
CooMR: Cross-Task Coordination for Efficient Data
Management in MapReduce Programs

Xiaobing Li Yandong Wang Yizheng Jiao Cong Xu Weikuan Yu

Department of Computer Science and Software Engineering
Auburn University, AL 36849, USA

{xbli,wangyd,yzj0018,congxu,wkyu}@auburn.edu

ABSTRACT
Hadoop is a widely adopted open source implementation of MapRe-
duce programming model for big data processing. It represents sys-
tem resources as available map and reduce slots and assigns them to
various tasks. This execution model gives little regard to the need
of cross-task coordination on the use of shared system resources
on a compute node, which results in task interference. In addition,
the existing Hadoop merge algorithm can cause excessive I/O. In
this study, we undertake an effort to address both issues. Accord-
ingly, we have designed a cross-task coordination framework called
CooMR for efficient data management in MapReduce programs.
CooMR consists of three component schemes including cross-task
opportunistic memory sharing and log-structured I/O consolida-
tion, which are designed to facilitate task coordination, and the key-
based in-situ merge (KISM) algorithm which is designed to enable
the sorting/merging of Hadoop intermediate data without actually
moving the <key, value> pairs. Our evaluation demonstrates that
CooMR is able to increase task coordination, improve system re-
source utilization, and significantly speed up the execution time of
MapReduce programs.

1. INTRODUCTION
MapReduce [7] has emerged as a popular and easy-to-use pro-

gramming model for numerous organizations to process explosive
amounts of data, perform massive computation, and extract critical
knowledge for business intelligence. Hadoop [2] provides an im-
plementation of the MapReduce programming model. It includes
two categories of components: a JobTracker and many TaskTrack-
ers. The JobTracker commands TaskTrackers (a.k.a slaves) to pro-
cess data through two main functions (map and reduce) and sched-
ules map tasks (MapTasks) and reduce tasks (ReduceTasks) to Task-
Trackers. For convenient parallelization and scalable data process-
ing, Hadoop-based MapReduce divides input data into many splits
and assigns such splits in parallel to map tasks.

In this execution model, Hadoop represents system resources as
available map and reduce slots for MapTasks and ReduceTasks.
Once assigned, these tasks are taken as not only individual pro-
cessing entities but also static resource containers. However, when

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC13, November 17-21, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$10.00.

such resource containers are assigned, there is little regard of these
tasks as concurrent processing entities and the need to coordinate
their changing demands on resources such as processor cores, avail-
able memory, network throughput, and disk bandwidth on a com-
pute node. To reconcile the dependence between MapTasks and
ReduceTasks, a number of Hadoop schedulers such as delay sched-
uler [22], coupled scheduler [18] and fast completion schedulers [20]
are introduced. In addition, the LATE scheduler [24] can monitor
the progress variations across different tasks, and take measures to
mitigate the impact of straggler tasks. All these techniques intro-
duce the intelligence at the schedulers and enable them to become
more responsive to the changing dynamics of available resource ca-
pacity in a MapReduce environment. However, there has been little
work that examines the dynamic resource allocation and sharing
during execution and supports cross-task coordination at runtime
among concurrent MapReduce tasks.

In this paper, we undertake an effort to examine the lack of task
coordination and its impact to the efficiency of data management
in MapReduce programs. With an extensive analysis of Hadoop
MapReduce framework, particularly cross-task interactions, we re-
veal that Hadoop programs face two main performance-critical is-
sues to exploit the best capacity of system resources. Both issues,
namely task interference and excessive I/O, can be attributed to the
lack of task coordination. The former can cause prolonged exe-
cution time for MapTasks and ReduceTasks; the latter can cause
dramatic degradation of disk I/O bandwidth. These problems pre-
vent the system resources on a compute node from being effectively
utilized, constraining the efficiency of MapReduce programs.

Based on these findings, we have designed a cross-task coordi-
nation framework called CooMR for efficient data management in
MapReduce programs. CooMR is designed with three new tech-
niques to enable close coordination among tasks while not compli-
cating the task execution model of Hadoop. These techniques are
Cross-task Opportunistic Memory Sharing (COMS), LOg-structured
I/O ConSolidation (LOCS), and Key-based In-Situ Merge (KISM).
The COMS component is designed with a shared memory region
to increase coordination among MapReduce tasks in their memory
usage. The LOCS component provides a new organization of in-
termediate data with a log-based append-only format. This scheme
not only helps consolidate small write operations from many con-
current MapTasks, but also provides a server-driven shuffling tech-
nique for sequential retrieval of intermediate data for the shuffle
phase. A new Key-based In-Situ Merge (KISM) algorithm is intro-
duced to enable the merging of Hadoop <k, v> pairs without actual
movement of their data blocks (values). By doing so, it offers an
alternative solution to address the issue of excessive I/O caused by
the current merge algorithm in Hadoop.

We have carried out an extensive set of experiments to evalu-

ate the performance of CooMR compared to the original Hadoop.
Our evaluation demonstrates that CooMR is able to increase task
coordination, mitigate task interference, improve system resource
utilization, thereby speeding up the execution times for both Map-
Tasks and ReduceTasks. Such benefits have been demonstrated for
a number of data-intensive MapReduce programs. Overall, CooMR
is able to speed up the execution of MapReduce programs such as
TeraSort by as much as 44%. The contributions of our research can
be summarized as follows:

• We have carefully examined the execution of Hadoop tasks
and quantified the performance issues of task interference
and excessive I/O.

• CooMR is designed to enable cross-task coordination through
two component techniques: cross-task opportunistic memory
sharing and log-structured I/O consolidation.

• A novel merge algorithm, key-based in-situ merge, has been
designed to enable the sorting/merging of Hadoop <k, v>
pairs without actual movement of their data blocks (value).

• A systematic evaluation of CooMR is conducted using data-
intensive MapReduce programs. Our results demonstrate that
CooMR can improve the performance of these programs by
as much as 44% compared to the original Hadoop.

The rest of the paper is organized as follows. Section 2 provides
the background and motivation. We then describe the two main co-
ordination techniques in Section 3, followed by Section 4 that de-
tails the key-based in-situ merge algorithm. Section 5 describes the
implementation. Section 6 provides experimental results. Section 7
reviews related work. Finally, we conclude the paper in Section 8.

2. BACKGROUND AND MOTIVATION
In this section, we start with a brief description of the Hadoop

MapReduce framework. Then we discuss the existence of task con-
tention and interference among Hadoop tasks and the occurrence of
excessive I/O due to the current Hadoop merging algorithm.

