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Abstract—Hybrid memory designs, such as DRAM plus Phase
Change Memory (PCM), have shown some promise for alleviating
power and density issues faced by traditional memory systems.
But previous studies have concentrated on CPU systems with
a modest level of parallelism. This work studies the problem
in a massively parallel setting. Specifically, it investigates the
special implications to hybrid memory imposed by the massive
parallelism in GPU. It empirically shows that, contrary to
promising results demonstrated for CPU, previous designs of
PCM-based hybrid memory result in significant degradation to
the energy efficiency of GPU. It reveals that the fundamental
reason comes from a multi-facet mismatch between those designs
and the massive parallelism in GPU. It presents a solution that
centers around a close cooperation between compiler-directed
data placement and hardware-assisted runtime adaptation. The
co-design approach helps tap into the full potential of hybrid
memory for GPU without requiring dramatic hardware changes
over previous designs, yielding 6% and 49% energy saving on
average compared to pure DRAM and pure PCM respectively,
and keeping performance loss less than 2%.

Index Terms—GPU; NVRAM; Co-Design; Energy Effi-
ciency

I. INTRODUCTION

The main memory has been a major efficiency bottleneck
for modern computer systems. The power consumption by the
main memory in high-end servers is already about 30%-50%
of the system power [2], [11], [31]. To support the increasing
working sets of many concurrently executing threads, the
density scaling (capacity per unit area) of the current dominant
main memory technique (i.e., DRAM) is close to a point
where the manufacturing costs will be unacceptably high [28].
Therefore researchers are looking for innovations in memory
materials and architectures.

An actively pursued approach is to exploit hybrid mem-
ory systems [26], [25], [33], [35], [14], [7], [12], [21],
[24], [19]. By combining DRAM with non-volatile memory
(NVM), hybrid memory can leverage the best characteristics
of multiple types of memory. Although NVM is more power-
efficient, denser, and cheaper, it is usually characterized with
longer write access latency, higher write energy, and limited
endurance. This raises a question on how to optimize data
placement in hybrid memory to avoid performance loss and
improve energy efficiency. Previous work concentrates on CPU
that has a modest level of parallelism. Several important
questions remain open: What are the implications of massive
parallelism to the usage of NVM? How can we reconcile
them to maximize energy efficiency? Can the previous findings
apply to GPU-like massively parallel architectures?

This paper presents a systematic investigation into these
open questions. Using Phase Changing Memory (PCM) as

a representative NVM, we conduct a three-fold exploration.
In the first part (Section III), we start with an empirical
examination of several PCM use cases by following previous
studies (on CPU). Contrary to the promising energy effi-
ciency shown before, these designs cause up to 354% energy
efficiency degradation compared to traditional DRAM-only
memory. We conduct a detailed analysis and find that the main
reason for this is the fundamental mismatch between these
designs and the massive parallelism in GPU. The mismatch
manifests as a large number of misses in the DRAM cache,
the loss of effectiveness in using last level cache (LLC) miss
rates as memory performance indicators, a large volume of
data migrations between DRAM and PCM, and their severe
interference to the memory bandwidth of applications.

In the second part of this exploration, we examine whether
the issues can be addressed by complementing the previous
designs with a set of hardware features for a better match
with the massive parallelism. These features include a finer
granularity for data management, the adoption of row-buffer
misses as a direct indicator of memory performance, the
proposal of a batch migration and a bandwidth-aware scheme
for mitigating the interference caused by data migrations, and
so on. Together they make parallelism-conscious data migra-
tion possible. When being integrated into a state-of-the-art
hybrid memory design [26], these techniques help improve the
energy efficiency of several benchmarks substantially. But the
overall results are still inferior on some programs compared to
traditional DRAM. A further analysis shows a key weakness of
the pure hardware support. It always starts with a default data
placement because as it has no knowledge of program access
patterns and does not know which placement is optimal. For
some programs, the initial placement can trigger too much
data migration for the hardware mechanism to handle.

Prompted by these observations, in the third part of this
study (Section V), we develop a compiler support along with
a novel data-placement algorithm. By exploiting the unique
features of GPU computing and a GPU energy-performance
model, the dynamic programming-based algorithm manages to
create a much enhanced initial data placement in memory for
a set of GPU programs. Working hand-in-hand with hardware
migration support, this new placement strategy saves energy
by 6% and 49% on average, respectively, compared to pure
DRAM and pure PCM systems. The performance loss is kept
at less than 2% (Section VII).

Overall, this study demonstrates the promise of the co-
design approach for reconciling hybrid memory with massive
parallelism. The approach requires no dramatic changes to
existing hybrid memory designs, hence avoiding additional



uncertainties in complexity and feasibility. To the best of
our knowledge, this work is the first that exploits systematic
compiler-hardware cooperation to match hybrid memory with
GPU massive parallelism. As processor-level parallelism keeps
increasing, the insights may be applicable to a broad range of
studies in the design of future memory systems.

This study makes the following major contributions:
• It examines the mismatch between existing hybrid mem-

ory designs and GPU massive parallelism, and introduces
a set of hardware features such as Parallelism-Conscious
Migration to enhance previous designs.

• It introduces a novel representation, Placement Cost
Graph, to capture placement constraints, and adopts
a hardware-software co-design approach with complete
compiler and runtime support to assisting data placement
on hybrid memory for GPU applications.

• This work provides the first principled understanding in
the relation between NVM and GPU massive parallelism,
and contributes some key insights for exploiting NVM
for GPU computing; the findings may open many new
opportunities for bridging NVM and massively parallel
architectures.

