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Abstract—In today’s “Big Data” era, developers have adopted
I/O techniques such as MPI-IO, Parallel NetCDF and HDF5
to garner enough performance to manage the vast amount of
data that scientific applications require. These I/O techniques
offer parallel access to shared datasets and together with a
set of optimizations such as data sieving and two-phase I/O to
boost I/O throughput. While most of these techniques focus on
optimizing the access pattern on a single file or file extent, few
of these techniques consider cross-file I/O optimizations. This
paper aims to explore the potential benefit from cross-file I/O
aggregation. We propose a Bundle-based PARallel Aggregation
framework (BPAR) and design three partitioning schemes under
such framework that targets at improving the I/O performance of
a mission-critical application GEOS-5, as well as a broad range
of other scientific applications. The results of our experiments
reveal that BPAR can achieve on average 2.1× performance
improvement over the baseline GEOS-5.

I. INTRODUCTION

Large-scale scientific applications can generate colossal

multidimensional datasets during execution. This data is typi-

cally in the form of checkpoint-restart data, data analysis and

visualization output. Such massive-scale datasets require com-

mensurate I/O throughput to enable timely data analysis and

spare memory space for the ensuing rounds of computation.

To shoulder the exploding data pressure, I/O techniques

such as MPI-IO [1], PnetCDF [2] and HDF5 [3] have been

designed to provide aid within this domain. These I/O tech-

niques allow processes to access the shared dataset in parallel

and offer a set of I/O optimizations such as data sieving [1],

two-phase I/O [1] and chunking [4] to enhance the I/O

performance.

Most of these techniques aim to optimize the access pattern

on a single shared file or file extent. This is achieved by

associating the interface with the file descriptor. For instance,

MPI-IO defines the collective I/O operations that allow all the

processes to collaboratively transform small, noncontiguous

I/O requests associated with the same shared file to large,

contiguous I/O requests. However, few of these I/O tech-

niques consider cross-file optimizations which can lead to

performance improvements for scientific applications as they

generally access more than one file during their life cycle.

For instance, the life cycle of the GEOS-5 application [5]

is composed of several timesteps. In each timestep, it will

generate multiple bundle files. Cross-file optimization allows

processes to collaboratively work on all files concurrently,

which extends the optimization scope and allows for higher

potential performance improvement.

This paper aims to explore the potential benefit from cross-

file I/O aggregation. Our study is based on a mission-critical

application named GEOS-5. The I/O technique of baseline

GEOS-5 is parallel I/O using multiple NetCDF files. Namely,

each bundle file is assigned a different master process. All the

processes first send their bundle data to the master, the master

then writes the bundle data to storage. The use of multiple

files allows the writes on each bundle file to be conducted con-

currently. However, the serial NetCDF employed by existing

GEOS-5 only allows one process to write on each file, yielding

limited parallelism. In addition, since each master process

needs to receive its bundle data from all other processes, the

writes on each bundle cannot be fully parallelized, and such

all-to-one communication can result in heavy contention.

Our early attempt replaced serial NetCDF with Parallel

NetCDF (PnetCDF). PnetCDF allows each process to con-

currently operate on the same file, thereby improving the

parallelism. In our experiment, we observed that GEOS-5 with

PnetCDF initially delivered promising performance; however

it did not scale well due to the heavy contention and metadata

overhead with a large number of processes [2]. In addition, the

original data format of GEOS-5 is not maintained by PnetCDF.

Therefore, a new solution that preserves the original GEOS-

5’s data format is needed with enhanced parallelism and

reduced contention at scale. In this paper, we propose a

Bundle-based PARallel Aggregation framework (BPAR) with

three of its partitioning schemes that can be applied to a variety

of scientific applications. BPAR associates each file with a

distinct group of processes that can concurrently work on each

file. Thereby improving the parallelism with decoupled I/O

on each file. Meanwhile, the smaller group size avoids the

heavy communication and I/O contention introduced by the

participation of all the processes. For the experiment, we have

implemented BPAR on top of GEOS-5. The results of our

experiments reveal that BPAR can achieve on average 2.1×
performance improvement over the baseline GEOS-5.