2.1 The Hadoop MapReduce Framework
The Hadoop MapReduce framework supports the execution of

MapReduce programs in several phases: map, shuffle, and reduce.
When a user’s job is submitted to the JobTracker, its input dataset
is divided into many data splits. In a split, user data is organized
as many records of key value pairs, each denoted as <k, v>. In
the first phase, one MapTask is launched per data split, which con-
verts the original records into intermediate data in the form of <k’,
v’> pairs. These new data records are stored as a MOF (Map Out-
put File). A MOF is organized into many data partitions, one per
ReduceTask. In the second phase, each ReduceTask fetches its par-
tition (a.k.a segment) from these MOFs. A ReduceTask needs to
fetch segments from all finished MapTasks. As more remote seg-
ments are fetched and merged locally, a ReduceTask has to spill,
i.e. store some segments to local disks in order to reduce memory
consumption. This phase is commonly referred as the shuffle (or
shuffle/merge) phase. In the third, or reduce phase, each Reduc-
eTask loads and processes the merged segments using the reduce
function. The final result is then stored to the Hadoop Distributed
File System [17].

Among the three execution phases, initially multiple MapTasks
in the same MapReduce job are launched as a group. The exact
number is decided by the Fair Scheduler on the Hadoop production
environment [4, 10, 22]. More MapTasks will be launched when
some complete. Hadoop is also designed to overlap the execution
of MapTasks and ReduceTasks to pipeline the processing of map

and reduce functions. While these tasks are launched concurrently
(some on the same node), they share computational resources such
as processors, cache, memory, storage, and network.

2.2 Task Contention and Interference
Although modern commodity machines provide rich computa-

tional resources to accommodate many MapReduce tasks on a sin-
gle node, our examination reveals that, when multiple data-intensive
tasks are running concurrently on the same node, task interfer-
ence can severely impact their execution, causing substantial per-
formance degradation and variations. To illustrate such interference
in detail, we employ Grep and TeraSort as representative compute-
and data-intensive programs, respectively. We conduct experiments
on a cluster of 10 nodes, among which 5 nodes host MapTasks only,
and another 5 nodes for ReduceTasks. We maintain the uniformity
of the input data for each task so as to avoid performance variations
from skewed input.

To investigate the interference among MapTasks, we use a fixed
number (10) of ReduceTasks while varying the number of Map-
Tasks on each node. As shown in Figure 1 (a), when the number
of concurrent running MapTasks on each node increases from 1 to
8, computation-intensive Grep has a slight increase of execution
time. Running 8 computation-intensive tasks on each node slows
down the execution by 2.2×, compared to the time for one Map-
Task. On the contrary, for the data-intensive TeraSort, MapTasks
interfere with each other, exhibiting dramatic performance degra-
dation with an increasing number of tasks. When 8 MapTasks are
running concurrently, the average execution time is increased by as
much as 14.2×.

Furthermore, we also observe interference among ReduceTasks.
Its impact can be even worse than that among MapTasks due to the
presence of multiple phases in ReduceTasks. Because computation-
intensive MapReduce programs usually have very short reduce phase
and small ReduceTasks demand, we focus on data-intensive MapRe-
duce programs for this examination. As shown in Figure 1(b), when
there are only 4 ReduceTasks running concurrently on the same
node, their average task execution time is slowed down by as much
as 10.9×, compared to the time for one ReduceTask. Our further
dissection shows that the execution times of shuffle/merge and re-
duce phases are increased by 11.1× and 24.8×, respectively. These
results suggest that the performance degradation is caused by con-
tention on shared disk and network resources for intermediate data
shuffling, merging and reading.

A simple approach to mitigate such task interference is to allow
only a small number of concurrent tasks per node for data-intensive
MapReduce programs. However, the number of CPU cores and the
memory capacity (24 cores with 24 GB memory in our system)
are constantly increasing. Limiting MapReduce programs to a few
concurrent tasks can substantially hurt the utilization of data center
resources. Therefore, it is important to find an alternative solution
that help task coordination in MapReduce programs to improve the
utilization of shared resources.

2.3 Excessive I/O During Merging
As mentioned earlier, Hadoop ReduceTasks fetch intermediate

data partitions generated by remote MapTasks as local data seg-
ments, merge these segments into a stream of <k, v> pairs, and
reduce them to produce final results. The merging of data segments
is important to reduce the total number of files for the smooth ex-
ecution of the reduce phase. However, the disk I/O operations are
amplified by the repetitive merge behavior [11, 19] caused by the
current Hadoop merge algorithms.

To illustrate the excessive I/O caused by the existing merge algo-

 0

 500

 1000

 1500

 2000

 1 2 4 8

A
ve

ra
ge

 T
as

k
E

xe
cu

tio
n

T
im

e
(s

)

Number of Concurrent MapTasks

 1.0x 1.1x

 4.3x

 14.2x
TeraSort
Grep

(a) MapTask Execution Time under Different Concur-
rency

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4

A
ve

ra
ge

 T
as

k
E

xe
cu

tio
n

T
im

e
(s

)

Number of Concurrent ReduceTasks

 1.0x

 2.9x

 6.6x

 10.9x
TeraSort

(b) ReduceTask Execution Time under Different Con-
currency

Figure 1: Task Interference in Hadoop MapReduce Runtime

Table 1: Profile of Excessive I/O During Merging

Total Number of Segments 480
Intermediate data per ReduceTask 5.69GB
Percentage of segments that are merged once 100%
Percentage of segments that are merged Twice 98.1%

rithm in Hadoop, we have conducted an experiment running Tera-
Sort in the same environment as Section 2.2 with 120GB input data
across 20 nodes. We count the number of partitions that are merged
at least once and measure the data size involved in the merging pro-
cess. Table 1 shows the profiling results. On average, each Reduc-
eTask needs to fetch 480 partitions from all the MapTasks and pro-
cesses up to 6GB intermediate data. Before a ReduceTask starts its
reduce phase, we observe that all the partitions are merged at least
once from memory to disk and up to 98.1% of partitions are merged
twice. With an average intermediate data size of 5.69GB, each Re-
duceTask has to write such data to and read from the disks several
times. Such excessive I/O aggravates the interference among tasks
and delay the execution of MapReduce programs.

2.4 Proposed Solutions
In this paper, we carry out a study to address the aforementioned

issues on task interference and excessive I/O of data-intensive MapRe-
duce programs. Accordingly, we investigate the feasibility of cross-
task coordination and new merging algorithms. Based on our find-
ings, we have designed a cross-task coordination framework called
CooMR for efficient data management in MapReduce programs.

As shown in Figure 2, two main components are introduced in
CooMR to tackle the issue of task interference including Cross-task
Opportunistic Memory Sharing (COMS) and LOg-structured I/O
ConSolidation (LOCS). The COMS component is designed with a
shared memory region to increase coordination among MapReduce
tasks in their memory usage. The LOCS component provides a new
organization of intermediate data using a log-based append-only
format. This component not only helps consolidate small write op-
erations for many concurrent MapTasks, but also provides a server-
driven shuffling technique for sequential retrieval of intermediate
data during the shuffle phase. In addition, to mitigate the exces-
sive I/O caused by the current merging algorithm, we introduce
the Key-based In-Situ Merge (KISM) algorithm to enable the sort-
ing/merging of Hadoop <k, v> pairs without actually moving their
data blocks (values).

