Performance Evaluation and Tuning of BioPig for Genomic
Analysis

Lizhen Shi
Florida State Univ.
Ishi@cs.fsu.edu

Zhong Wang
Joint Genome Inst.

ABSTRACT

In this study, we aim to optimize Hadoop parameters to im-
prove the performance of BioPig on Amazon Web Service
(AWS). BioPig is a toolkit for large-scale sequencing data
analysis and is built on Hadoop and Pig that enables easy
parallel programming and scaling to datasets of terabyte
sizes. AWS is the most popular cloud-computing platform
offered by Amazon. When running BioPig jobs on AWS,
the default configuration parameters may lead to high com-
putational costs. We select the k-mer counting as it is used
in a large number of next generation sequence (NGS) data
analysis tools. We tuned Hadoop parameters from five dif-
ferent perspectives based on a baseline configuration. We
found tuning different Hadoop parameters led to various per-
formance improvements. The overall job execution time of
k-mer counting on BioPig was reduced by 50% using an op-
timized set of parameters. This paper documents our tuning
experiments as a valuable reference for future Hadoop-based
analytics applications on genomics datasets.

1. INTRODUCTION

Next-generation sequencing technologies [12] have increased
the speed of DNA sequencing by several orders of magni-
tude. Automation and computerization [3] revolutionized
the speed of reading the letters of DNA sequences. The
advent of next-generation sequencing technique increased it
further. In current days, modern Illumina [18] systems can
generate hundreds of gigabytes of sequences per run with
99.9% accuracy. This gives rise to a large amount of raw
sequence datasets that need to be processed, hence placing
a huge burden on external compute framework.

Meanwhile, extremely large scale sequencing projects are

emerging, such as ENCODE project [4], 1000 Genomes project

[1], Cow Rumen Deep Metagenomes project [9] and Human
Microbiome project [5]. These projects produce sequenc-
ing data at a massive scale. Traditional analysis tools have

!Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Request permissions from Permissions@acm.org.
DISCS-2015, November 15-20, 2015, Austin, TX, USA

© 2015 ACM. ISBN 978-1-4503-3993-3/15/11...$15.00
DOIL: http://dx.doi.org/10.1145/2831244.2831252

zhongwang@lbl.gov

Weikuan Yu
Florida State Univ.
yuw@cs.fsu.edu

Xiandong Meng
Joint Genome Inst.
xiandongmeng@lIbl.gov

been challenged by the need to scale commensurately with
the increasing data size.

Hadoop [2] has emerged as a popular option to address the
challenges of increasingly large datasets. The Hadoop Dis-
tributed File System (HDFS) and MapReduce are two core
components of Hadoop framework. With the assistance of
HDFS, Apache Hadoop not only enables distributed, scal-
able and fault tolerance data storage, but also built-in data
locality and distributed data processing. MapReduce per-
mits tasks running in a massively parallel manner on a large
number of nodes. With the combination of MapReduce and
HDFS, Hadoop provides a load-balanced, scalable and reli-
able framework. The advantages of Hadoop over other par-
allel frameworks make it widely adopted by various scientific
domains including bioinformatics. Biological scientists har-
ness the power of Hadoop and large clusters to analyze large
sequence data sets.

However, one issue with efficiently leveraging MapReduce
is its large number of parameter configurations. Tuning
all parameters is typically very time-consuming. Although
there has been a lot of research on this topic [8, 10, 11, 16],
none has provided a solid guidance for the analytics appli-
cations to achieve an optimal performance. This is because
the interplay of parameters is typically dependent on the in-
put data size, hardware resource and application character-
istics. Even worse, available MapReduce tuning guidelines
are not applicable to application of bioinformatics due to
its own unique characteristics. We use BioPig [13], one of
the Hadoop-based toolkits for next-generate sequence (NGS)
analysis in bioinformatics, as a representative application
for tuning Hadoop parameters. Based on BioPig applica-
tion characteristics, our tuning was conducated from five
perspectives: data compression, block size, heap size, JVM
garbage collection and reducer start-time. With well-tuned
parameters, the overall job execution time was decreased
by 50% compared to baseline configuration. We believe
that this tuning experience can provide a valuable reference
for other similar applications that analyze large-amounts of
NGS datasets in the cloud.