The rest of this paper is organized as follows. Section II

analyzes the I/O performance of the baseline GEOS-5 and

GEOS-5 with PnetCDF. We then introduce BPAR framework

in Section III, followed by Section IV that proposes the three

partitioning schemes under BPAR. Section V evaluates the

performance of BPAR and analyzes the effectiveness of the

three partitioning schemes. Section VI reviews the related
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work. Finally, we conclude the paper with some future work

in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we provide a brief overview of GEOS-

5 and its data organization. We then present and analyze

the performance of the baseline GEOS-5 and GEOS-5 with

PnetCDF.

A. Overview of GEOS-5

GEOS-5 (Goddard Earth Observing System Model) is being

developed by NASA to support the earth science research. It

simulates climate changes that span diverse temporal granu-

larities.

The simulation dataset is organized with the NetCDF-4

format. The entire data space is divided into what GEOS-

5 calls collections, also referred to as data bundles. Each

bundle describes certain climate systems, such as moisture and

turbulence. It consists of a mixture of multiple variables. These

variables are multidimensional datasets, either formatted as 3-

D variables transposing into latitude, longitude, and elevation,

or 2-D variables represented by latitude and longitude. These

variables define disparate aspects of the model, such as cloud

condensates and precipitation.

GEOS-5 applies a two-dimensional domain decomposition

to all variables among parallel processes. Each 2-D variable

contains one 2-D plane. A 3-D variable consists of multiple 2-

D planes. Every plane is evenly distributed to all the processes.

Such data organization is simplified in Fig. 1. Bundle1 and

Bundle2 are the two bundles written in the I/O phase, Bun-

dle1 contains 2 2-D variables (var1 and var3), each holding

one plane. Var2 is a 3-D variable composed of two planes.

Similarly, Bundle2 also incorporates both the 2-D (var1 and

var2) and 3-D variables (var3).
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Fig. 1: The Data Organization of GEOS-5.

GEOS-5’s life cycle alternates between computation phase

and I/O phase. During each I/O phase the state variables

are materialized on the underlying parallel filesystem (PFS)

for post-processing and restart after failure. To maintain data

integrity, all state variables within the same bundle are written

to a shared bundle file.

B. Original NetCDF-based GEOS-5 I/O

In the baseline GEOS-5 implementation, a master process

is elected for each bundle to handle all the I/O requests

from other processes for the bundle. Each bundle is written

plane by plane using serial NetCDF. Namely, after the master

process receives each plane data from the other processes,

it materializes the plane on the filesystem, and proceeds to

handle the next plane. So the I/O time is dominated by the

communication and write time.

There are two major drawbacks of such technique. First,

it cannot scale well. This is because writing each bundle

involves the participation of all the processes. The growing

number of processes can soon overwhelm the masters’ limited

resource with the surging number of concurrent requests.

Second, it does not yield good parallelism. Since all processes

are involved in writing each bundle, every process can not

proceed to the next bundle until it completes its work on the

previous bundle.

C. GEOS-5 with PnetCDF

GEOS-5 with PnetCDF replaces serial NetCDF with

PnetCDF for enhanced parallelism. Like other parallel I/O

techniques, PnetCDF allows all the processes to concurrently

write their share of the entire dataset to the filesystem. In

GEOS-5, each process possesses one piece of the plane data

and PnetCDF allows the processes to directly write their

piece without explicit communication with other processes.

One drawback of PnetCDF is that its data format does not

match the data format of NetCDF if NetCDF uses HDF5

as the underlying library, like in GEOS-5. Besides, there are

some other potential factors that affect its performance, such

as the high metadata overhead in header I/O, and heavy I/O

contention with a large number of processes.

D. Analyzing the I/O Performance of original NetCDF-based
GEOS-5 and GEOS-5 with PnetCDF

To analyze the I/O performance of original NetCDF-based

GEOS-5 and GEOS-5 with PnetCDF, we have systematically

benchmarked their performance.

All the experiments are conducted on the Discover Super-

computer [6] that is operated by the NASA Center for Climate

Simulation (NCCS) [7]. The Discover supercomputer has an

aggregate of sixty-seven racks, containing 43,240 compute

cores that yields 1.0018 Pflops/s of computational power. Each

compute node consists of either a 2.6GHZ Intel Xeon Sandy

Bridge processor with 32GB of memory or 2.8GHZ Intel Xeon

Westmere processor with 24GB of memory. The underlying

storage system of the Discover supercomputer uses the IBM

GPFS and consists of 2.46PB of total storage.