M
ap

Ta
sk
	

M
ap

Ta
sk
	

M
ap

Ta
sk
	

M
ap

Ta
sk
	

sh
uffl

e	

Key-­‐Based	

In-­‐Situ	
 Merging	

Log-­‐Structured	

I/O	
 Consolida:on	

HDFS	

Local	
 File	
 System	

Re
du

ce
	

Cross-­‐Task	

Opportunis:c	

Memory	
 Sharing	
 ReduceTask

Figure 2: Proposed Techniques in Cross-Task Coordination Frame-
work for Efficient Data Management

3. CROSS-TASK COORDINATION
In the CooMR framework, COMS and LOCS are designed to

address the aforementioned lack of task coordination in Hadoop.
While these two are integral components of the framework, we de-
scribe their details separately for a clear treatment.

3.1 Cross-task Opportunistic Memory
Sharing (COMS)

In the original Hadoop, each MapTask processes the input data
and generates intermediate <k, v> pairs through a ring of mem-
ory buffers. Periodically, a MapTask spills intermediate <k, v>
pairs from the ring buffer to local disks during its execution. As de-
picted in Figure 3, we have designed cross-task opportunistic mem-
ory sharing to facilitate the coordination across MapTasks. COMS
is equipped with a large area of dedicated memory for cross-task
sharing. When <k, v> pairs are to be spilled from MapTasks, the
COMS component intercepts the data spills and buffers them in
the reserved memory. At a periodic interval, COMS will sort and
merge all spilled <k, v> pairs that are available in the reserved
area, and then store them to the local disks through the companion
component log-structured I/O consolidation (c.f. Section 3.2).

The generation speeds of intermediate data and memory require-
ments of MapTasks can vary substantially due to various reasons,
e.g. the progress skew [13]. To avoid the situation in which some
MapTasks dominates the use of shared memory and blocks the ex-
ecution of other tasks, COMS is designed with a memory balancer

Sp#

Sp# Sp#
Cross(Task#Merge#

MapTask#

Memory#
Balancer#

bitmap#

MapTask#

Sh
ar
ed

#M
em

or
y#

M
an
ag
em

en
t#

on/off#

requests#

Figure 3: Cross-task Opportunistic Memory Sharing

to monitor the runtime status of each MapTask and balance the
amount of memory for each task, thereby ensuring the fair use of
memory and commensurate progress across MapTasks.

To achieve balanced memory usage, COMS partitions the shared
memory into many equal-size units and leverage the max-min fair
sharing [8] to allocate memory blocks to MapTasks. Each running
task possesses a fair share of the available blocks. In the meantime,
the memory balancer records the unit consumption of each running
task. When multiple tasks are requesting the memory, the balancer
always allocates an available block to the task with the minimum
unit usage. When a task has a less requirement than its fair share,
memory blocks can be assigned to other tasks with high demand.
In doing so, the COMS component allows that a task to obtain more
units than its fair share when memory is available. When all tasks
are requiring more units than their fair shares, all will be allocated
with a fair share of available blocks.

When a MapTask completes, its intermediate data may still be
held in the shared memory for a short period of time before be-
ing flushed. This can cause later MapTasks to have less memory,
detrimental to their performance. COMS addresses this issue by
monitoring the memory share and the arrival/completion times of
tasks. When a new task does not have its fair share and some blocks
are still owned by a completed task, COMS merges more aggres-
sively the intermediate data of completed tasks and writes to the
disks.

COMS also enables memory sharing across ReduceTasks so that
they can get memory from the shared memory region dynamically.
In the original Hadoop, many threads per ReduceTask issue shuf-
fling requests simultaneously to fetch the intermediate data from
remote nodes to the task’s local memory space. Upon memory
pressure or the pressure from many small data segments [19], Re-
duceTask will merge some of data segments together and spill them
to local disks. Without cross-task sharing, even though some Re-
duceTasks have sufficient memory in its heap, other ReduceTasks
cannot make use of it because of the statically configured mem-
ory heaps. By enabling cross-task memory sharing, ReduceTasks
are no longer limited by the size of individual memory space. The
memory balancer for MapTasks is also used to control the alloca-
tion of shared memory to each ReduceTask, thereby smoothening
out their execution progress.

3.2 Log-Structured I/O Consolidation
Another component designed in CooMR is the log-structured I/O

consolidation (LOCS) that addresses I/O contention from concur-

rent tasks.
In the original Hadoop, when many tasks are running simultane-

ously on a node, many small random write requests are issued to
disks to store intermediate data, resulting in many small dispersed
write operations. Such I/O pattern can disrupt the sequential lo-
cality of disk access and adversely interfere the performance of
running tasks. To overcome such interference problem raised by
small random writes, LOCS is designed to consolidate many small
blocks of <k, v> pairs into large blocks and append them into a
single intermediate data file in a log-structured manner [16].

We design a hierarchical organization to log the intermediate
data, which is shown in Figure 4(a). When there is a need to store
the intermediate data, a new logical repository (Repo) is created at
the tail of the log to hold the intermediate data. Each repository is
partitioned into many buckets, one per ReduceTask. A bucket con-
tains a group of sorted intermediate <k, v> records for the same
ReduceTask. Since many buckets can be generated for the same
ReduceTask in different repositories, these buckets can be spread
into different Repos in the log. Thus, to locate the buckets that
belong to the same ReduceTask, LOCS maintains a bucket index
table which maps each ReduceTask to its list of buckets as shown
by Figure 4(b). Each element in the list maintains the information
on the location and length of the corresponding bucket in the log.

In the original Hadoop, when a shuffle request is received, the
TaskTracker will find the correct partition for that ReduceTask from
the specified MOF. Although our log-structured data organization
consolidates I/O requests, the <k, v> pairs are no longer stored
contiguously as one partition for a ReduceTask. Instead, they are
dispersedly stored as different buckets in the log. In order to ef-
ficiently retrieve intermediate data for shuffling, a new design is
needed to serve the shuffle requests. Otherwise, many seeks will
be triggered to read small buckets for a ReduceTask.

To address this issue, we introduce a server-driven shuffling mech-
anism as part of the LOCS scheme. The main idea is that the Task-
Tracker is responsible for serving the intermediate data determines
when to retrieve data and where to send the data. Thus the data
serving thread in the TaskTracker always retrieves data sequen-
tially from the latest read start point, which is set at the bound-
ary of repositories toward the tail of the log. To keep track of the
retrieval progress and the corresponding read start points, another
table structure is maintained in LOCS. As shown in Figure 4(c).
each entry in the table maps a repository starting offset to an array
of <bucket_id, length> tuples, which share the same order as those
buckets stored inside the repository. A key feature of this table is
that all the elements are sorted according to the repository offsets,
which follow the appending order, so that the data server in LOCS
always reads from the last read start point, and sends to the cor-
responding ReduceTask. When the buckets for a ReduceTask are
too small to efficiently utilize the network bandwidth, we aggregate
buckets to improve the utilization of network.