The paper is organized as follows. Section 2 introduces
the background of Hadoop and BioPig. Section 3 gives an
initial evaluation of BioPig, followed by its tuning in Section
4. Section 5 provides a review of related work. Section 6
concludes the paper and discusses some future directions to
optimize BioPig performance further.

2. BACKGROUND

In this section, we first review the two core components

in Hadoop: Hadoop Distributed File System (HDFS) and
MapReduce programming model. Next we introduce DNA
sequence analysis and BioPig toolkit.

2.1 Overview of the Hadoop Framework

Apache Hadoop as an open source implementation of MapRe-

duce paradigm provides a reliable, scalable and distributed

computing framework for data-intensive applications. Hadoop

Distributed File System (HDFS) and Hadoop MapReduce
are two integral components inside Hadoop.

2.1.1 Hadoop Distributed File System (HDFS)

Using commodity components, Hadoop can process data
in a distributed Hadoop cluster. Data are broken into blocks
and distributively stored at the data nodes. Hardware fail-
ure may occur on large-scale systems. To achieve high avail-
ability, each block of data is replicated to 3 data nodes in
Hadoop to prevent the failure of one node from causing the
loss of valuable data. To improve data processing perfor-
mance, HDF'S supports data locality, which means the work-
load would be assigned to the node where the data is stored.
This helps decrease network overhead and increase the scal-
ability of Hadoop-based data analytics.

HDFS includes two types of nodes: a NameNode and
many DataNodes. Even though the NameNode does not
hold any dataset, it holds the metadata for the Hadoop clus-
ter and monitors the health of the DataNodes through the
heartbeats from DataNodes. As a result the NameNode is
the most critical component of HDFS. Prior to Version 2.0,
Hadoop allows only a single NameNode for the entire cluster
and the cluster size is limited because of the associated bot-
tleneck. In Version 2.0, federation is employed to address
this limitation, where multiple NameNodes are allowed.

2.1.2 Hadoop MapReduce

MapReduce [7] provides a programming model for data-
intensive processing in a parallel fashion. In MapReduce, the
workload is decomposed into a large number of small tasks
and distributed to a large number of nodes. Many real-world
applications fit very well to the MapReduce paradigm and
can be executed on MapReduce-based platforms. Users may
use a general-purpose programming language such as Java or
Python to implement customized Map and Reduce functions
for the processing logics needed by their own applications.

Hadoop MapReduce is in its second generation, which we
call MapReduce 2 (MRv2) or YARN. YARN was developed
to overcome several limitations in the first generation of
Hadoop. First, instead of dividing resources into map and
reduce slots, it provides a unified resource unit called con-
tainers. This allows flexible scheduling. Second, it relieves
the single bottlenecked JobTracker through a hierarchical
management scheme in which the resource manager (RM)
is responsible for the global coordination within the system
and an ApplicationMaster (AM) per job is created per job
and manages all tasks with the job. Finally, YARN sup-
ports both MapReduce and non-MapReduce applications as
a new resource management framework. Taken together,
compared to the original Hadoop, YARN provides flexible
resource management and versatile programming models.

2.2 DNA Sequence Analysis and BioPig Toolkit

DNA sequences consist of four unique bases labeled A,
T, C, and G (for adenine, thymine, cytosine, and guanine

respectively). Genomic analysis is the process of analyz-
ing an organism’s sequences such as DNA to understand its
features, functions, structure, or evolution. Methodologies
used include sequence alignment, searches against biological
databases, etc [17, 6].

BioPig [13] is a Hadoop-based toolkit for large-scale DNA
sequence analysis in Bioinformatics. It is fully open source
under the BSD license, and is implemented on top of Apache
Hadoop framework and Pig [14] data flow language. Lever-
aging the advantages of Hadoop and Pig framework, BioPig
has shown its scalability, programmability and portability.
Through this work, BioPig has evolved into its second gen-
eration built on Hadoop 2 and Pig 0.15. BioPig consists of
five main functional modules: Input/Output, k-mer count-
ing, Blast, Assembly and Similarity. Among these modules,
K-mer counting is the core one, which is also a prerequisite
step of many bioinformatics applications. K-mers refer to
all the possible subsequences of length k in a DNA/RNA
sequencing. Counting the occurrences of every k-mer in a
genome sequence is the preliminary and central step of many
subsequent analysis, such as constructing de Bruijn graphs
in sequence assembly, eliminating erroneous reads in a rel-
atively large number of datasets and aligning multiple se-
quences. When the k-mer size is large and billions of reads
need to be processed, k-mer counting becomes the most dif-
ficult problem in Bioinformatics. Counting large k-mers of
large modern sequence datasets can easily overwhelm the
memory capacity of standard computers. To address the
scalability issue, BioPig framework provides a scalable k-mer
counter which scales well with the dataset size and k-mer size
because of the linear scalability of Hadoop framework.