For our analysis we place 8 processes on each physical

node. We configure GEOS-5 to use 7 bundles of modeling

data and simulate 24 hours with half-degree simulation, and

a bundle output frequency for all bundles of 3 hours. This

results in a total of 56 files for the 8-timesteps run. We run

each experiment 5 times and get the median for the result.
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Fig. 2 compares the two implementations in terms of the

average I/O time on each timestep, these two implementations

are denoted respectively by GEOS5-NetCDF and GEOS5-

PnetCDF.
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Fig. 2: The I/O Performance of original NetCDF-based GEOS-

5 and GEOS-5 with PnetCDF.

As we can see in Fig. 2 GEOS-5 with PnetCDF initially

delivers promising performance but its I/O time is prolonged

as more processes are involved. On the other hand, the time of

original NetCDF-based GEOS-5 I/O firstly decreases from 32

to 128 processes then keeps on increasing for executions with

processes more than 128. While the improved performance

from 32 to 128 processes is attributed to the unsaturated

ingress bandwidth of the master processes, this decline in

performance with 128, 256, 512 processes results from the

aggravated contention on the masters’ limited resources.
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Fig. 3: Dissection of original NetCDF-based GEOS-5 I/O.

We further dissect the I/O time for a more elaborate analysis.

Fig. 3 reveals the detailed time dissection of original NetCDF-

based GEOS-5 I/O. The I/O time is dominated by the commu-

nication time. It first decreases and then is prolonged as the

number of processes increases. This trend is consistent with

Fig 2; In contrast, the write time is negligible due to the high

aggregated I/O throughput rendered by GPFS on Discover.

The dissection of GEOS-5 with PnetCDF is shown in Fig. 4.

It can be observed the two primary I/O operations ( file

write and file create ) both impose nonnegligible overhead.

When the number of processes increases, the file write time
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Fig. 4: Dissection of GEOS-5 with PnetCDF.

firstly drops then grows sharply. The decreased write time

from 32 to 64 processes is the result of more aggregated

throughput delivered by the doubled number of writers. The

increased write time from 64 to 512 processes is the result of

the exacerbated contention from more and more processes.

In particular, GEOS-5 writes multiple bundle files in each

timestep. Since each plane is shared by all the processes,

when there is a large number of processes, the small I/O

requests from each process lead to heavy I/O contention.

Such I/O contention persists through all these bundle files.

Also, PnetCDF guarantees strong data consistency in header

I/O. The frequent and heavy metadata synchronization for

maintaining such consistency serves as the major reasons for

a long file creation time.

As a summary, both original NetCDF-based GEOS-5 and

GEOS-5 with PnetCDF have multiple drawbacks. original

NetCDF-based GEOS-5 I/O has the constraint of limited

scalability and parallelism. Although GEOS-5 with PnetCDF

benefits from the increased parallelism, its performance is

constrained due to the heavy I/O contention in each collabora-

tive operation at scale. In addition, the requirement for strong

consistency can incur nonnegligible overhead to PnetCDF and

other advanced parallel I/O techniques.

III. OUR PROPOSED SOLUTION: A HIGH-LEVEL

OVERVIEW OF BPAR

From the above discussion, we identified the major factors

that constrain the I/O performance of original NetCDF-based

GEOS-5 and GEOS-5 with PnetCDF. Therefore, we propose

a Bundle-based PARallel aggregation framework called BPAR

that mitigates the issues of these two techniques.

BPAR can be applied to a wide range of scientific applica-

tions that output several bundle files across I/O phases or inside

each phase. The main idea of BPAR is to parallelize the I/O of

different bundle files by assigning each bundle with a distinct

set of processes in order that each set of processes can perform

I/O for its bundle independently and concurrently. In this way,

the smaller number of processes in each group mitigates the

communication and I/O contention in both original NetCDF-

based GEOS-5 I/O and PnetCDF.

Fig. 5 demonstrates the high-level overview of BPAR

through an example. In this example, two bundles are to be
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processed by four processes and each bundle’s data is initially

distributed among all the four processes. According to a certain

partitioning technique, the four processes are divided into

two Aggregation Groups (AG), each of which takes charge

of the I/O operation for one bundle. After all the processes

complete a round of data shuffling operation, each bundle is

entirely possessed by its designated AG, e.g., bundle1’s data

possessed by AG1 composed of processes P1 and P2. Then,

one aggregator process is elected in each AG (processes P1

and P3 in this figure), to further aggregate the data inside each

AG and then write the collected data to the storage. There can

be multiple aggregators depending on the workload. Due to

the limited memory of aggregators, the aggregation and write

operation can interleave with each other.
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Fig. 5: A High-Level Overview of BPAR.