Note that the design of server-driven shuffling mechanism within
LOCS takes into account the presence of asynchronous Reduc-
eTasks, due to task re-execution or speculative execution. In such
cases, server-driven shuffling is optional, and does not conflict with
the fault tolerance and speculative execution. LOCS can work by
enabling server-driven shuffling for some or all ReduceTasks, ex-
cept that the speculative or restarted ReduceTasks cannot receive
<k, v> records via the server-driven shuffling. The on-demand
mechanism is adopted instead for such ReduceTasks, i.e., they send
their requests to the LOCS module and obtain records on a per-
request basis. Nonetheless, LOCS works the best when it is possi-
ble for the server on the TaskTracker to opportunistically connect
with all ReduceTasks and send retrieved records.

Current%read%%
start%point%

Reduce1%
Value%Key%

(b):%Bucket%Index%Table%

Repo.1%

(a):%Data%organiza9on%in%the%log%

Repo.2% Repo.(NC1)% Repo.N%

Log%store%
BK.1% BK.2%

……%

…% Buckets%for%
ReduceTasks%

…% BK.N%

Sorted%<k,v>%pair%for%
ReduceTask%2%

Merge%

BK.1% BK.5%…%

append%

......%......%

ReduceN%

<offset,%length>%of%
bucket.(Added%by%Merge)%

Repo.1%offset%

(c):%Data%Structure%for%accelera9ng%Shuffling%

Repo.3%offset%

<BK.1,%len>% …% <BK.N,%len>%Repo.3%
offset%

……%BK.1% BK.N%

create%

Next%read%%
start%point%

Repo.2%offset%

ary%

ary%

ary%

Figure 4: Log-structured I/O Consolidation

Overall, with the log-structured organization and consolidated
writes and reads, LOCS provides three main benefits. First, tasks
that need to write intermediate results will not be disrupted by
writes from other tasks, thus alleviating the interference problem.
Second, the number of write requests will be substantially reduced
because of the consolidation of small writes, thereby relieving the
disk bottleneck. Third, because of server-driven shuffling and its
use of large sequential reads, the number of read requests will also
be greatly reduced.

4. KEY-BASED IN-SITU MERGE

Fetched Segments

K,	
 V	
 ……	

K,	
 P	
 K,	
 P	

K,	
 P	

Priority Queue

K,	
 V	
 ……	

…

K,	
 P	

Extraction

Disk

K,	
 P	
 K,	
 P	
 …...	

Spill

<K,P> Globally Sorted

K,	
 V	
 ……	

K,	
 P	

insert

V	
 ……	
 V	
 ……	

Figure 5: Diagram of In-Situ Merge

As discussed in Section 2, the original Hadoop suffers from ex-
cessive I/O due to the occurrence of repetitive merges. In order to
reduce the probability of repetitive merge, it is critical to use mem-
ory wisely. Another indication of the need of better memory effi-
ciency is that many MapReduce applications exhibit disproportion-
ate intermediate key-value sizes. For instance, during the iteration
phase of PageRank [12], it needs to find the adjacent links of each
webpage. The intermediate key is the link of a webpage, while the
corresponding values can be of an arbitrary size, including all the
incoming and outgoing links of that webpage. In such scenarios,
the existing merge algorithm in Hadoop sorts and merges each <k,
v> pair as a whole. This is very inefficient for memory usage be-
cause long-length values consume a significant amount of memory
but are not relevant to the operation of the merge algorithm.

In view of above issues, we introduce a memory-efficient Key-
based In-Situ Merge (KISM) algorithm as depicted in Figure 5.
Before elaborating our algorithm, we briefly describe the origi-
nal merge algorithm because our algorithm inherits its concept and
some of its data structures. In the current merge algorithm, several
segments with sorted <k, v> pairs are combined into one large seg-
ment with all <k, v> pairs globally sorted. At the beginning of a
ReduceTask, sorted segments are fetched from MapTasks. A heap

(a.k.a Priority Queue) is constructed to merge multiple segments
into a larger segment by traversing all the <k, v> pairs of the input
segments. The newly created segment would be merged again with
other segments in the future.

The key concept of our algorithm is to decouple the sorting of
keys and the spilling of values. Since sorting only operates on the
keys, we extract all keys from all segments and record the location
of its corresponding value with a simple pointer p, which points to
the offset of the value on the disk. For each <k, v> pair, a pair
<k, p> is maintained in memory, as shown in Figure 5. The value
of original <k, v> pair is retained in its original place, i.e., in-situ,
and flushed to the disk with other values together when necessary.
The new <k, p> pairs are inserted to the Priority Queue and finally
inserted to the result. The merging result is then a special segment
composed of <k, p> pairs. Since each <k, p> pair is much smaller
than the original <k, v> pair, a much bigger Priority Queue can be
kept in memory.

While the sorting/merging of <k, v> is handled through the new
Priority Queue of <k, p> pairs, the management of data values is
completely orthogonal to the merging process. The placement of
values (in memory or to disks) is only determined by whether there
is enough memory to hold all data. If values are spilled to the disk,
it will not be read back until it is needed by the reduce function,
thus completely eliminating the excessive I/O caused by repetitive
merges on all the values.

The advantages offered by this approach are four-fold. First, our
algorithm stores <k, p> pairs in the memory while leaving values
in-situ on the disk, so more memory is spared to hold the input seg-
ments. Second, the new p pointer can be much smaller than the
value in a <k, v> pair. It is likely that all <k, p> pairs can be
completely stored in memory, causing little I/O and accelerating
the merge of segments. When large data blocks for values are gen-
erated by some MapTasks, they will no longer cause excessive I/O
in KISM. Our algorithm can also perform faster because its use of
smaller <k, p> pairs and less data manipulation. Finally, decou-
pling the sorting of keys and the spilling of values allows these two
processes to be optimized separately. Future techniques that ac-
celerate disk I/O can be used for spilling without introducing side
effects to sorting.

Under failure scenarios, our KISM does not affect the fault han-
dling mechanism in current Hadoop framework either. Once detect-
ing the failure of a single ReduceTask, local TaskTracker reclaims
the files that contain data values on local disks, and JobTracker then
launches another attempt of the same ReduceTask on an available
node. For a machine failure, all the running tasks on such node are
re-executed on other nodes, following the exact same procedure in
current framework. Preemptive ReduceTask introduced in [20] pro-
vides an interesting solution to checkpoint the intermediate data, so

that fault recovering can be accelerated. We have not explore this
technique in the CooMR, and we intend to pursue it as a future
work.

