, and thus proposed a hardware structure called
Memory Request Prioritization Buffer (MRPB). MRPB reactively
bypasses L1D accesses that are stalled by cache associativity con-
flicts. Chen et al. [6] used extensions in L2 cache tag to track local-
ity loss in L1D. If a block is requested twice by the same SM, it’s
assumed that severe contention happens in L1D so that replacement
is temporarily locked down and new requests are bypassed into L2.
Chen et al. proposed another adaptive cache management policy,
Coordinated Bypassing and Warp Throttling (CBWT) [5]. CBWT

uses protection distance prediction [8] to dynamically assign each
new block a protection distance (PD), which guarantees that the
block will not be evicted if its PD has not reached zero. When no
unprotected lines are available, bypassing is triggered and the PD
values are decreased. CBWT further throttles concurrency to pre-
vent NOC from being congested by aggressive bypassing. Differ-
ent from the above three techniques, bypassing L1D in DaCache is
coordinated with warp scheduling logic and a finer-grained scheme
to alleviate both inter- and intra-warp contention. At runtime, by-
passing is limited to the thrashing region which caches divergent
loads from warps with low scheduling priorities and coherent loads
with no locality.

Compiler directed bypassing techniques have been investigated
to improve GPU cache performance in [18, 37], but the static by-
passing decisions mainly work for regular workloads. DaCache
is a hardware solution for GPU cache management and can adapt
to program behavior changes at runtime. In some heterogeneous
multicore processors, CPU and GPU cores share the Last Level
Cache (LLC). There are also some work on cache management
for this kind of heterogeneous systems [22, 25]. Although Da-
Cache is designed for discrete GPGPUs, the idea of coordinating
warp scheduling and cache management is also applicable to hy-
brid CPU-GPU systems.

Dong proposed an AgeLRU algorithm [23] for GPU cache man-
agement. AgeLRU uses extra fields in cache tags to track each
cache line’s predicted reuse distance, reuse count, and the active
warp ID of the warp fetching the block, which together are used to
calculate a score for replacement. The calculated score is recipro-
cal to each warp’s age, i.e., older warps have higher scores to be
protected. At runtime, the block with the lowest score is selected
as replacement candidate and bypassing can be enabled when the
score of the replacement victim is above a given threshold. By do-
ing so, AgeLRU achieves the goal of preventing young warps from
evicting blocks of old warps. DaCache doesn’t need either storage
in tag array or complicated calculation to assist replacement. By
renovating the management policies, DaCache is more complexity-
effective than AgeLRU to realize the same goal.

6.2 Warp Scheduling
There are several works that use warp scheduling algorithms to

enable thrashing resistance in GPU data caches. Motivated by the
observation that massive multithreading can increase contention in
L1D for some highly cache-sensitive GPGPU benchmarks, Rogers
et al. proposed a Cache Conscious Warp Scheduler (CCWS) [32]
to limit the number of warps that issue load instructions when it
detects loss of intra-warp locality. Following that, Rogers et al.
also proposed a Divergence-Aware Warp Scheduling (DAWS) [33]
to limit the number of actively scheduled warps whose aggregate
cache footprint does not exceed L1D capacity. Besides, Kayiran
et al. [20] proposed a dynamic Cooperative Thread Array (CTA)
scheduling mechanism which throttles the number of CTAs on each
core according to application characteristics. Typically, it reduces
CTAs for memory-intensive applications to minimizing resource
contention. By throttling concurrency, cache contention can be al-
leviated, and Rogers et al. reported in [32] that warp scheduling can
be more effective than optimal cache replacement [2] in preserving
L1D locality. However, throttling concurrency usually permits only
a few warps to be active, though each warp scheduler is hosting a
lot more warps that are ready for execution (maximally 24 warps
in our baseline). Our work is orthogonal to these warp scheduling
algorithms, because contention still exists in reduced concurrency.
DaCache can be used to increase cache utilization under reduced
concurrency and also uplift the resultant concurrency.

97

7. CONCLUSION
GPUs are throughput-oriented processors that depend on mas-

sive multithreading to tolerate long latency memory accesses. The
latest GPUs all are equipped with on-chip data caches to reduce
the latency of memory accesses and save the bandwidth of NOC
and off-chip memory modules. But these tiny data caches are vul-
nerable to thrashing from massive multithreading, especially when
divergent load instructions generate long bursts of cache accesses.
Meanwhile, the blocks of divergent loads exhibit high intra-warp
locality and are expected to be atomically cached so that the issuing
warp can fully hit in L1D in the next load issuance. However, GPU
caches are not designed with enough awareness of either SIMD ex-
ecution model or memory divergence.

In this work, we renovate the cache management policies to de-
sign a GPU-specific data cache, DaCache. This design starts with
the observation that warp scheduling can essentially shape the lo-
cality pattern in cache access streams. Thus we incorporate the
warp scheduling logic into insertion policy so that blocks are in-
serted into the LRU-chain according to their issuing warp’s schedul-
ing priority. Then we deliberately prioritize coherent loads over di-
vergent loads. In order to enable the thrashing resistance, the cache
ways are partitioned by desired warp concurrency into two regions,
the locality region and the thrashing region, so that replacement is
constrained within the thrashing region. When no replacement can-
didate is available in the thrashing region, incoming requests are
bypassed. We also implement a dynamic partition scheme based
on the caching effectiveness that is sampled at runtime. Experi-
ments show that DaCache achieves 40.4% performance improve-
ment over the baseline GPU and outperform two state-of-the-art
thrashing resistant cache management techniques RRIP and DIP
by 40% and 24.9%, respectively.