A. Major Procedures that Affect I/O Performance

From the above discussion, the I/O time for the bundle i -

Ti is determined by its data shuffle time, aggregation time, and

write time, denoted as Ts f l , Tagg and Tw, respectively. Thus we

can approximately calculate Ti as:

Ti = Ts f l +Tagg +Tw (1)

Therefore, the total I/O time for writing all B bundles Tio is

represented as

Tio = max(T1,T2, ...,TB) (2)

The three procedures’ performance are directly determined

by the group partitioning strategy i.e how many processes and

which processes are to be placed in each bundle’s aggregation

group. For instance, placing the processes that reside on the

same physical node inside the same AG may improve Tagg
due to enhanced locality; however, it may overprovision some

small bundles with extra processes and prolong the I/O time

of large bundles.

The rest of this paper presents three partitioning schemes

under the BPAR framework. Unlike PnetCDF, all three

schemes can maintain the existing file format of GEOS-5,

while still delivering good performance. We experimentally

compare their performance which will serve as guidelines for

application practitioners to select the one that best fits their

application’s I/O workload and system configuration.

IV. REPRESENTATIVE PARTITIONING STRATEGIES OF

BPAR

In this section, we present the three partitioning strategies

and their individual advantages and disadvantages under the

BPAR framework. Our study is based on GEOS-5. The layout

of each 2-D plane is essentially a contiguous data extent

within its bundle file and shared among all the processes.

Such logical file layout among processes is most common

in scientific workloads [8]. The three partitioning strategies

are developed from the perspectives of load balancing, data

locality and network congestion respectively.

A. Balanced Partitioning

The Balanced Partitioning Scheme (BPS) assigns the num-

ber of processes in each AG in proportion to the data size of

each bundle. The rationale behind BPS is to balance the work-

load in each AG according to Equation 2, thus minimizing the

I/O time of the stragglers. For a dataset with B bundles, let

the data size of bundle i be Si, the total number of processes

be n, the group size of AGi be Ai, then Ai roughly amounts to

Ai = (n−B)× (Si/
B

∑
i=1

Si)+1 (3)

Equation 3 first substract B from n to reserve 1 process for

each bundle, this 1 process is added to the end. The rest n−B
processes are assigned to each AG proportionally to the size

of the corresponding bundle. When B is larger than n, multiple

small bundles can be taken as a large bundle and assigned to

one process.

For each bundle, BPS evenly assigns the data planes to each

process. The process that takes charge of a data plane is named

the plane root. It gathers the entire plane data from the other

processes. A master process is selected as the bundle root to

gather the data from all of the plane roots and write the data

to storage.
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Fig. 6: Write Two Bundle Files using BPS.

Fig. 6 details such procedures. Suppose Bundle1 and Bun-

dle2 are the two bundles involved in the I/O operation. Var1

and Var2 are a 2-D variable and a 3-D variable in Bundle1,

Var3 is a 2-D variable in Bundle2. Initially, each plane is
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shared by 4 processes. Following the BPS scheme, 3 processes

are assigned to AG1, which take charge of Bundle1’s I/O. 1

process is assigned to AG2, which takes charge of Bundle2’s

I/O. Inside Bundle1, 3 processes serve as the plane root for

the 3 planes. Bundle2 has only one plane and the plane root

is the process P4. In the first stage, processes shuffle data so

that the plane root acquires all the data of their planes. After

this step, the entire bundle data falls in its own AG. Then the

plane root in both AGs sends the data to the bundle root who

in turn receives the plane data and writes it to the storage.

The BPS performs well since it balances the workloads

among processes. However, it may not work well in some

cases. For example, the smallest unit assigned to each bundle

is a process, so the processes within each physical node may

belong to two AGs, leading to reduced parallelism and locality.

Therefore, a locality-oriented partition scheme is considered.

B. Locality-Oriented Partitioning

The Locality-Oriented Partitioning scheme (LPS) assigns

processes to AGs at the unit of physical node. Supposing each

physical node hosts p processes, using the same notation as

BPS, the group size of AGi can be approximated as

Ai = (n−B× p)× (Si/
B

∑
i=1

Si)+ p (4)

Similar to BPS, LPS reserves one physical node for each

bundle, which hosts B × p processes. By subtracting B × p
from n and adding p at the end, Equation 4 makes sure that

there is at least one physical node assigned to each bundle.