3. ANINITIAL EVALUATION OF HADOOP-
BASED BIOPIG

Hadoop has been adopted widely by various scientific do-
mains. However, one challenge with Hadoop is that its per-
formance tuning is very time-consuming. Hadoop programs
have a very large set of configuration parameters. These
parameters are used to control the execution behavior of

jobs. Many of them can affect the job’s execution time and

resource usage significantly.

In this section, we will take k-mer counting as an exam-
ple to describe the evaluation of Hadoop-based BioPig and
demonstrate its performance characteristics. The evalua-
tion provides a baseline for the tuning of BioPig that will
be described in Section 4. We use the default value for the
configuration parameters unless a choice is explicitly speci-
fied.

3.1 System Configuration

Our initial evaluation is to pinpoint the baseline of con-
figuration parameters for a reference about BioPig perfor-
mance. The goal is to get an acceptable performance provid-
ing the limitations of hardware resources (e.g. CPU, mem-
ory, disk, network). We first describe the hardware and
software configurations on our system, and the input data
preparation,

To evaluate BioPig performance, 15 nodes (1 name node
and 14 data nodes) of the type ¢3.8x large instances were
launched on Amazon EC2. Each node has 60GB RAM and
108 Elastic Computer Units (Intel(R) Xeon(R) CPU E5-
2680 v2 @ 2.80GHz). A 500GB solid-state drive (SSD) was

250 /-
150 // —

100 /./ /

” —

] 10 20 EL 40 50 Bl 70 a0 [0 100
Data Size (6B)

CPU Time (Minutes)
3
a

=—#—Bascline =i~ Default

Figure 1: Default and Baseline Performance

attached to each node as local and HDF'S storage for MapRe-
duce jobs. All the nodes are interconnected by 10Gbit/s
Ethernet network. We choose cow rumen metagenomics
dataset [9], the same dataset used in the original BioPig
paper [13], as our test input. From the 1250 serial, the one
with the largest size and the best quality fasta file, we gener-
ated 6 different workloads: 1GB, 10GB, 20GB, 40GB, 60GB
and 100GB. The k-mer size was fixed to 20 for simplicity.

Based on the tuning of other Hadoop applications, val-
ues of some critical Hadoop parameters are set as shown in
Table 1. These parameters are stored in these three files:
hdfs-site.xml, mapred-site.xml and yarn-site.xml. The dif-
ferences between baseline settings and default values are also
shown in the table.

A few of key points of the configuration are emphasized
below:

e We set 2GB memory as the limit for Map containers
and Reduce containers.

e We allocate a max Java heap size of 1624MB for Map/Re-

duce processes.

e A buffer size of 1000 MB is allocated for storing out-
puts for MapTasks.

o We allocate 28 containers on each node with a default
block size of 64MB.

3.2 Initial Performance Evaluation

Each node in the AWS cluster has 60 GB of RAM. YARN
can only allocate up to 58,296 MB of memory to all contain-
ers. The remaining memory is reserved for the OS kernel,
system processes and other non-Hadoop processes. After
running a bunch of jobs with a various number of reduc-
ers, estimations of reducer numbers at various workloads
are found and shown in Table 2.

Using the baseline configuration and this set number of
reducers, k-mer counting was executed with 6 different data
sizes. The results are shown in Figure 1. The performance
difference between the default and baseline configuration is
also shown in the figure. Then the counters and logs of these
jobs were collected and analyzed. Based on the performance
results and our examination, the hardware resources were
not fully utilized by the basline configuration. In the next
section, we describe the tuning of BioPig from five perspec-
tives.

4. TUNING BIOPIG

Our tuning process follows an iterative approach. In each
iteration, we run the job, identify a bottleneck from Hadoop
counters/logs and then adjust parameters. This process
starts with the baseline configuration and repeats until all
major bottlenecks are addressed . Data compression, block
size, heap size, JVM garbage collection and reducer start-
time are the dominating factors that affect the performance.
Our work centers on tuning these steps of k-mer counting
discussed in Section 2.