II. BACKGROUND

A. GPU Global Memory
Memory in a computer system typically consists of a

number of modules. Cell arrays within these modules are
organized into rows and columns. Memory reads and writes
are performed by selecting the location according to the row
and column addresses. Data are then latched into the row
buffer. The row buffer serves as a fast cache in memory
devices. When data are to be evicted from a row buffer, in
case of DRAM, they must be written back (via a precharge
operation) to the DRAM cells. GPU global memory is typi-
cally GDDR3/5 (a type of high performance graphics DRAM)
or DDR3 SDRAM. Figure 1 depicts the general architecture
of GPU memory. Hundreds of GPU cores share the global
memory, the most power-consuming component in GPU (up
to 40% of the whole GPU power) [9].

Memory energy can be broken down into dynamic energy
and static energy. The former includes activation/precharge,
read/write, and termination energy; the latter includes back-
ground energy due to the peripheral circuitry, refreshing oper-
ations and transistor leakage. The major energy consumption
is background and activation/precharge energy.
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Fig. 1: GPU memory hierarchy

B. Phase Change Memory (PCM)

As an NVM technology, PCM saves energy due to the
following reasons. First, due to its non-volatile PCM cells,
memory cell leakage is reduced. PCM-based memory does
not require refreshing logic and energy. Second, the peripheral
circuits (e.g., row and column decoders, input/output network
and sense amplifiers) can be powered down without losing
content in during idle time [36], saving background energy.
Third, with non-volatile PCM cells, only the dirty lines in a
row buffer need to be written back to the PCM cell array [15],
[36], while in the case of DRAM the entire row buffer needs
to be written back to precharge memory cells no matter it is
dirty or not. This saves dynamic energy.

PCM write latency and energy consumption are bigger
than those of DRAM, because the process of heating the
alloy until the change of resistance state is quite slow and
energy-consuming. For read operations, PCM access latency
is comparable to that of DRAM. For a burst of reads that hit
the same bank of the memory, PCM is even slightly better [36]
because of its non-destructive nature.

III. INITIAL DESIGNS AND OBSERVATIONS

We start our exploration with applying to GPU two repre-
sentative hybrid memory designs previously proposed for CPU
and a pure PCM design. The first design, named Dbuff [25],
uses DRAM as a buffer of the PCM. To mitigate the write
latency of PCM, it employs a write queue to enable lazy-
write. The second design, named RaPP [26], organizes DRAM
and PCM in a large flat memory and migrates pages between
them. The memory controller is used to monitor the misses and
write-backs in LLC for each memory frame (or page), ranks
frames and dynamically adjusts their placement according to
their “popularity”. This design represents the state of the art
in managing hybrid memory for multicore CPU.

We have made two modifications when applying these
designs to GPU. First, GPU has very limited virtual memory
support. We implement a page remapping table to facilitate
accesses to migrated data in the RaPP design. Second, we
find that separating DRAM and PCM in different partitions
as done in the previous designs leads to inferior performance
and energy efficiency on GPU. The reason is that the GPU
massive parallelism and its typically uniform access patterns
by all cores cause serious bank conflicts and access bottlenecks
on some memory partitions (often the DRAM partitions). We
hence adapt these two previous designs by spreading DRAM
and PCM into every memory partition to maximize data
parallelism. Each partition connects to one memory controller
by two memory channels. Each channel consists of memory
devices of the same type (DRAM or PCM).

For easy comparison, we put the detailed experiment con-
figurations and measurement results in Sections VI and VII.
The overall observation is that the PCM-only design is not
appropriate for GPU: the long latency and energy costs of
PCM write operations result in 32% lower energy efficiency
and about 9% performance loss, compared to the traditional
DRAM-only memory. More importantly, contrary to the sig-
nificant benefits that have been observed by previous studies
on multicore CPU, both hybrid memory designs give a much
lower energy efficiency and performance on GPU. Dbuff
incurs a 29% performance loss and a 87% lower energy



efficiency on average, and RaPP a 5% performance loss and
a 11% lower energy efficiency.

Our analysis reveals that the big performance loss in Dbuff
comes from the DRAM misses (whose ratio can be as much as
39%). The majority of these misses come from many slow and
energy-consuming write accesses. The inherent nature of GPU
computing causes such misses with its very high concurrency
and data-level parallelism. For example, streaming access
pattern of limited temporal data locality is very common in
GPU kernels; cold misses at the beginning of kernel executions
also affect the performance, especially for small GPU kernels.

The loss in the RaPP design is due to two reasons. First,
RaPP uses LLC misses as a locality hint for making data
migration decisions. However, unlike multi-core platforms,
LLC misses on a GPU fail to serve as a reliable indicator. It
shows a poor correlation with row-buffer misses, as Table IV
shows. This disparity is due to the fact that GPU has a
much smaller LLC, and it is shared by hundreds of cores.
As a result, LLC misses largely reflect the conflicts among
the accesses triggered by different cores rather than locality
patterns. Second, we observe bursty data migrations on 4 out
of 9 benchmarks. Such migrations consume up to 50% of the
total memory channel bandwidth, causing severe interferences
to the regular memory transactions. This is not surprising
on a massively parallel platform, considering the concurrent
accesses conducted by thousands of GPU threads.

Overall, neither of the two CPU-oriented designs matches
well with the massive parallelism in GPU. We introduce new
features into the RaPP design, and propose the coordination
between hardware and software to solve those problems.

IV. RECONCILIATION THROUGH HARDWARE FEATURES

In this section, we focus on an enhancement of the RaPP
design given its better performance. Our strategy is to add
new hardware features that can mitigate the interferences and
maximize the benefits of data migration.