Ai is finally set to the closest number that is a multiple of p,

to make sure the smallest unit assigned to each bundle is a

physical node. When n is smaller than B× p, multiple small

bundles can be taken as a large bundle and assigned to one

physical node. After deciding the AG for each bundle, LPS

follows the same step as BPS.

Compared with BPS, the larger partitioning unit in LPS

achieves augmented locality inside each AG and higher par-

allelism among different AGs. Nonetheless, the promoted

locality and parallelism is attained at the expense of increased

imbalance of workload distribution. For instance, for a work-

load that includes many small bundles who actually require

fewer than p processes, the overprovisioned processes should

be better assigned to those larger bundles who are potential

stragglers.

C. Isolation-Driven Partitioning

In both BPS and LPS, the plane root is evenly selected

among the AG members for each plane in the same bundle.

Therefore, every process can be the plane root if the number

of planes is larger than the number of processes. On the

other hand, each plane is initially shared by all the processes,

so every plane root needs to receive its data from all the

other processes during data shuffling. Therefore, the shuffling

operation is essentially an all-to-all communication that each

process needs to send and receive data from all the other

processes concurrently. Such communication pattern can lead

to heavy network congestion among processes, which prolongs

Ts f l in Equation 1.

Isolation-Driven Partitioning Scheme (IPS) is introduced to

alleviate such congestion. IPS takes the same group partition-

ing scheme as BPS (see Equation 3) but differs by isolating

the traffic to each process. The key idea of IPS is to have

each process receive the data only from a small portion of

corresponding processes rather than from all the processes. To

achieve this purpose, each plane is no longer gathered entirely

by the plane root during data shuffling. Instead, it is gathered

by all the members in the same AG and each member in this

AG gather the plane data from its corresponding processes

in other AGs. For instance, in Fig. 7, Bundle1, Bundle2

and Bundle3 respectively possess 5, 3 and 1 plane(s). These

planes are shared among 9 processes. Following IPS, the group

sizes of AG1, AG2, AG3 are proportionally set to 5, 3, 1.

Then, for each plane of Bundle1, processes P1-P5 receive the

plane data respectively from P6-P9. P6-P9 are the remaining

processes belonging to other groups. In this way, each process

only receives data from one other process. Similar operations

happen to Bundle2 and Bundle3. Instead, if we follow BPS

or LPS, every process needs to receive the plane data from all

other 8 processes during data shuffling for its own plane.

Like BPS and LPS, inside each AG, a bundle root is elected

to gather the plane data and write the data to storage. For

brevity, such procedure is not shown in Fig. 7. IPS is able to

reduce Ts f l by alleviated congestion compared to the all-to-all

data shuffling in BPS and LPS.
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Fig. 7: Partitioning Scheme of IPS.

V. EXPERIMENTAL EVALUATION

In this section, we systematically evaluate the effectiveness

of BPAR. We compare BPAR-based GEOS-5 with original

NetCDF-based GEOS-5, and analyze BPAR’s three partition-

ing schemes using the same experimental setup as described

in Section II,

A. Overall Performance of BPAR

We implement BPAR on top of GEOS-5 with BPS, IPS and

LPS. Fig. 8 shows its average I/O time in each timestep as a

result of the increasing number of processes.
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Fig. 8: Performance of GEOS-5 with BPAR.

The BPS, LPS and IPS schemes demonstrate compelling

benefits over GEOS5-NetCDF. They reduce the I/O time

delivered by GEOS5-NetCDF by up to 53%, 47% and 51%

on average. In addition, all three cases show better scalability.

This is because, unlike original NetCDF-based GEOS-5 which

couples all the processes in writing each bundle, BPAR

partitions the processes into different AGs, thereby enabling

all of the AGs to work concurrently. Meanwhile, the smaller

communication domain in each AG alleviates the contention,

which is the main reason for the more durable scalability.

We have also observed distinct performance patterns be-

tween these three schemes. Although IPS initially performs

the worst, it gradually catches up and ultimately delivers

the optimal performance at 256 and 512 processes. On the

contrary, BPS initially performs the best, but lags behind when

compared with IPS at 256 and 512 processes. Although LPS

initially yields comparable performance to BPS and better

performance than IPS, such trend stops at 256 processes, and

it performs the worst from this point on.