4.1 K-mer Counting Characteristics

One major overhead for data-intensive applications is the
intermediate data. The pecularity of k-mer counting lies
in its exceptionally large intermediate data size relative to
input data size. Tables 3 and 4 compare the ratio of in-
termediate data size to input data size between common
Hadoop applications and k-mer counting application. From
these results it can be perceived that k-mer counting appli-
cation often generates more than ten-fold intermediate data
relative to the input data. This distinct feature makes most
of available Hadoop tuning guidelines inapplicable for k-mer
counting. In our tuning effort, we use 40GB and 60GB input
data size to fully utilize the cluster resource while allowing
us to complete experiments within a reasonable amount of
time.

4.2 Parameters Tuning

4.2.1 Data Compression

For data-intensive applications, data compression and de-
compression trade off CPU cycles for reduced I/O costs. The
smaller intermediate data size not only reduces the number
of local disk accesses of each MapTask and ReduceTask but
also network transfers from MapTasks to ReduceTasks.

Hadoop supports multiple compression formats (zlib, gzip,
LZO, bzip2, Snappy etc). Because of the good balance be-
tween speed and space, Snappy was chosen for this test. As
can be seen from Table 5, data compression yielded more
than 50% decrease in disk 10. For 40GB workload, the read
and write amount decreased from 604GB to 283GB and from
1200GB to 550GB, respectively. Consequently, the overall
job time was decreased by 6 minutes for 40GB input and
8 minutes for 60GB input. Our testbed (EC2 cluster) is
equipped with SSD. Thus the performance gain of HDD is
more significant compared to clusters with SSD as the pri-
mary storage.

4.2.2 Block Size and Heap Size

In Hadoop, data is split into blocks. These blocks are
stored on the data nodes of HDFS file system. One Map-
Task is created for each block by default. Therefore, the
number of MapTasks is determined by block size and input
data size. The larger the block size is, the fewer MapTasks
will be spawned in the Hadoop cluster. A large block size
is supposed to be beneficial according to some studies [8,
16] because the fewer number of MapTasks incurs lower
overhead of starting up and tearing down. However, k-mer
counting is an exception due to the high merging overhead
brought by its large intermediate data size. To be specific, a
MapTask first writes its output to a circular buffer. When-
ever the buffer reaches a certain threshold, the content of
the buffer is sorted and spilled to local storage by a back-

Configuration parameters

Default value

Baseline Value

yarn.nodemanager.resource.memory-mb 8192 58296
yarn.nodemanager.resource.cpu-vcores 8 30
yarn.scheduler.minimum-allocation-mb 1024 2048
yarn.scheduler.maximum-allocation-mb 8192 58296
yarn.scheduler.minimum-allocation-vcores 1 1
yarn.app.mapreduce.am.resource.mb 1536 2048
yarn.app.mapreduce.am.command-opts -Xmx1024m -Xmx1624m
mapreduce.map.memory.mb 1024 2048
mapreduce.reduce.memory.mb 1024 2048
mapreduce.map.java.opts -Xmx200m -Xmx1624m
mapreduce.reduce.java.opts -Xmx200m -Xmx1624m
io.sort.mb 100 1000
io.sort.factor 10 100
mapreduce.reduce.shuffle.parallelcopies 5 20
dfs.block.size 64M 64M
mapreduce.map.output.compress FALSE FALSE
mapreduce.map.output.compress.codec DefaultCodec DefaultCodec
mapreduce.output.fileoutputformat.compress FALSE FALSE
mapreduce.output.fileoutputformat.compress.codec ~ DefaultCodec DefaultCodec
mapreduce.job.reduce.slowstart.completedmaps 0.05 0.05
yarn.nodemanager.pmem-check-enabled TRUE TRUE

Table 1: Baseline Configuration

Input Size(GB) # of mappers # of reducers

1 16 60
10 156 200
20 311 400
40 622 800
60 954 1200

100 1586 2000

Table 2: Numbers of Mappers and Reducers for Dif-
ferent Data Size

Job Input Int. data Int./
Name size (TB) size (TB) Input
LogProc 1.10 1.10 100%
NdayModel 3.54 3.54 100%
BehaviorModel 3.60 9.47 263%
ClickAttribution 6.80 820 121%
SegmentExploder 14.10 2520 179%
LogRead 1.10 1.10 100%
LogCount 1.10 0.04 4%