New Features: Our features re-examine some key
questions—what, how and when to migrate, —in the context
of GPU massive parallelism. (1) Compared to the initial
design, we use a finer granularity for data migration. By
avoiding the unnecessary migration of some data, it reduces
the incurred bandwidth consumption. The catch is that it
may result in a larger space overhead, which is addressed
through a selective treatment as we will show. (2) We make
data migration decisions based on row-buffer misses rather
than LLC misses. As a direct indicator of each row’s access
performance, row-buffer misses provide more immediate hints.
(3) We propose batch migration, which reduces frequency
and overhead by aggregating data together for migration.
(4) We introduce a bandwidth pressure-aware mechanism,
which reduces the interferences caused by data migrations
by adaptively controlling the intensity of data migrations. (5)
Finally, with a conservative approach for space-efficient access
monitoring, the new scheme reduces storage requirement so
that the data structure for managing migrations can be put
onto the GPU chip, lowering management time overhead. By
integrating these new features into the multi-queue migration
scheme used in the RaPP algorithm, we have built up a
parallelism-conscious migration scheme.

Parallelism-Conscious Migration: Figure 2 shows the
high-level view of the migration scheme. The scheme monitors
and migrates data at the grain of 256-byte segment, rather
than row buffer or memory page size as used in previous
work. The fine granularity matches the GPU last level cache-
line size, and saves migration energy by avoiding waste of
memory channel bandwidth. A data segment is associated with
a segment descriptor that records the segment index in current
channel (idx), a position bit (clr: 0 for PCM and 1 for DRAM),
expiration time (exptm), a reference count (refcnt), and a row
buffer miss count (rbmcnt). The row buffer miss is monitored
by the MC as done in the previous work [33]. When a data
segment without descriptor is referenced, its corresponding
descriptor is immediately created.
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Fig. 2: Memory controller with data migration logics. The
dotted black boxes depict added logics.

The kernel of the new migration scheme is an algorithm
named FLRB, which manages the migration based on a rich
set of information, including data access frequency, locality,
recency, and bandwidth utilization. The attainment of access
frequency and recency comes from the multi-queue organi-
zation of data segment descriptors, in a way similar to the
previous design [26]. Data segment descriptors fall into M
queues (M = 8 in our case), each of which is an LRU queue
with the least recently used segment at the head position. The
queue i (0 ≤ i<M ) stores the descriptors of the segments
with reference count ∈

[
2i−1, 2i

)
. We call the queue at i=0

the low-end queue, and the one at i=M -1 the high-end queue.
The reference count calculation weighs PCM write access by
3 and other accesses by 1 in order to distinguish the latency
difference between write and read operations. At each access,
the MC increases the refcnt of the segments to be accessed,
and promotes it to a higher-level queue if the refcnt exceeds
the value range of the current queue.

The MC uses the exptm field of a descriptor to track the
recency of accesses to a data segment. The field is assigned
with an expiration time, which is the last accessed time plus
a constant (150 in our cases). When expired, the descriptor
is moved to the tail of the lower-level queue or evicted from
the multi-queue. The MC checks the queues in a round-robin
fashion. A data segment is selected as a candidate to migrate
from PCM to DRAM, when its descriptor is in queue m and
also suffers from n row buffer misses (m=3 and n=2, selected
empirically). To manage free space, the MC tracks a pool
of consecutive free space through pointers, and uses a buffer
to record the indices of 50 recently freed memory segments



as their data have migrated to PCM. When a descriptor of
a DRAM segment is evicted from the low-end queue, its
corresponding data segment is copied back to the original
place in PCM, and its corresponding entry in the address
mapping table is cleaned for reuse. If DRAM runs out, the
data segment can be proactively migrated to PCM despite its
exptm. For those PCM data segments that are not migrated into
DRAM, their segment descriptors are immediately released for
reuse when evicted. We assume that the MC could put data
evenly across the PCM area for wear leveling.

To improve row buffer spatial locality, we introduce a
migration scheme named batch migration. Whenever a data
segment is chosen as the migration candidate, the MC checks
if there are any neighboring segments (i.e., physically within
the same row) in the same queue as candidate segments. If so,
they will be migrated together. Furthermore, since the DRAM
region for migration is physically located in the reserved rows
of each DRAM bank, and the MC could place the migrated
segments into physically contiguous destination addresses to
maximize data locality, which is similar to the scheme in [29].

In addition, we introduce bandwidth awareness into the
migration to reduce the interference of data migration on
performance. It limits the bandwidth consumption data migra-
tion to the available bandwidth. It calculates the bandwidth
consumption (BWpre) by the regular memory transactions
in the last time quantum based on Equation 1, and then
computes the bandwidth utilization (BW util in Equation 2),
based on which it derives the maximum migration data size
(MigrationDataSize) in the next time quantum (Equa-
tion 3.) The time quantum is empirically selected as 1000
memory cycles.

BWpre = NUMmem trans ∗ Trans Size/time quantum (1)

PeakBW = DataBusWidth ∗Mem Clock ∗DDR multipiler,

(DDR multipiler=2 for DDR2 and 8 for DDR3)
BW util = BWpre/PeakBW (2)

MigrationDataSize = (1−BW util)∗PeakBW∗time quantum (3)
Space Overhead: The FLRB algorithm demands on-

chip storage for a few data structures. A segment descriptor
requires 64 bits (i.e., 22 bits for segment index, 1 bit for
segment positioning, 31 bits for expiration time, 8 bits for
access counting, and 2 bits for row buffer miss counting). If
we maintain the segment descriptor for each data segment,
the area size will be unacceptably large. For example, 1GB
memory demands 32MB on-chip storage. We cap the de-
scriptor storage to 32KB (i.e., 4K descriptors) so that only
the descriptors of the most recently accessed data segments
get into the multi-queue. This is based on our empirical
observation that more than 60% data migration happens to
less than 4KB data segments. Other overhead includes the
remapping table (20KB) that stores descriptors in the multi-
queue, two row buffer-sized migration buffers (16KB) that
decouple data copying and address updating, and a 1KB
retirement list for data migration to DRAM. Thus, the total
space is 69KB per memory controller. Considering that the
L2 cache (256KB per MC) in latest Tesla K20X and GeForce
GTX TITAN takes about 1/8 area of the die, 69KB on-chip
storage incurs 3.3% area overhead. We expect this overhead
could be further reduced by using denser memory techniques
(such as STT-RAM) and more efficient algorithms to manage
these on-chip data structures.
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Fig. 3: Overview of the compiler and runtime software support.