B. An In-depth Understanding of BPAR’s Performance

To better understand the distinct performance of BPAR’s

three partitioning schemes, we analyze the major overhead

dominating the I/O time. As mentioned earlier, the I/O time of

BPAR is mainly composed of shuffle time, aggregation time,

and write time. Since the aggregation and write operation are

interleaved with each other, we name the entirety as collective

write operation.
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Fig. 9: The Shuffle Time of BPS, LPS, IPS.

1) Analysis of Shuffle Operation: Fig. 9 shows the shuffle

time of BPS, LPS, and IPS. Among the three schemes, IPS

Number of Processes 32 64 128 256 512
BPS 11 21 39 79 155
LPS 8 8 8 72 136
IPS 11 21 39 79 155

TABLE I: Group Size of Moist

constantly delivers the optimal performance, it also scales

the best. This is because, the all-to-all shuffling in BPS and

LPS results in heavy network congestion. IPS alleviates the

network congestion by restricting the incoming network traffic

of each process from all the other processes to only a portion

of the corresponding processes. In contrast, LPS almost al-

ways consumes the most shuffle time. This is because LPS

prioritizes locality over the balanced workload. By assigning

the processes in the same physical node to the same AG,

some of the smallest AGs acquire the overprovisioned number

of processes, while other AGs who actually starve for more

resources are left unnoticed, resulting in the prolonged overall

shuffle time. Table I further reveals the group size of LPS

for the largest bundle ’moist’ is constantly the smallest. This

explains the trends in Fig. 9.
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Fig. 10: The Performance of Collective Write Operation.

2) Analysis of Collective Write Operation: We have also

measured the time spent on collective write operation as shown

in Fig. 10. Overall, collective write time of all three schemes

initially decreases with the growing number of processes, then

cease to decrease at a large number of processes. This is

because each physical node on Discover is able to absorb

the incoming stream from the processes on multiple nodes

(each node launches 8 processes), when it is saturated, the

performance is slowed down by the heightened contention.

In addition, we observe the collective write time of IPS is

significantly beyond the other two. The collective write time

of LPS and BPS are close to each other. This is because, in

both LPS and BPS, the bundle root receives one plane from the

plane root each time, the transfer unit is a plane, whose size

is roughly 1MB. In contrast, the bundle root in IPS receives

each plane from all its group members, the smaller transfer

unit and the larger number of transfers of each process is

less favored by the network. On the other hand, although LPS

has better locality, the high-performance Infiniband deployed

on Discover blurs such benefit, which is why LPS shows no

advantage in the collective write operation.
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C. Discussion

From the experimental analysis, we find GEOS-5 with

BPAR delivers significantly higher throughput than the base-

line GEOS-5, because BPAR’s partitioned and decoupled I/O

on each bundle file results in better parallelism and scalabil-

ity. Meanwhile, we perceive different performance between

BPS, LPS and IPS. While IPS reduces the shuffle time with

mitigated network congestion, it is likely to deliver subopti-

mal performance in aggregation operations because the small

transfer size is not favored by the network. This indicates

that IPS is better used for workloads with large plane sizes.

More generally, it fits the workload in which the shared file is

composed of several large, contiguous extents striped among

each process. BPS balances the workload of each AG well,

so it delivers the most constant performance compared with

the other two. BPS can serve as the default scheme for BPAR

with a reasonable number of processes but when the number

of processes is large BPS is better replaced by IPS due to

the heavy congestion incurred by data shuffling. LPS achieves

good locality but it may result in an imbalanced workload.

This is especially true for workloads that involve a lot of

small bundles. Meanwhile, the locality is not necessary for the

system deployed with high-speed network, such as Infiniband.

Ideally LPS should be used on the system whose network

bandwidth is restricted. The application developer should be

aware of the workload distribution under LPS.

VI. RELATED WORK

Improving the I/O performance on large-scale HPC sys-

tems has been a highly active research topic and has gained

broad attention over the past few decades. In general, work

surrounding such topic can be categorized into three levels:

filesytem-level optimizations, middleware-level optimizations,

and application-level optimizations.

Early work on filesystems includes the large-scale develop-

ment and adoption of parallel filesystems, such as Lustre [9],

GPFS [10], PVFS [11] and the effort to optimize their inter-

nal implementations, by augmenting network transfers [12],

caching strategies [13], I/O scheduler [14], or through more

hardware-based integrations and upgrades [15], [16], [17].