Table 3: Characteristics of Intermediate Data for
Common Hadoop Applications

Input size (GB) Int. data size (GB) Int./Input
1 13.5 1350%

5 67.7 1354%

10 135.4 1354%

20 270.9 1355%

40 541.5 1354%

60 830.0 1383%

100 1381.0 1381%

Table 4: Characteristics of Intermediate Data for
k-mer Counting (k=20)

ground thread. One MapTask may generate multiple spills
depending on the buffer size and Map output data size. If
more than one spills are generated, the spilled data have to
be merged into a single sorted file partitioned by Reduce
keys. Then ReduceTasks pull their input from this parti-
tioned merged file via network. The details of this process
are shown in Figure 2. Analysis of logs demonstrated that
large block size led to more map-side spills due to the limited
buffer size of each MapTask. The overhead of merging these
spills dwarfed the benefits of small block size. Our experi-
ment demonstrated that block size of 32MB yielded better
performance than block size of 64MB. The overall job ex-
ecution time was decreased by 12 minutes for 40GB input
and 17 minutes for 60 GB input after changing the block
size from 64MB to 32MB. spill mechanism also implies that
the performance is best when the intermediate data is well
contained in the sort buffer. Our analysis shows that in-
creasing map-side heap to 1100MB can help eliminate spill
operations in our experiments. Table 6 shows that more
than 50% of IO overhead was reduced by this tuning.

4.2.3 JVM Garbage Collection

In Hadoop, a JVM daemon is launched for each task. Java

Data Size Counter Group Uncompressed Compressed Diffrence
Map Reduce Total Map Reduce Total Map Reduce Total
40GB Number of bytes read(GB) 604 598 1,202 283 131 414 321 467 788
Number of bytes written(GB) 1,200 598 1,798 550 131 681 649 467 1,117
60GB Number of bytes read(GB) 929 917 1,846 442 167 609 487 751 1,237
Number of bytes written(GB) 1,839 917 2,756 853 167 1,020 986 751 1,736
Table 5: 10 Improvement from Data Compression
Data Size Counter Group Spill No spill Diffrence
Map Reduce Total Map Reduce Total Map Reduce Total
Number of bytes read 283 131 414 0 125 125 283 6 289
40Gb Number of bytes written 550 131 681 278 125 403 272 6 278
Map output records 32 0 32 32 0 32 0 0 0
Spilled Records 63 31 95 32 32 63 31 0 31
Number of bytes read 442 167 609 0 156 156 442 11 453
60Gh Number of bytes written 853 167 1,020 431 156 587 422 11 433
Map output records 49 0 49 49 0 49 0 0 0
Spilled Records 97 48 145 48 48 97 48 0 48
Table 6: I0 Reduction from Map-side Spill Tuning
Spills e | a
Redu 2 Map Phase]
Mapper | Siroular J—{ A uce Phase
Partitioﬁs Red [- = ! Marge]
o L Shuffle : ;,5_“:;‘ Reduce
Job : % Job
Start time, Finish

Figure 2: Shuffle and Sort Process

garbage collection(GC) is an automatic mechanism to man-
age the runtime memory by JVM. It is done by copying the
survival objects from Young Generation [15] to Permernant
Generation [15] when the former is full. Once the Perme-
rnant Generation is also filled up, the whole JVM heap is
reclaimed during which all survival objects in the heap are
collected, a process referred to as full GC. Our log showed
that there was one full GC every 45 seconds, which, if not
adjusted properly, would incur significant overhead to the
application. By configuring the size of Permernant Genera-
tion from 20MB (default value) to 128MB and the number
of parallel threads for garbage collection to 4, the overall job
run time was decreased by 9 minutes for 40GB input and 11
minutes for 60GB input as displayed in Table 7.

4.2.4 Reducer Start Time

The lifetime of a MapReduce job can be divided into two
phases: map and reduce. The map phase doesn’t require
high network bandwidth because the scheduling locality of
MapTasks helps co-locate these tasks where the input data
is stored. Map output is only written to local disks. In
contrast, the Reduce phase, which gathers and combines the
output from all the MapTasks, incurs heavy network traffic
because each ReduceTask pulls its input from almost every
other nodes and writes its output into HDF'S. More precisely
the Reduce phase can be divided into 3 steps:

Shuffle: Collects input from MapTasks.

Figure 3: Decomposition of Reducer Phases

Sort: Sorts the records and merges them by keys.