5. IMPLEMENTATION
We have implemented the three components of CooMR as de-

scribed in Sections 3 and 4. The resulting CooMR framework coor-
dinates the execution of tasks on the same node. From the perspec-
tive of global shuffling, CooMR cooperates with the JobTracker
and takes into account the status of all the participating nodes in a
job to determine when to use server-driven or on-demand shuffling.
While the main design goal of CooMR is to reduce the task inter-
ference, it is critical that the new framework maintains the origi-
nal Hadoop APIs. We achieve this by designing the CooMR as a
transparent library that can be easily enabled or disabled by users
without having to modify their Hadoop applications. Our previous
efforts [19, 21] have demonstrated that native C is beneficial to use
to reduce the overhead of Java Virtual Machine for Hadoop data
management. Thus we use the Java Native Interface in CooMR to
bridge the Hadoop Java code with our plug-in library.

Memory Allocation APIs: CooMR partitions the reserved shared
memory as many blocks and provides a simple set of API functions
for Hadoop tasks to request and release them. Two main functions:
attach and detach, are provided to the upper level Hadoop tasks.
With these memory access functions, MapTasks can buffer its in-
termediate data in the shared memory by attach-ing blocks. When
such data is ready to be spilled, MapTasks can detach these blocks
from the shared memory. ReduceTasks can also retrieve and release
their segments by calling the same attach and detach functions.

6. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of CooMR in com-

parison to the original Hadoop. We first demonstrate that CooMR
can efficiently enhance the overall performance for a number of
MapReduce programs. We then shed light on the impact of COMS
memory block size. In addition, we discuss the benefits of our
techniques to the execution of MapTasks and ReduceTasks. We
demonstrate that CooMR can mitigate the impact of Hadoop block
size on the program execution. Furthermore, we analyze the impact
of CooMR on the utilization of various system resources including
CPU utilization, memory consumption, network throughput, and
I/O request numbers.

6.1 Experimental Setup
Cluster setup: We have conducted the experiments in a cluster

of 25 nodes connected with both 10 Gigabit Ethernet and 1 Gigabit
Ethernet. Each node is equipped with four 2.67 GHz hex-core Intel
Xeon X5650 CPUs, 24 GB memory, and 2 Western Digital SATA
hard-drivers featuring 1 TB storage space.

Hadoop setup: Many configuration parameters can substantially
impact the performance of Hadoop runtime system. In general,
we use the default parameter settings for our Hadoop evaluation
unless otherwise specified. Table 2 lists the major configuration
parameters in our experiments.

Benchmarks: We use TeraSort and WordCount from the offi-
cial Hadoop release; InvertedIndex, AdjacencyList, TermVector,
RankedInvertedIndex and SelfJoin from Tarazu benchmark suite [3]
in our evaluation. One thing to note is that the criticality of data
management is closely related to the ratio of intermediate data size
and input data size. This ratio is determined not only by the map
function but also by the inherent characteristics of input data. In our
experiments, the ratio for the listed benchmarks ranges from 70%

Table 2: List of Hadoop Configuration Parameters

Parameter Name Description Value
mapred.child.java.opts task heap size 2GB
io.sort.mb k-v ring buffer size 800MB
io.file.buffer.size io buffer size 8MB
dfs.block.size size of input split 256MB

to 110%, except for WordCount, whose ratio is as low as 25%.

6.2 Overall Performance Improvement
Figure 6 shows the overall performance of several benchmarks

using both CooMR and Hadoop. Also provided in the figure is the
factor of improvement achieved by CooMR. For the WordCount
benchmark, CooMR performs comparably to the original Hadoop.
This is because the low ratio of intermediate data to the initial input
data. All data for WordCount can be efficiently managed within
the program memory, causing little contention or interference. This
test case also suggests that, for MapReduce programs that are not
generating intensive intermediate data, our CooMR techniques are
pretty light-weight and causing no overhead.

0"

200"

400"

600"

800"

1000"
CooMR" Hadoop"

32%$

Jo
b"
Ex
ec
uM

on
"M
m
e"
(s
)"

31%$

42%$

31%$
44%$

34%$

2%$

Figure 6: Overall Performance of Different Benchmarks

For the rest of benchmarks, CooMR outperforms the original
Hadoop, with an improvement factor of more than 30%, up to 44%
for TeraSort. Several factors together contribute to the improve-
ment of execution time. First, these benchmarks generate a large
amount of intermediate data, for which the cross-task coordination
techniques in CooMR are a good fit. Second, CooMR is very ef-
fective in combining small blocks of intermediate data generated
by MapTasks for log-structured I/O consolidation, thereby short-
ening the I/O time of MapTasks. Finally, by decoupling the sort-
ing/merging and the movement of intermediate key-value pairs, the
KISM algorithm in CooMR overcomes the overhead incurred by
the original merging algorithm in the original Hadoop.

Taken together, these results demonstrate that CooMR can im-
prove the execution of data-intensive MapReduce programs.

6.3 Tuning of Memory Block Size
As described in section 3, CooMR is designed with a key con-

figuration parameter, called memory block size, in addition to the
default tunable parameters in the Hadoop framework. This param-
eter, coomr.block.size, specifies the size of memory blocks for the
cross-task shared memory. We use TeraSort as a program to tune
and analyze the impact of coomr.block.size.

With smaller block sizes, the management overhead grows be-
cause of too many small blocks. Larger block sizes cause more
wasted memory in some blocks, hence the utilization of shared
memory becomes low. Figure 7 shows that using a block size of

 300

 400

 500

 600

 700

 800

 32 64 128 256 512 1024

T
im

e
 (

s
)

Memory Block Size (KB)

Figure 7: Tuning of Memory Block Size for CooMR

256 KB leads to the best execution time for TeraSort. In the rest
of our experiments, we use 256 KB as the choice of memory block
size for our CooMR tests.

6.4 Improvement on MapTask Execution
COMS and LOCS are designed to reduce task interference and

improve the I/O performance of MapTasks in CooMR. To evaluate
the effectiveness, we use TeraSort as a representative data-intensive
application and measure its performance. For these experiments,
we use a total of 10 computer nodes, 5 for MapTasks, and 20 Re-
duceTasks on the other 5 nodes. This configuration is chosen to
avoid the performance interference incurred by ReduceTasks to the
MapTasks, so we can focus on the execution time of MapTasks.