These works focus on the fundamental software layers that

directly interact with the storage, which is orthogonal to our

work.

The middleware-level optimizations largely center around

parallel I/O techniques and I/O offloading. MPI-IO [1] is

a parallel I/O middleware widely applied to scientific ap-

plications. It provides applications with parallel access to

shared datasets, in addition to superior aggregation strategies

to coalesce small data into larger ones. Advanced parallel

I/O middleware libraries such as PnetCDF [2], HDF5 [3] are

built on top of MPI-IO, while inheriting most of its features,

they allow applications to access the shared dataset at the

granularity of variables, which are more user-friendly. The

popularity of MPI-IO and its ramifications have drawn plenty

of effort for their optimizations [18], [19], [20], [21]. How-

ever, these techniques are not feasible to frequent and small

collective I/O workload since the synchronization overhead

and I/O contention caused by the small I/O requests will soon

submerge the benefit from enhanced parallelism [22].

Meanwhile, a plethora of other powerful parallel techniques

are designed to more or less compensate for the deficiency

of MPI-IO and its derivatives. ADIOS [23] uses chunking to

improve the data locality and the request size. Meanwhile,

it alleviates the synchronization overhead by allowing users

to pre-define the data format in XML file. However, this

introduces extra overhead for the users, and the output in

BP format is only accessible using the ADIOS interface.

PLFS [8] improves the performance by transforming the one-

file-multiple-processes (N-1) pattern to one-file-per-process

(N-N) pattern. In doing so, it maximizes the I/O sequentiality

and reduces the synchronization overhead, while still retaining

high concurrency. Like ADIOS, the output format is only

recognizable by PLFS interface and in some PFSs, the N-N
pattern can introduce nonnegligible metadata overhead [24].

Aside from parallel I/O techniques, I/O offloading is an-

other extensively used middleware-level approach that aims to

reduce both I/O workload and I/O time on the compute node.

It achieves its purpose using dedicated I/O nodes. In general,

it falls into three categories: I/O forwarding [25], [26], I/O

staging [27], [28] and burst buffer [29], [30]. I/O forwarding

focuses on eliminating system noise from I/O operations by

offloading I/O to dedicated I/O nodes. Most notably, it has

been applied on Blue Gene/P systems. I/O staging stages

the dataset to a set of dedicated I/O nodes for online data

sharing and analysis. Burst buffer is a recent technique that

captures the bursty behavior of scientific applications. Burst

buffer system can temporarily buffer the burst of scientific

dataset in the high-performance storage such as DRAM and

SSD, and allows the actual data flushing to the filesystem to

be conducted simultaneously with application’s ensuing com-

putation, thereby largely reduce the time spent on scientific

applications’ I/O phase.

The applicaton-level optimizations generally focus on how

to port the parallel techniques to the applications for enhanced

parallelism. Tian et al. [31] add ADIOS support to GEOS-5

and obtain significant performance improvement. Li et al. [32]

replace the sequential I/O operation in AMR cosmology appli-

cation with MPI-IO and HDF5, and point out the advantages

and disadvantages of these techniques. Similarly, Johnson et

al. [33] optimize PARA-BMU, the solver part of a voxel-based

bone modeling suite using NetCDF and HDF5 libraries.

Our work stays between the middleware-level and

application-level optimization. Different from the aforemen-

tioned work, we focus on researching the potential benefit

that can be attained from cross-file optimizations and build the

related framework to accelerate the representative application

GEOS-5, together with a broad range of other scientific appli-

cations. BPAR mitigates several aforementioned deficiencies

of existing parallel I/O techniques, such as the heavy I/O

contention, etc.
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VII. CONCLUSIONS

In this work, we have explored the major factors that restrict

the I/O performance of the baseline GEOS-5, and GEOS-5

with PnetCDF. Based on our analysis, we research a Bundle-

based PARallel aggregation framework named BPAR together

with three of its partitioning schemes to enhance the I/O

performance of GEOS-5 and a broad range of other scientific

applications. The results of our experiments reveal that BPAR

can achieve on average 2.1× performance improvement over

the baseline GEOS-5.
In the future, we plan to research the BPAR-based partition-

ing schemes for the representative parallel I/O techniques such

as MPI-IO, PnetCDF and build the adaptive libraries that are

able to dynamically select the optimal partitioning schemes

based on the scientific application workload.
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