Acknowledgments

This work is funded in part by an Alabama Innovation Award,
and by National Science Foundation awards 1059376, 1320016,
1340947 and 1432892. The authors are very thankful to anony-
mous reviewers for their invaluable feedback.

8. REFERENCES
[1] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.

Aamodt. Analyzing CUDA Workloads Using a Detailed GPU
Simulator. In ISPASS, 2009.

[2] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Syst. J., 5(2):78–101, June 1966.

[3] J. Chang and G. S. Sohi. Cooperative Cache Partitioning for Chip
Multiprocessors. In ICS, 2007.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In IISWC, 2009.

[5] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and
W.-M. W. Hwu. Adaptive Cache Management for Energy-efficient
GPU Computing. In MICRO, 2014.

[6] X. Chen, S. Wu, L.-W. Chang, W.-S. Huang, C. Pearson, Z. Wang,
and W.-M. W. Hwu. Adaptive Cache Bypass and Insertion for
Many-core Accelerators. In MES, 2014.

[7] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter. The Scalable
Heterogeneous Computing (SHOC) benchmark suite. In GPGPU,
2010.

[8] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V.
Veidenbaum. Improving Cache Management Policies Using
Dynamic Reuse Distances. In MICRO, 2012.

[9] W. W. L. Fung, I. Sham, G. L. Yuan, and T. M. Aamodt. Dynamic
Warp Formation and Scheduling for Efficient GPU Control Flow. In
MICRO, 2007.

[10] H. Gao and C. Wilkerson. A Dueling Segmented LRU Replacement
Algorithm with Adaptive Bypassing. In J. Emer, editor, JWAC 2010 -
1st JILP Worshop on Computer Architecture Competitions: cache
replacement Championship, Saint Malo, France, 2010.

[11] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and
J. Cavazos. Auto-tuning a High-Level Language Targeted to GPU
Codes. In Innovative Parallel Computing, 2012.

[12] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A Framework for Providing
Quality of Service in Chip Multi-Processors. In MICRO, 2007.

[13] E. G. Hallnor and S. K. Reinhardt. A fully associative
software-managed cache design, volume 28. ACM, 2000.

[14] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: A
MapReduce Framework on Graphics Processors. In PACT, 2008.

[15] R. Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of
CMP Platforms. In ICS, 2004.

[16] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell,
Y. Solihin, L. Hsu, and S. Reinhardt. QoS Policies and Architecture
for Cache/Memory in CMP Platforms. In SIGMETRICS, 2007.

[17] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. S. Emer. High
Performance Cache Replacement Using Re-Reference Interval
Prediction (RRIP). In ISCA, 2010.

[18] W. Jia, K. A. Shaw, and M. Martonosi. Characterizing and Improving
the Use of Demand-fetched Caches in GPUs. In ICS, 2012.

[19] W. Jia, K. A. Shaw, and M. Martonosi. MRPB: Memory Request
Prioritization for Massively Parallel Processors. In HPCA, 2014.

[20] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither More
Nor Less: Optimizing Thread-Level Parallelism for GPGPUs. In
PACT, 2013.

[21] S. M. Khan, Y. Tian, and D. A. Jimenez. Sampling Dead Block
Prediction for Last-Level Caches. In MICRO, 2010.

[22] J. Lee and H. Kim. TAP: A TLP-aware cache management policy for
a CPU-GPU heterogeneous architecture. In HPCA, 2012.

[23] D. Li. Orchestrating Thread Scheduling and Cache Management to
Improve Memory System Throughput in Throughput Processor. PhD
thesis, University of Texas at Austin, May 2014.

[24] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro,
28(2):39–55, Mar. 2008.

[25] V. Mekkat, A. Holey, P.-C. Yew, and A. Zhai. Managing shared
last-level cache in a heterogeneous multicore processor. In PACT,
2013.

[26] C. Nugteren, G.-J. van den Braak, H. Corporaal, and H. Bal. A
Detailed GPU Cache Model Based on Reuse Distance Theory. In
HPCA, 2014.

[27] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi, 2009.

[28] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110, 2012.

[29] NVIDIA. CUDA C Programming Guide, 2013.
[30] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, Jr., and J. S. Emer.

Adaptive Insertion Policies for High Performance Caching. In ISCA,
2007.

[31] M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-Way Cache:
Demand Based Associativity via Global Replacement. In ISCA,
2005.

[32] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-Conscious
Wavefront Scheduling. In MICRO, 2012.

[33] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Divergence-aware
Warp Scheduling. In MICRO, 2013.

[34] R. Subramanian, Y. Smaragdakis, and G. H. Loh. Adaptive Caches:
Effective Shaping of Cache Behavior to Workloads. In MICRO, 2006.

[35] B. Wang, Z. Liu, X. Wang, and W. Yu. Eliminating Intra-Warp
Conflict Misses in GPU. In DATE, 2015.

[36] B. Wang, B. Wu, D. Li, X. Shen, W. Yu, Y. Jiao, and J. S. Vetter.
Exploring Hybrid Memory for GPU Energy Efficiency Through
Software-hardware Co-design. In PACT, 2013.

[37] X. Xie, Y. Liang, G. Sun, and D. Chen. An Efficient Compiler
Framework for Cache Bypassing on GPUs. In ICCAD, 2013.

[38] Y. Xie and G. H. Loh. PIPP: Promotion/Insertion Pseudo-partitioning
of Multi-core Shared Caches. In ISCA, 2009.

98