Results and Discussions: We evaluate our hardware de-
sign, and the results (detailed in Section VII) show that, in
comparison to the initial design in Section III, the row buffer
miss rate is reduced by 11.8% and the migration rate by 15%
because of the batch migration, locality-aware data placement,
migration bandwidth control and other features. On the other
hand, we observe about 20% a loss of energy efficiency. A
detailed analysis reveals that the initial inferior placement of
data causes a large volume of data migration. In both our
study and previous studies [26], data are blindly placed onto
the larger part of memory (PCM) initially. This is because
hardware has little knowledge of the program and hence is
hard to determine a good initial data placement. Without
resorting to more complicated microarchitecture, we use a co-
design approach to simplify the hardware design.

V. COMPILER-DIRECTED DATA PLACEMENT

Prompted by the observations in the previous sections, we
develop a compiler and runtime software support to help
alleviate the initial data placement problem. Figure 3 offers an
overview. At compile time, our compiler, named DualLayer,
extracts some data properties, and puts some special function
calls into the program. At runtime, a placement engine com-
putes the appropriate data placement based on compile-time
and runtime information. Although the technique is applicable
to different data structures, we use array as the unit for
placement for its common usage.

A. DualLayer Compiler

Our DualLayer compiler consists of two parts. The first part
is an LLVM-based analyzer. It leverages the inter-procedural
program analysis of LLVM (e.g., alias analysis and loop anal-
ysis) to derive kernel memory access patterns, including the
number of reads and writes to each input array in all kernels.
It then estimates the number of coalesced and uncoalesced
memory transactions with each memory access instruction
based on the extracted access patterns. It uses symbolic
representations when the array size is runtime variables, which
will be resolved at runtime (Section V-B.) The second part
is an PTX code analyzer, which works on one kernel at a
time. It extracts some low-level information of the kernels
that the high-level compiler is hard to get precisely, including
the numbers of total instructions and synchronizations that are
needed by the energy and performance models (Section V-D.)
The compiler inserts into the program some special function
calls to trigger the runtime placement engine and actual data
allocations as will be elaborated in Section V-C.



B. Placement Engine
The placement engine, when invoked at runtime, tries to

determine a proper data placement and migration plan. It
must deal with multi-fold complexities efficiently. First, the
size of the two types of memory imposes constraints on the
placement. Even if it is common that all data can fit into
the combined memory system, they may not fit into one
type of memory. Second, the best data placements may differ
for different kernels. Data migrations between kernels may
accommodate different requirements, but at the expense of
extra time and energy costs. Conceptually, the main problem
facing the placement engine is to find a suitable representation
that captures all the constraints on data placement, and then
come up with an efficient algorithm to solve them. We are
unaware of any prior solution to such a problem. In fact, this
placement problem itself has not been formally defined before.

Definition of Optimal Placement Problem on Hybrid
Memory: Suppose that there are K kernels accessing A unique
arrays. The sizes of the arrays are known; zi denotes the size
of the ith array. We can use an A-dimensional binary vector,
< v1, v2, · · · , vA >, to represent a data placement scheme for
a kernel, where vi can have three possible values:

1 : the ith array occupies GPU PCM;
0 : the ith array occupies no GPU memory;

-1 : the ith array occupies GPU DRAM.
Let Vi =< vi1, vi2, · · · , viA > be the data placement

scheme for the i’th kernel. The goal of the Optimal Placement
Problem is to find a value assignment for all vij (i =
1, 2, · · · ,K, j = 1, 2, · · · , A) so that the following two size
conditions hold:

(1)
∑A
j=1 vij ∗ (1 + vij) ∗ zj/2 < C;

(2)
∑A
j=1 vij ∗ (vij − 1) ∗ zj/2 < D;

and the following total cost is minimized:

(

K∑
i=1

Si(Vi)) + (

K∑
i=2

Si(Vi−1, Vi)),

where C and D represent the sizes of PCM and DRAM
respectively, Si(Vi) is the cost of the i’th kernel when the
placement scheme Vi is used for that kernel, and Si(Vi−1, Vi)
is the cost of migrations used to transform data placement
from Vi−1 to Vi (it equals zero when Vi−1 = Vi.) The cost
can be defined in various ways. We use Energy-Delay Product
(EDP) in this work as will be explained in Section VI.

Placement Cost Graph: A key feature of our solution is
the Placement Cost Graph, a novel representation that captures
various constraints on data placement in a hybrid memory
system. A Placement Cost Graph is an acyclic directed graph
as illustrated in Figure 4. All its nodes, except two special ones
(e.g., n0 and n9 in Figure 4), fall into K groups (assuming K
GPU kernels), with the ith group corresponding to the set of
legitimate (i.e., meeting the two size constraints (1) and (2))
data placements for the ith kernel (i = 1, 2, · · · ,K), one node
per legitimate placement. In Figure 4, the placement scheme
for each node is labeled in parentheses, and zero values in the
vectors are not shown.