Ex
ec
u;

on
"T
im

e"
(s
)"

Number"of"Concurrent"MapTasks"
"""""""""""1" """""""""""2" """""""""""4"

0"

5"

10"

15"

20"

25"
read" map" spill"

64.3%& 58.7%&

48.9%&

Figure 8: Improvement of MapTask Execution

We first measure the performance of concurrent MapTasks to
evaluate the impact of potential interference. Figure 8 shows the av-
erage execution time of MapTasks. Compared to Hadoop, CooMR
is able to reduce the execution time by 64.3%, 58.7% and 48.9%,
for 1, 2 and 4 MapTasks, respectively. We further break down the
execution time of MapTask into three portions (read, map and spill)
based on the data processing steps during the map phase. Figure 8
shows the dissection of execution time. Compared to the default
Hadoop, CooMR improves the execution time of TeraSort because
of its effectiveness in mitigating task interference. By using shared
memory for coordinated buffering and spilling, CooMR spends a
small amount of time for spilling the data compared to its time in
reading and mapping the data. In contrast, Hadoop MapTasks ex-
hibit serious disk contention when spilling their intermediate data.
We also observe that CooMR achieves less improvement with an
increasing number of MapTasks. This is because there is contention
among MapTasks when they are reading input data from the shared
HDFS.

Hadoop MapTasks are launched repetitively and run with short

durations, a dynamic behavior often described as waves of Map-
Tasks. To achieve fast turnaround, the effective completion of Map-
Tasks is dependent not only on the last MapTask but on a fast
turnaround rate of MapTasks. We have measured the cumulative
distribution function (CDF) of 240 MapTasks using CooMR. Fig-
ure 9 shows that CooMR can complete 50% of MapTasks in less
than 15 seconds. The original Hadoop, however, takes 22 seconds
for the same percentage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
D

F

MapTask Execution Time (s)

CooMR

Hadoop

Figure 9: CDF of Progressive MapTask Completion

6.5 Improvement on ReduceTask Execution
We have also investigated the benefit of CooMR on the perfor-

mance of ReduceTasks. Similar configuration as in section 6.4 is
used, except that we fix 20 MapTasks on the first 5 nodes and vary
the number of ReduceTasks on the other 5 nodes. In addition, given
that the progress of shuffle/merge phase within the ReduceTask is
strongly correlated with the progress of map phase, we launch all
ReduceTasks after the completion of the map phase to achieve a
fair comparison between CooMR and original Hadoop.

0"

100"

200"

300"

400"

500"
shuffle/merge"
reduce"

Number"of"Concurrent"ReduceTasks"
"""""""""""1" """""""""""2" """""""""""4"

Ex
ec
u;

on
"T
im

e"
(s
)"

17.9%&

43.4%& 65.4%&

Figure 10: Improvement to ReduceTask Execution Time

As shown in Figure 10, CooMR efficiently accelerates the execu-
tion of ReduceTasks. When there are 1, 2 and 4 ReduceTasks run-
ning simultaneously on each node, CooMR outperforms the origi-
nal Hadoop by 15.4%, 40.2% and 63.5%, respectively. More im-
portantly, in contrast to the original Hadoop in which the perfor-
mance of ReduceTasks becomes worse with more concurrent Re-
duceTasks on each node, CooMR demonstrates much better scala-
bility. When the number of concurrent ReduceTasks on a node is
increased from 1 to 4, the average task execution time is reduced by
up to 42.9% in CooMR. When using Hadoop, the same execution
time is increased by 32.3%. This better scalability is attributed to
the new merge algorithm and the I/O consolidation in CooMR.

To further study the performance impact of CooMR on different
stages of the pipeline, we have dissected the time spent on different

phases during the execution of ReduceTasks. As also shown in Fig-
ure 10, compared to the original ReduceTask, CooMR drastically
cuts down on the shuffle/merge time of all the ReduceTasks by up
to 68.6% on average. Two factors contribute to such significant
improvement. First, our in-situ merge algorithm avoids the expen-
sive disk-based merging operations. Second, the hash-based fast
retrieval of intermediate data on the MapTask side helps improve
the throughput of data shuffling. In addition, Figure 10 also shows
that CooMR is able to accelerate the reduce phase by as much as
57.4% on average.

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700

D
is

k
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Time (s)

CooMR-Rd

CooMR-Wt

Hadoop-Rd

Hadoop-Wt

Figure 11: Profile of ReduceTask Disk Throughput

In the original Hadoop, we observe that multiple ReduceTasks
can saturate the disk with I/O requests during the execution. As
shown in Figure 11, under a heavy load of disk requests, the ef-
fective read and write throughputs fluctuates significantly in the
case of Hadoop, especially after the start of reduce phase. In con-
trast, CooMR can achieve very stable throughput during the reduce
phase. Because of the use of the KISM merge algorithm, Reduc-
eTasks in the case of CooMR generate very light I/O workload to
the disks.

6.6 Mitigate the Impact of Block Sizes

 0

 500

 1000

 1500

 2000

 64 128 256 512 1024

T
im

e
 (

s
)

Block Size (MB)

CooMR (Map Phase)

CooMR (Job Time)

Hadoop (Map Phase)

Hadoop (Job Time)

Figure 12: The Impact of Data Block Size

MapTasks in Hadoop take input data from the underlying HDFS.
The input data size is determined by the HDFS block size. Tuning
the block size appropriately can provide a good tradeoff between
task parallelism and I/O. As shown in Figure 12, the TeraSort pro-
gram achieves the best performance with a block size of 128MB
under the original Hadoop. A smaller block size of 64 MB leads to
poor performance because it results in a large number of MapTasks
each with a small data split as input, thus increasing the scheduling
overhead and reducing the chance of sequential read. The ensuing
task interference and I/O contention from small writes also limits

the overall performance. In addition, the performance decreases for
block sizes larger than 128MB, with a loss up to 112.1% when the
block size becomes 1024MB. Large blocks negatively affect the
performance of data-intensive applications, due to the long inter-
mediate data generation time of MapTasks and the resulting poor
parallelism.

The techniques we have designed in CooMR can help mitigate
the sensitivity of Hadoop to the granularity of input data splits. As
shown in Figure 12, CooMR achieves a flat execution time for the
map phase of TeraSort using different block sizes. The same trend
holds for the total execution time. This is because CooMR buffers
the data from MapTasks with its shared memory and writes the
intermediate data as log-structured sequential I/O. Therefore, local
disks can be efficiently utilized for storing intermediate data.

6.7 Profile of Resource Utilization
We have also examined the performance impact of CooMR from

the perspective of resource utilization. These experiments were
conducted using 10 Gigabit Ethernet. The statistics of resource uti-
lization shown in Figure 13 is extracted from the execution of Tera-
Sort with 200GB input on 20 slave nodes, each of which is spec-
ified with 4 map slots and 4 reduce slots. Compared to Hadoop,
CooMR improves the total execution time of TeraSort by 38.7%
from 643 seconds to 394 seconds. Particularly, the map execution
time is improved by 42.3% from 392 seconds to 226 seconds as
shown in Figure 13(b). We have conducted a detailed analysis on
CPU utilization, memory consumption, I/O requests, and network
throughput.