Reduce: Runs the Reduce program, then writes its result
into HDF'S.

Figure 3 shows the timeline of a MapReduce job execu-
tion. Shuffle may start before the end of the Map phase
but only finish after all MapTasks have finished. Sort and
Reduce may only start when the shuffle completes. Since
map and shuffle phases overlap, the coordination of them is
crucial for the overall job execution time. The time that a
ReduceTask begins shuffling is configurable. Let us denote
the percent of completed MapTasks when shuffling starts as
the parameter value A, which is controlled by
mapred.reduce.slowstart.completed.maps parameter (default
5%) in mapred-site.xml. When X is low, the performance
can suffer since the early-launched ReduceTasks can waste
the available resource (e.g. cores, memory associated with to
each container). After having tried a set of different values
(Figure 4), we set A to 1.00 for the k-mer counting appli-
cation. The overall job execution time was decreased by 4
minutes for 40GB input and 8 minutes for 60GB input. Note
that our EC2 nodes are connected by 10Gigabit Ethernet,
which reduces the bandwidth bottleneck. For the Hadoop
clusters with lower-bandwidth interconnect, e.g. 1Gb Eth-
ernet, we believe A can be selected following a similar tuning
approach.

Data Size Counter Group before GC tuning After GC tuning Diffrence
GC Time (s) Map Reduce Total Map Reduce Total Map Reduce Total
40GB Jobl 183,905 529 184,433 2,014 104 2,118 181,891 424 182,315
Job2 18,807 5,736 24,543 7,720 1,510 9,230 11,087 4,226 15,313
60GB Jobl 25,283 390 25,672 7,135 141 7,277 18,147 249 18,396
Job2 26,577 8,120 34,697 11,040 2,302 13,342 15,538 5,818 21,355
Table 7: Performance Gain from GC Tuning
5100
E
-g 120
gD.BO 100
EO.BO o map 100 8 17
=)
é 070 W shuffle 20 . & 1
e g I T
Enos ‘E
g | | ! | } 1 20
Q 3 6 L] 12 15 18
Average Stage Exection Time 2
0
Figure 4: Impact of Reducer start time &S o &
=3 & & ® s & <
© = & ¢ B
Factors

®
3

71 6
Y
° 12
60
L9
50 -
2 4
£ 40
E 40
B
30 +
20
10
o
<& o 3 @ & D
NS B & & @@ & &
& & & P D & <
> N <€)
s D

Figure 5: Impact Factors on 40GB

4.3 Discussions

Figure 5 and Figure 6 summerize how each tuning step
affects the overall run time in detail. Block size and JVM
garbage collection are two most significant factors and the
performance improvement by tuning these factors is roughly
proportional to the data size.

Figure 7 shows the performance trend before and after
tuning. The overall job execution time is reduced by 44%
for the 40GB input and 47% for the 60GB input. The linear
scalability is kept.

On the other hand, disk IO and network bandwidth are
usually two performance bottlenecks for Hadoop applica-
tions. SSD and 10Gigabit Ethernet for our EC2 cluster help
mitigate the impact of these constraints. We believe that ap-
plying these tunings to Hadoop clusters with slow networks
may bring more performance improvements.

5. RELATED WORK

Hadoop tuning has been studied in [8, 10, 11, 16]. [16]
provided general suggestions to tune parameters on Hadoop

Figure 6: Impact Factors on 60GB

Kmer counting

—
=
=)

-
1N}
5}

—
1)
>

©
IS}

o
=3

CPU Time (Minutes)

s
=)

1N}
5}

40 50 60
Data Size (GB)

70 80 90 100

—B—Baseline (Minutes) —#—Tuned

Figure 7: Performance Comparison

1. However the suggestions are too general to fit specific
applications. Heger et al. [8] and Joshi et al. [10] tuned
TeraSort application on Hadoop 1 from three perspectives
of hardware configuration, OS configuration and Hadoop pa-
rameters. Joshi et al. [10] even tuned the BIOS settings. In
contrast, we not only presented a detailed step-by-step tun-
ing process on the current Hadoop version YARN, but also
provided some valid suggestions based on the unique work-
load characteristics. Li et al. [11] presented an online perfor-
mance tuning system called MRONLINE. However, it can
only delieve up to 30% performance improvement compared
to default configuration. In contrast, our baseline perfor-