The nodes in the ith group are fully connected with all
the nodes in the (i − 1)th group (if i > 0) and with all the
nodes in the (i + 1)th group (if i ≤ K.) The edges, pointing
from the lower-numbered group to the higher-numbered one,
represent all possible data migrations between two adjacent
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Fig. 4: A Placement Cost Graph of a program with three
kernels. Edge weights are not shown for readability.

kernels; obviously, no connections are needed among nodes
in the same group. Every edge in the graph carries a weight.
The weight on the edge from nodei in Group l to nodej in
Group (l+1) (denoted as wi←j) equals the cost of the (l+1)th
kernel when it uses nodej’s data placement, plus the cost of the
data migrations needed for changing nodei’s data placement
to nodej’s. In the notations given in the problem definition,
the weight equals to Sl+1(Vj)+Sl+1(Vi, Vj). For instance, the
weight w3→6 is S3(< v2 = 1, v3 = −1 >) + S3(< v3 = 1 >
,< v2 = 1, v3 = −1 >). The cost is estimated by putting the
data access patterns into a prebuilt energy model (explained
in Section V-D.)

Starting and ending nodes are two special nodes in a
Placement Cost Graph. The former connects with all the nodes
in the first group, with the edge that points to nodex carrying
the cost of the first kernel when it uses nodex’s data placement.
For example, the weight w0→1 is S1(< v1 = 1 >). The ending
node is where all the nodes in the Kth group connect to; these
connecting edges carry zero weight.

Dynamic Programming: By capturing both size con-
straints and the migration overhead, the Placement Cost Graph
lays the foundation for solving the Optimal Cost Graph, and
simplifies the placement problem into a shortest path problem.
A path here refers to a route from the starting node to the
ending node in the graph. The length of a path is the sum of the
weights of all edges on the path. It is easy to see that the length
equals the total cost when the data placements represented by
the nodes on the path are used for the kernels. A shortest path
in a Placement Cost Graph hence gives an optimal solution
to the corresponding Optimal Placement Problem. We use
the standard dynamic programming to solve the shortest path
problem. Its time complexity is O(mn), where m is the
number of nodes and n is the number of edges in the graph.
The running time is negligible for most GPU programs as
they typically use less than ten arrays per kernel, which is
confirmed by results in Section VII. In some extreme cases
where the program contains many arrays and kernels, the
algorithm can be applied offline based on profiling information
(with some runtime backup plans as mentioned next).

C. Runtime Support
The runtime support is enabled by the compiler, which

inserts the following special function calls into the application.
• void getSize(int s1, int s2, ...);
• void calPlace();
• void mallocHyb(int kID, int aID, void **arr, int bytes);
• void dataMigrate(int kID);
• void finalize(void *array);



A call to “ getSize” is put before the first kernel call. It
uses its parameters to pass the sizes of input arrays to an in-
ternal data structure “ dataSizes[]”. Each parameter is either
a variable in the application or a constant “-1”, which means
that the size is still unknown at the function invocation. A
call to “ calPlace” invokes the placement engine to solve the
shortest path problem by using the compiler’s output on data
properties, the “ dataSizes” array, and the energy model. If
the size of any array is unknown (-1), it uses the largest known
size of all arrays for it. It uses K A-bit vectors, “ place[][]”,
to record whether an array should be put on DRAM (bit=0)
or PCM (bit=1) at the ith kernel (i = 1, 2, · · · ,K). The
call to “ mallocHyb” allocates the array “arr” based on
“ place[kID][aID]”. Upon an allocation failure, if the target
device is the small DRAM, it tries PCM before exiting with
errors. A call to “ dataMigrate” is inserted right before
every kernel call except for the first. It checks the differences
between “ place[kID-1]” and “ place[kID]”, and migrates
an array if its corresponding bits differ in the two bit vectors.
A call to “ Finalize” is put at the end of the program to
inform the hardware to free the used resources.

D. Energy and Performance Models
This part describes the energy and performance models

used by the placement engine to approximate the energy
consumption and performance of a kernel to determine a data
placement plan. The performance model is an extension of
a previous GPU analytical timing model [8]. It estimates the
execution time of a kernel based on MWP, CWP, the number
of computation cycles and the number of memory waiting
cycles. MWP represents the number of memory requests that
can be serviced concurrently, and CWP represents the number
of warps that can finish one computational period during one
memory access period. This model works for a single-typed
memory system. The introduction of NVM affects MWP,
CWP, and the number of memory waiting cycles. We adjust
the calculation of these three terms by taking into account of
different access latency to different memory systems.

Equations 4-6 show the model computing energy consump-
tion by a kernel. Table I summarizes the used notations.
Our energy model breaks down the whole memory energy
into background (Ebg), read/write due to accesses to memory
arrays (Erd/wr), and refresh due to DRAM refreshing (Eref ).
The background energy depends on time distribution of three
background power modes (i.e., active standby, precharge
power-down and precharge standby). The time distribution of
the three modes is statistically related to data access intensity
in each rank. More intensive accesses tend to result in more
occurrences of active standby and precharge standby (i.e., high
power mode). We hence model the average background power
as a correlation function of access intensity (defined as AF
in the model). The function is established by using segmented
linear regression with AF as the independent variable and
with average background power as the dependent variable.
To measure access intensity, we calculate the total number of
memory accesses to each rank’s data, based on the estimation
of which memory rank each data object resides in.

Read/write energy is estimated by multiplying the number
of read/write operations with read/write energy per operation.
The read/write energy per operation is based on existing
literature [6], [14], [25]. The refresh energy is based on refresh

power obtained from [30] and on data distribution among ranks
(to determine Nrank). The execution time needed to calculate
the background energy and the refreshing energy is obtained
from the performance model described earlier in this section.