As shown in Figure 13(a), CooMR is able to achieve higher
utilization of CPU in both map and reduce phases compared to
Hadoop. Because of its dedicated shared memory and I/O con-
solidation, CooMR is able to keep the processors busy and speed
up the execution.

As shown in Figure 13(b), Hadoop causes a fluctuation in mem-
ory utilization during the map phase and the utilization gradually
goes down in the reduce phase compared to CooMR. This is be-
cause Hadoop statically partitions the memory resource to tasks.
By coordinating the use of shared memory, CooMR achieves better
memory utilization, especially when compared to Hadoop during
the reduce phase. In the case of Hadoop, completing ReduceTasks
gradually releases their memory heap, but remaining ReduceTasks
are not able to use the newly available memory.

CooMR also improves the disk utilization compared to Hadoop.
We measure the number of I/O requests during the execution of
TeraSort. These results are shown in Figure 13(c). Compared to
Hadoop, CooMR incurs a much smaller number of read requests
throughout the execution. This profile demonstrates that CooMR
can dramatically reduce the number of read requests for data shuf-
fling. CooMR reduces the number of disk reads during the reduce
phase because its in-situ merging algorithm. As also shown in the
figure, CooMR reduces the number of write requests. This is be-
cause of its design of log-structured I/O consolidation.

Figure 13(d) shows the profile of network throughput. CooMR
delivers a network throughput 25 MB/s higher than Hadoop. Dur-
ing the program execution, the network throughput with CooMR
is also more stable. This is due to our log-structured format for
intermediate data and the server-driven shuffling technique for data
retrieval. These techniques improve the coordination among shuffle
requests and lead to high and sustained network throughput.

7. RELATED WORK
Condie et al. have introduced MapReduce Online [6] to sup-

port online aggregation and continuous queries by pushing the in-

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700

E
ff

e
c
ti
v
e

 C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Time (s)

CooMR

Hadoop

(a) Effective CPU Utilization

 0

 3

 6

 9

 12

 15

 0 100 200 300 400 500 600 700

U
til

iz
a

tio
n

 (
G

B
)

CooMR

 0

 3

 6

 9

 12

 15

 0 100 200 300 400 500 600 700

 M
e

m
o

ry

Time (s)

Hadoop

map$
226s$

map$
392s$

(b) Memory Utilization

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700

I/
O

 R
e

q
u

e
s
t

N
u

m
b

e
r

Time (s)

CooMR-Rd

CooMR-Wt

Hadoop-Rd

Hadoop-Wt

(c) Number of I/O Requests

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300 350 400 450

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Time (s)

CooMR

Hadoop

(d) Network Throughput

Figure 13: Profile of Various Resource Utilization

termediate data to reduce side aggressively. However, it lacks a
mechanism to coordinate concurrent running tasks. Hadoop-A [19,
21] introduces a new pipeline of shuffle, merge, and reduce phases
via a network-levitated merge algorithm. But intermediate data
generation by MapTasks can still lead to a large number of disk
operations, causing severe disk contention when writing the data
to local disks and serving the fetch requests. Themis [15] builds
a deep pipeline to take advantage of the memory resource to ac-
celerate data processing. In its implementation, the partition size
is restricted to fit the memory space to minimize the I/O times of
each KV pair. The major drawback of Themis is that the existing
MapReduce programs cannot continue execution under its frame-
work. In our work, CooMR optimizes the data process pipeline
from the perspective of task coordination. It alleviates the inter-
ference among MapTasks and ReduceTasks by consolidating I/O
from the upper layer and reduces I/O traffic by utilizing Key-based
In-Situ Merge algorithm. Its server-driven shuffling overcomes the
disk contention not addressed by Hadoop-A.

Many researchers have proposed techniques to better utilize the
resources in the MapReduce cluster from the perspective of task
scheduling. Delay scheduling [22] optimizes the execution of Map-
Tasks by improving the data locality from multiple levels. When
the task at the head of scheduling list cannot achieve desired data
locality, Hadoop fair scheduler skips it and prioritizes the later
tasks that can meet expected locality requirement. Fast comple-
tion scheduler [20] is designed to address the monopolizing be-
havior of long running ReduceTasks by a lightweight preemption
mechanism. It avoids small job starvation issue by prioritizing Re-
duceTasks of jobs with the least amount of remaining workload.
LATE scheduler [24] profiles the progress variations across differ-
ent tasks, and mitigates the impact of straggler tasks in heteroge-

neous environment. These techniques focus on the improvement of
scheduler and make it more responsive to the dynamics of available
resource in a MapReduce environment. However, CooMR exam-
ines the the actual resource allocation, sharing and coordination
among concurrent MapReduce tasks on each node to improve the
system’s efficiency of data processing. Bu [5] et al. have intro-
duced ILA scheduling strategy for Hadoop to alleviate the task in-
terference issue in a virtual MapReduce cluster, meanwhile solving
the problem that existing Hadoop optimizations for data locality is
ineffective in virtual environments. However, such solution is de-
signed for virtual environment and still lacks the task coordination
mechanism on each physical machine.

Several studies have investigated the performance of I/O issue in
MapReduce. Sailfish [14] is an endeavor to address disk contention
through decoupling the external sorting out of MapTasks. The kos-
mos distributed filesystem (KFS) is employed to stage the interme-
diate data. But sorting the segments on KFS triggered both disk
and network contention. In addition, ReduceTasks still suffer from
the repetitive I/O. Li et al. [11] have proposed to use hash func-
tions instead of merge-sort to mitigate the disk bottleneck. Dur-
ing the shuffle phase, only append I/O operations are issued. But
the recursive partitioning policy can still lead to repetitive disk I/O
within the reduce phase. Different from them, our work coalesces
the disk access from all local tasks and leverages a log-structured
organization to improve disk utilization.

YARN [1] and Mesos [9] are two cluster management solutions
designed to allow different computation and data processing frame-
works, such as Hadoop, MPI, and Spark [23] to share a same pool
of nodes. Spark extends the MapReduce programming model. It
alleviates the burden from users to write a pipeline of MapReduce
jobs by offering MapReduce abstractions as many parallel easy-

to-use collections. Internally, MapReduce jobs are organized as a
dataflow graph, or directed acyclic graph (DAG). However, Spark
does not take into account the need of task coordination on each
machine. PACMan [4] provides coordinated data access to the dis-
tributed caches according to the wave-width of MapReduce jobs so
that all or none of the input splits for one job are cached. However,
ReduceTasks that take input from intermediate data gain little help
from this framework. Our work is complementary to the features in
PACMan where we optimize all three phases of Hadoop execution
to increase coordination and reduce contention.