mance was increased by 60% compared to default settings
and the final tuned performance was improved about 50%
compared to the baseline configuration. As a result we ob-
tained a total of 4x speedup with these tuned parameters.
Most of the Hadoop tuning studies have focused on com-
mon applications, TeraSort is one of the most extensively
studied workloads among them. Bioinformatics applications
have quite unique characteristics from these workloads, which
makes most of the available tuning guidelines inapplicable.
For instance, both [8] and [16] claimed that larger block
size can bring better performance because of the lower over-
head of MapTask creation and destruction . However, for
our BioPig tuning, big block size causes the MapTasks spill
heavily to disk which seriously impairs the performance. In
this regard, our paper not only offers a valuable tuning prac-
tice, but also brings a new perspective on Hadoop tuning.

6. CONCLUSION AND FUTURE WORK

The emergence of massive datasets in Bioinformatics poses
great challenges in sequence analysis. The Hadoop MapRe-
duce framework, which was designed to get its parallelism
from large collections of commodity hardware, is adopted to
address these challenges. Currently, several Hadoop-based
Bioinformatics tools are available on the market. To im-
prove BioPig performance, we tuned Hadoop parameters
from 5 perspectives according to k-mer counting character-
istics. Results showed these tunings achieved an average
performance improvement of about 50% compared to base-
line configuration.

Even though parameter tuning can bring obvious perfor-
mance improvement, IO operation is still the bottleneck of
Hadoop-based application. Future experiments to reduce 10
may include implementing a combiner to reduce the amount
of transferred data to the reducers, or reimplement BioPig’s
functions on Apache Spark[3], which is an in-memory com-
puting framework.

Acknowledgments

We are very thankful to Dr. Shane Canon and the anony-
mous reviewers for their insightful comments. This work
is funded in part by National Science Foundation awards
1561041 and 1564647. Xiandong Meng, Zhong Wang, and
Lizhen Shi partially, are supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

7. REFERENCES

[1] 1000 Genomes Project.
http://www.1000genomes.org/.

[2]
3]

[4]
[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]
(17]

(18]

Apache Hadoop. http://hadoop.apache.org/.

DNA Sequencing.
https://en.wikipedia.org/wiki/DNA_sequencing.
Encode Project. https://www.encodeproject.org/.
Human Microbiome Project. https://en.wikipedia.
org/wiki/Human_Microbiome_Project/.

Sequence Analysis. https:
//en.wikipedia.org/wiki/Sequence_analysis.

J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107-113, 2008.

D. Heger. Hadoop performance tuning-a pragmatic &
iterative approach. CMG Journal, 4:97-113, 2013.

M. Hess, A. Sczyrba, R. Egan, T.-W. Kim,

H. Chokhawala, G. Schroth, S. Luo, D. S. Clark,

F. Chen, T. Zhang, et al. Metagenomic discovery of
biomass-degrading genes and genomes from cow
rumen. Science, 331(6016):463-467, 2011.

S. B. Joshi. Apache hadoop performance-tuning
methodologies and best practices. In Proceedings of
the 8rd ACM/SPEC International Conference on
Performance Engineering, pages 241-242. ACM, 2012.
M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A. R.
Butt, and N. Fuller. Mronline: Mapreduce online
performance tuning. In Proceedings of the 23rd
international symposium on High-performance parallel
and distributed computing, pages 165-176. ACM, 2014.
M. L. Metzker. Sequencing technologies: the next
generation. Nature reviews genetics, 11(1):31-46, 2010.
H. Nordberg, K. Bhatia, K. Wang, and Z. Wang.
Biopig: a hadoop-based analytic toolkit for large-scale
sequence data. Bioinformatics, page btt528, 2013.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data, pages 1099-1110. ACM, 2008.

V. L. Shrinivas Joshi. Java garbage collection
characteristics and tuning guidelines for apache
hadoop terasort workload. 2012.

P. TUNING. Performance tuning. 2009.

W. Yu, K. J. Wu, W. Ku, C. Xu, and J. Gao. BMF:
bitmapped mass fingerprinting for fast protein
identification. In 2011 IEEE International Conference
on Cluster Computing (CLUSTER), Austin, TX,
USA, September 26-30, 2011, pages 17-25, 2011.

J. Zhang, R. Chiodini, A. Badr, and G. Zhang. The
impact of next-generation sequencing on genomics.
Journal of genetics and genomics, 38(3):95-109, 2011.