Emem =
∑

i=dram,
pcm

(Ebg i+Nrd i ∗Erd i+Nwr i ∗Ewr i)+Eref (4)

Ebg dram/pcm =

#ranks∑
i=0

f(AFi) ∗ T (5)

Eref = Pref ∗Nrank ∗ T (6)

Discussions: For a program with loops surrounding ker-
nel calls, the algorithm is applied inside-out. It first applies to
the innermost loop body only. After finding out the proper
placement for kernels in that loop, it works on the outer
loop body. In the Placement Cost Graph for this program,
two nodes are created for the inner loop, one for the data
placement already determined in its first kernel and the other
for its final kernel, while no nodes are created for the other
kernels in the inner loop because they do not interact directly
with the kernels in the outer loop in terms of data migrations.
This process continues until reaching the highest level of the
program.

TABLE I. Energy model notations
Emem Energy consumption of the hybrid memory system
Ebg i Background energy consumption

Nrd i, Nwr i Number of read/write memory operations
Erd i, Ewr i Array read/write energy

Eref Refresh energy consumption
AF Activity factor

f(AF ) Background energy correlation function
T Total execution time

Pref Refresh power per rank
Nrank Number of DRAM ranks involved to store data

VI. EXPERIMENTAL METHODOLOGY

In our evaluation we use a GPU simulator [32] (extended
from GPGPU-Sim v3.1.0 [1]) connected with a memory
simulator, DRAMSim2 [27]. We estimate memory power
consumption using a power model developed by Micron
Corporation [30] and embedded within DRAMSim2. To have
a fair comparison, we include DRAM low-power modes
during simulation (particularly, precharge power down and
precharge standby). The baseline Streaming Multiprocessor
(SM) is based on the NVIDIA’s Fermi Architecture [22]. Main
characteristics of the simulated PCM are based on [20], [6],
[25]. Similar to [15], [36], we enhance PCM by writing back
dirty row buffers only. Main architectural characteristics of our
simulated GPU are summarized in Table II.

Our default hybrid memory system consists of 256 MB
DRAM and 1 GB PCM on each memory partition, result-
ing in 7.5 GB global memory (comparable to main stream
GPUs). For fair comparison, in our pure DRAM and PCM
configurations, the total memory size on each partition is the
same as that of the hybrid memory (i.e., 1.25GB). For the tests
without compiler-directed data placement and migration, data
arrays are initially placed on PCM to leverage relatively low
background power and large size of PCM for fair comparison.
Similar to many prior studies [26], [13], [18], we use Energy-
Delay Product (EDP) to evaluate energy efficiency. We use
CUDA benchmarks listed in Table III. All of the benchmarks
are selected from CUDA SDK [23] and Rodinia [5]. We are
interested in these benchmarks because they are memory-
intensive, and thus suitable to evaluate a memory system.



TABLE III. Benchmark Characteristics (cs: Convolution-
Separable, mt: MersenneTwister, sn:SortingNetworks,
bs:BlackScholes, sp: scalarProd, pf:Pathfinder,
sc:Streamcluster, lava:lavaMD); Access patterns (I:Blocking-
regular, II:Blocking-irregular, III:Streaming, IV: Irregular.)

Name Description # kernel #arrays Classification
cs a separable 2D convolution 2 3 I&III
mt random number generator 2 1 III
sn bitonic sort 4 4 I&III
bs Black-Scholes formula 1 5 III
sp scalar product 1 3 I&III
pf ghost zone optimization 1 3 I&III&IV
sc number finding 1 5 I&III&IV

lava particle potential and relocation 1 4 I&III&IV
nn nearest neighbor 1 2 III

Unless otherwise indicated, the pure DRAM system is used
as the baseline for all comparisons. The notation “pc” refers to
our parallelism-conscious design, including both hardware and
software support; “pc-hw” refers to our design with hardware
support only; “pc-sw” refers to our design with software-
directed placement and migration only. We use “dbuff” and
“RaPP” for the two initial designs of hybrid memory in
Section III. “pcmOnly” refers to the pure PCM-based system.

VII. RESULTS AND ANALYSIS

A. GPU Workload Characteristics

We use 9 CUDA benchmarks, selected from the CUDA
SDK and Rodinia suite [5] for their intensive memory ac-
cesses. Based on memory access patterns, the benchmarks fall
into four categories as shown in Table III. A benchmark be-
longs to multiple categories if the accesses to its arrays display
multiple access patterns. Six of our benchmarks heavily use
shared global memory or display coalesced accesses, which are
amenable to GPU architecture, while three benchmarks have
dynamic irregular access patterns. Because PCM is highly
sensitive to write operations, we further look into the write
intensity of these benchmarks. We calculate the write ratio for
each data element for each array, and then classify them into
five write intensity categories. The category 0 refers to read-
only, while the category (0.6, 1] refers to the highly write-
intensive pattern. Figure 5 summarizes the data size for each
category and displays their percentages in terms of the data
size. We have found a large amount of read-only/read-intensive
data. For example, most of data in pf, sp and sc are read-
only. Contrary to those results in CPU which show much
higher write intensity [17], these results reveal the unique
opportunities for using PCM on GPU.
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Fig. 5: Write Intensity Distribution of Working Set Data

TABLE IV. Miss Rates (%)
(dcm: DRAM miss rates; llcm: LLC miss rates; rbm: row-buffer miss rates)

bs cs lava mt nn pf sp sc sn
dcm .11 .17 .0 .12 3.9 39 30 3.6 10
llcm 74 33 56 19 50 41 94 46 56
rbm 11 19 1.1 8.4 18 56 84 2.8 2

B. Dbuff and RaPP
We experiment with the designs of Dbuff and RaPP. Our

implementation follows the previous studies [25], [26] with
the two modifications mentioned in Section III. In addition,
we have tried a spectrum of configurations for these two
designs. For instance, we experiment with 4 different block
sizes (512B, 1K, 2K, and 4K) and associativity (4, 8, 16) for
Dbuff. For lack of space, we report the results of the best
configuration (1K; 8-way) in terms of the average EDP.