8. CONCLUSION
Hadoop MapReduce is a proven scalable framework for process-

ing massive-scale data on commodity off-the-shelf systems. The
growing computation capability of modern commodity machines
attracts more users to run many MapReduce tasks on a compute
node. However, our detailed examination reveals that, due to the
lack of coordination among tasks, current Hadoop suffers from
severe cross-task interference when multiple data-intensive tasks
are running concurrently. Moreover, excessive I/O caused by the
merge algorithm during the execution of ReduceTasks further de-
grades the system performance. To overcome these issues, we sys-
tematically study the feasibility of cross-task coordination in this
work. Accordingly, we introduce two techniques, cross-task mem-
ory sharing and log-structured I/O consolidation, to coordinate the
execution of co-located tasks and consolidate their I/O operations.
In addition, we introduce a key-based in-situ merge algorithm to
sort/merge Hadoop <k, v> pairs without moving the actual data.
Our experimental evaluation results demonstrate that our solutions
can effectively improve the performance of data-intensive jobs by
up to 44% and accelerate the execution of both MapTasks and Re-
duceTasks with better resource utilization compared to the original
Hadoop.

Acknowledgments
Xiaobing Li and Yandong Wang have contributed equally to the
paper. This work is funded in part by National Science Foundation
awards 1059376 and 1320016.

9. REFERENCES
[1] Apache hadoop nextgen mapreduce (yarn).

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-
yarn-site/YARN.html.

[2] Apache Hadoop Project. http://hadoop.apache.org/.
[3] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan,

and T. N. Vijaykumar. Tarazu: optimizing mapreduce on
heterogeneous clusters. In Proceedings of the seventeenth
international conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS’12, pages 61–74, New York, NY, USA, 2012.
ACM.

[4] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang,
Dhruba Borthakur, Srikanth Kandula, Scott Shenker, and Ion
Stoica. Pacman: Coordinated memory caching for parallel
jobs. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, NSDI’12,
pages 3–3, Berkeley, CA, USA, 2012. USENIX Association.

[5] Xiangping Bu, Jia Rao, and Cheng-zhong Xu. Interference
and locality-aware task scheduling for mapreduce
applications in virtual clusters. In Proceedings of the 22nd
international symposium on High-performance parallel and
distributed computing, HPDC ’13, pages 227–238, New
York, NY, USA, 2013. ACM.

[6] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.
Hellerstein, Khaled Elmeleegy, and Russell Sears.
Mapreduce online. In Proceedings of the 7th USENIX
conference on Networked systems design and
implementation, NSDI’10, pages 21–21, Berkeley, CA,
USA, 2010. USENIX Association.

[7] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified
data processing on large clusters. In Proceedings of the 6th
conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, OSDI’04, pages 10–10,
Berkeley, CA, USA, 2004. USENIX Association.

[8] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: fair allocation of multiple resource types.
In Proceedings of the 8th USENIX conference on Networked
systems design and implementation, NSDI’11, pages 24–24,
Berkeley, CA, USA, 2011. USENIX Association.

[9] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali
Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, and
Ion Stoica. Mesos: a platform for fine-grained resource
sharing in the data center. In Proceedings of the 8th USENIX
conference on Networked systems design and
implementation, NSDI’11, pages 22–22, Berkeley, CA,
USA, 2011. USENIX Association.

[10] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya
Narasimhan. An analysis of traces from a production
mapreduce cluster. In Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, CCGRID ’10, pages 94–103, Washington,
DC, USA, 2010. IEEE Computer Society.

[11] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor,
and Prashant Shenoy. A platform for scalable one-pass
analytics using mapreduce. In Proceedings of the 2011
International Conference on Management of Data,
SIGMOD’11. ACM, 2011.

[12] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: bringing order to
the web. 1999.

[13] Smriti R Ramakrishnan, Garret Swart, and Aleksey
Urmanov. Balancing reducer skew in mapreduce workloads
using progressive sampling. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC’12. ACM, 2012.

[14] Sriram Rao, Raghu Ramakrishnan, Adam Silberstein, Mike
Ovsiannikov, and Damian Reeves. Sailfish: a framework for
large scale data processing. In Proceedings of the Third ACM
Symposium on Cloud Computing, SoCC ’12, pages 4:1–4:14,
New York, NY, USA, 2012. ACM.

[15] Alexander Rasmussen, Michael Conley, Rishi Kapoor,
Vinh The Lam, George Porter, and Amin Vahdat. Themis:
An i/o efficient mapreduce. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC’12. ACM, 2012.

[16] Mendel Rosenblum and John K. Ousterhout. The design and
implementation of a log-structured file system. ACM Trans.
Comput. Syst., 10(1):26–52, February 1992.

[17] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The hadoop distributed file system. In
Proceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[18] Jian Tan, Xiaoqiao Meng, and Li Zhang. Delay tails in
mapreduce scheduling. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international

conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’12, pages 5–16, 2012.

[19] Yandong Wang, Xinyu Que, Weikuan Yu, Dror Goldenberg,
and Dhiraj Sehgal. Hadoop acceleration through network
levitated merge. In Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 57:1–57:10, New York,
NY, USA, 2011. ACM.

[20] Yandong Wang, Jian Tan, Weikuan Yu, Xiaoqiao Meng, and
Li Zhang. Preemptive reducetask scheduling for fair and fast
job completion. In Proceedings of the 10th International
Conference on Autonomic Computing, ICAC’13, June 2013.

[21] Yandong Wang, Cong Xu, Xiaobing Li, and Weikuan Yu.
Jvm-bypass for efficient hadoop shuffling. In 27th IEEE
International Parallel and Distributed Processing
Symposium, IPDPS’13. IEEE, 2013.

[22] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,

Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: a simple technique for achieving locality and
fairness in cluster scheduling. In Proceedings of the 5th
European conference on Computer systems, EuroSys’10,
pages 265–278, New York, NY, USA, 2010. ACM.

[23] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur
Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,
Scott Shenker, and Ion Stoica. Resilient distributed datasets:
a fault-tolerant abstraction for in-memory cluster computing.
In Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation, NSDI’12, pages 2–2,
Berkeley, CA, USA, 2012. USENIX Association.

[24] Matei Zaharia, Andrew Konwinski, Anthony D. Joseph,
Randy H. Katz, and Ion Stoica. Improving mapreduce
performance in heterogeneous environments. Technical
Report UCB/EECS-2008-99, EECS Department, University
of California, Berkeley, Aug 2008.

	Introduction
	Background and Motivation
	The Hadoop MapReduce Framework
	Task Contention and Interference
	Excessive I/O During Merging
	Proposed Solutions

	Cross-Task Coordination
	Cross-task Opportunistic Memory Sharing (COMS)
	Log-Structured I/O Consolidation

	Key-Based In-Situ Merge
	Implementation
	Experimental Results
	Experimental Setup
	Overall Performance Improvement
	Tuning of Memory Block Size
	Improvement on MapTask Execution
	Improvement on ReduceTask Execution
	Mitigate the Impact of Block Sizes
	Profile of Resource Utilization

	Related Work
	Conclusion
	References