Figures 6 and 7 report performance and EDP. The results
show that the pcm-only design results in 43% energy efficiency
degradation and 9% performance loss on average, which
demonstrates the necessity of using a hybrid design. However
both hybrid memory designs appear to give results even worse
than the pcm-only design. The Dbuff causes on average 29%
performance loss and 87% lower energy efficiency. The main
reason is that the programs show substantial misses in the
DRAM as shown in Table IV. The benchmark sp is such
an extreme case (13X larger in EDP). RaPP causes 5%
performance loss and 11% energy efficiency loss on average.
Our analysis shows that one of the reasons is that the design
uses LLC miss rates as the hint on the memory frame’s
temporal locality and makes migration decisions accordingly.
As shown in Table IV, the LLC misses and row-buffer misses
(a direct indicator of the memory-level data locality) have a
poor correlation. This disparity suggests that using LLC as
the locality hint is misleading. We also observe bursty data
migrations on 4 out of 9 benchmarks (bs, lava, sc, sn). Such
migrations consume up to 50% of the total memory channel
bandwidth, causing severe interferences to the regular memory
transactions.

C. Performance Implications
Figure 6 reports the performance for the three migration

strategies. The pc-hw performs the worst for all tests, because
the pure hardware-based approach is a slow refining process.
It takes time to capture the memory access patterns of data
segments with poor locality and expensive memory operations,
besides migrating them to DRAM. On the other hand, with
the compiler support, we can significantly avoid this situation,
demonstrated by the much better performance of pc-sw and pc.
We notice that the performance of pc-sw and pc is pretty close
while the energy consumption of pc is much lower (shown
in the next subsection). This means that, with the support of
compiler, the hardware support mainly targets at improving
energy efficiency with fine data adjustment. In general, with
our data migration method, the performance loss is less than
2%, compared with the DRAM-only system.

D. Energy Implications
Figure 7 reports the normalized EDP savings from all

three migration strategies. The pc strategy performs the best
with 6% EDP reduction on average. If we purely rely on
the compiler-guided placement, the saving is around 4%.
There are mainly two reasons. First, our compiler-directed
placement suffers from some noise in program analysis (the



TABLE II. Core Parameters
Architecture Configuration 15 SM clusters (30 SMs), Butterfly network (1400Mhz), 6 Memory Partitions
SM Pipeline 1400Mhz, Pipeline Width:16, threads per Warp:32, Maximum threads per SM:1024

Memory Subsystem (per SM) Constant: 8KB/64B-line/24-way, Texture: 12KB/128B-line/2-way, DL1: 16KB/128B-line/8-way
Registers: 32768, Shared Memory: 48KB

L2 Unified Cache 768KB, 256B line, 8-way
Global Memory DDR3-800Mhz, x8, 1.5V, Cacheline interleaving
Memory Controller 2-channel, 64-entry Transaction Queue, 16-entry Command Queue, FR-FCFS, Open-page

Timing (cycles) [6], [25] DRAM - tRCD: 11, tRP: 11, tRRDact: 5, tRRDpre: 5, Refresh time: 64ms, tRFC/tREFI: 64/7.8µs
PCM - tRCD: 34, tRP: 138, tRRDact: 3, tRRDpre: 18, Refresh time: N/A, tRFC/tREFI: N/A
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Fig. 6: IPC normalized to those of pure DRAM for various memory systems and migration strategies.
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Fig. 7: Energy and EDP normalized to those of pure DRAM for various memory systems and migration strategies.

energy model, the branches and loops in a program). Second,
the analysis considers one array as a unit for placement
decision at the beginning of the program execution, and thus
lacks the ability to do fine-grained tuning. However, the big
gap of 33% for EDP between pc and pc-hw argues for
the importance of compiler-directed initial placement, which
benefits the program from the beginning and avoids memory
bandwidth contention from unnecessary data migration. The
bottom row of Table V reports the reduction percentage of
memory migrations provided by the better initial placements,
compared to the pure hardware-based scheme.

We notice that for some particular benchmarks, such as sn
and nn, pc-sw outperforms pc-hw significantly, because the
initial placement is already close to the optimal but pc-hw still
suffers from the naive placement policy. For the two outlier
benchmarks, pf and mt, all three strategies perform worse than
the baseline. One potential reason is that the execution time of
these two benchmarks is too short to benefit from the hardware
migration unit.

E. Impact on Row Buffer Misses

Figure 8 shows the row buffer miss rate. The row buffer
miss rate refers to the total number of row buffer misses in
all memory banks divided by the total number of memory ref-

erences. The row buffer miss rate reflects row buffer locality.
The lower is the miss rate, the better is the row buffer locality.
We first notice that pc achieves the lowest row buffer miss rate
in 4 cases and achieves the second lowest row buffer miss rate
(less than 4% difference in the miss rate) in 2 cases, which
demonstrates the effectiveness of locality-aware hardware-
based migration. We also notice that pc does not necessarily
result in better row buffer locality than pc-hw, shown in the
benchmarks bs, lava, and sc. This is because the compiler
directs data placement not solely based on locality and the
hardware migration can only refine the locality of migrated
data. On the other hand, with the direction of compiler, we
effectively avoid expensive PCM writes and the performance
loss as shown in Figure 6, even though the row buffer misses
may be slightly worse than the pure hardware-based approach.
Furthermore, we notice that the hardware migration helps the
pure software-based approach reduce the row buffer miss rate,
demonstrated by the fact that pc achieves lower row buffer
miss rate than pc-sw.

F. Cycles Per Memory Access

The relatively long memory access latency is one of the
major obstacles for embracing NVM. We calculate the average
memory access latency for all memory transactions, and show
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Fig. 8: Normalized row buffer miss rates for various memory
systems and migration strategies.
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Fig. 9: Cycles per memory access for various memory systems
and migration strategies.

the average value for all benchmarks in Figure 9. pc has the
lowest value among all cases, even lower than the DRAM
case, because of improved row buffer locality. Without the
coordination of hardware and software, both pc-hw and pc-sw
incur longer latency than pc. pc also beats the best previous
work (i.e., RaPP) due to compiler assists.

G. Memory Bandwidth Consumption and Migration Rate
Figure 10 presents average memory channel bandwidth

consumption of all benchmarks. Compared to Dbuff and RaPP,
pc reduces bandwidth consumption because of the reduction in
unnecessary migration. pc also consumes smaller bandwidth
than pc-hw because of compiler assistance. Figure 11 presents
the migration rate. The migration rate is calculated as the
percentage of migrated data (weighted by the corresponding
times of migrations) in terms of total data size. Among the
three hardware-based migration, pc has the lowest rate because
of compiler assistance. pc-hw has higher migration rate than
RaPP, because of the smaller migration granularity, but pc-hw
has better energy efficiency.

H. Overhead of the Computation of the Initial Placements
Table V reports the time overhead from the computation of

the initial data placements using the algorithm in Section V.
The overhead is less than 1% for all programs except for three
programs nn, sn, and sp, which have the shortest duration of
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Fig. 10: Average memory channel bandwidth consumption
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Fig. 11: Migration rate (weighted by migration times) for
hardware migration strategies
TABLE V. Overhead of Initial Placement Engine and Migra-
tion Reduction (oh: overhead; rd: reduction of migration)

bs cs lava mt nn pf sp sc sn
oh .15 .16 .2 .09 2.4 .13 .04 4.1 2.8
rd 41 100 63 0 100 100 0 16 51

all programs. The largest overhead is 4.1% on sp, still much
smaller than the EDP savings.

I. Impact on PCM Write Endurance

Another major concern for applying PCM is its limited write
endurance. In order to analyze the lifetime of PCM, we use the
endurance analytical model from [25], Y = Wmax ∗ S/(F ∗
B ∗225), where Wmax is the maximum number of writes that
a PCM cell can take before being worn out, S is the total size
of PCM in bytes, F is the processor frequency, B is the write
traffic in bytes per cycle and a year roughly has 225 seconds.
Similar to [15], we assume Wmax as 108 in this evaluation.

Figure 12 shows that a pure PCM configuration without any
optimization has an average lifetime of 0.8 year (B = 19.19),
because of intensive data accesses. Dbuff and RaPP improve
the lifetime to 1.7 years (B = 7.16) and 2.1 years (B = 8.59),
respectively, by directing memory writes to DRAM. However,
they are much less efficient than our co-design approach (pc
with 5.4 years life time and B = 2.29). Further analysis
reveals that pc-hw redirects 29% write traffic to DRAM, and
pc-sw redirects 86.4%, while co-design redirects 98.4%. Our
co-design approach efficiently places a large extent of write-
intensive data in the DRAM memory.

VIII. RELATED WORK

Data placement in memory systems: Some studies have
considered data placement for the hybrid memory system on
multicore CPU. Qureshi et al. [25] and Bivens et al. [4]
use DRAM as a set-associative cache that is logically placed
between processor and PCM. PCM is accessed when DRAM
buffer eviction or buffer miss happens. Ramos et al. [26] rely
on MC to monitor popularity and write intensity of memory
pages, based on which to migrate pages between DRAM and
PCM. Yoon et al. [33] place data based on row buffer locality.
These studies have all focused on multicore CPU. None of
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Fig. 12: Estimated PCM endurance



them has studied the implications of GPU massive parallelism
to hybrid memory design. As Section III shows, when applying
to massive parallel platforms, they yield unsatisfying perfor-
mance and energy efficiency. We are not aware of previous
proposals of the set of new hardware features in Section IV
for reconciling the design with GPU parallelism. Furthermore,
the previous studies have used software mechanism mostly
as a way to maintain the memory management scheme (e.g.,
paging, virtual pages to physical frames mapping, and wear
leveling), rather than to guide data placement.

Compiler-Assisted GPU Memory Performance Opti-
mization: Recent years have seen a number of studies on en-
hancing GPU memory performance through compiler-assisted
techniques. Hormati et al. present a compiler framework
to support stream programming on GPU, including some
memory optimizations [10]. Zhang et al. propose an online
adaptive scheme to enable runtime thread-data remapping to
minimize uncoalesced memory accesses [34]. Lee et al. [16]
describe some techniques to optimize memory references
during openMP-to-CUDA translation. Baskaran et al. [3] use
a polyhedral analysis to optimize affine memory references in
regular loops. All these studies are about matching software
with the special properties of GPU DRAM accesses, rather
than finding the best placement of data on a hybrid memory
system. We are not aware of any previous proposal of the
Placement Cost Graph for modeling constraints in data place-
ment on a hybrid memory. To our best knowledge, this work
is the first that uses compiler support to find an appropriate
data placement on a hybrid memory.

IX. CONCLUSION

We have explored the use of hybrid memory as the GPU
global memory, and investigated how to match memory de-
sign with massive parallelism of GPU devices and improve
energy efficiency. By exploiting the synergism of compiler and
hardware, our hybrid memory architecture leads to an average
energy efficiency improvement of 6% and 49%, respectively,
compared to pure DRAM and pure PCM. The performance
loss is less than 2%.
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