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Abstract—Scientific applications use collective communication
operations in Message Passing Interface (MPI) for global syn-
chronization and data exchanges. Alltoall and AlltoallV are two
important collective operations. They are used by MPI jobs
to exchange messages among all of MPI processes. AlltoallV
is a generalization of Alltoall, supporting messages of varying
sizes. However, the existing MPI AlltoallV implementation has
linear complexity, i.e., each process has to send messages to all
other processes in the job. Such linear complexity can result
in suboptimal scalability of MPI applications when they are
deployed on millions of cores.

To address above challenge, in this paper, we introduce a
new Scalable LOgarithmic AlltoallV algorithm, named SLOAV,
for MPI AlltoallV collective operation. SLOAV aims to achieve
global exchange of small messages of different sizes in a loga-
rithmic number of rounds. Furthermore, given the prevalence
of multicore systems with shared memory, we design a hier-
archical AlltoallV algorithm based on SLOAV by leveraging
the advantages of shared memory, which is referred to as
SLOAVx. Compared to SLOAV, SLOAVx significantly reduces
the inter-node communication, thus improving the entire system
performance and mitigating the impact of message latency. We
have implemented and embedded both algorithms in Open MPI.
Our evaluation on large-scale computer systems shows that for
the 8-byte and 1024-process MPI AlltoallV operation, the SLOAV
can reduce the latency by as much as 86.4%, when compared
to the state-of-the-art, and SLOAVx can further optimize the
SLOAV by up to 83.1% in terms of message latency on multicore
systems. In addition, experiments with NAS Parallel Benchmark
(NPB) demonstrate that our algorithms are very effective for
real-world applications.
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I. INTRODUCTION

Existing scientific applications heavily rely on Message
Passing Interface (MPI) to make the best use of the underlying
systems. Among all the MPI functions, collective routines are
the key factors that determine the scalability of the applications
due to their global characteristics. Of particular importance are
Alltoall and AlltoallV collective operations in MPI. They allow
all the processes involved in the communication to exchange
data with each other. Alltoall has a constraint that all the
processes can only send data of the same size, which limits
many applications, such as optimization of 3D Fast Fourier
Transforms (3D-FFT) in CASTEP code [6] and quantum
mechanical molecular dynamics simulation in CPMD [1], etc.
AlltoallV instead supports all processes to exchange data of
varying sizes.

Although much research work [5], [15], [16], [3] has been
conducted on optimizing the Alltoall operation, little work
has been carried out to examine the scalability of AlltoallV
communication. Bruck algorithm [5] is a significant effort to
improve the scalability for Alltoall communication. However,
such strategy fails to support messages of varying sizes.
In addition, so far, in all existing implementations of MPI
AlltoallV, such as MVAPICH2, Open MPI, etc., the number of
required messages to accomplish AlltoallV increases linearly
with the number of processes involved in the communication.
Such linear complexity severely limits the scalability of the
large-scale scientific applications.

To address this critical issue, in this paper, we introduce a
new Scalable LOgarithmic AlltoallV algorithm, called SLOAV.
SLOAV aims to accomplish the AlltoallV collective commu-
nication for small messages of different sizes in a logarithmic
number of rounds, thus significantly improving the perfor-
mance of applications by reducing the number of messages for
a global exchange of messages. To allow messages of various
sizes, SLOAV provides applications with more flexibilities.
We have systematically evaluated the efficiency of SLOAV
algorithm on large-scale clusters, the results demonstrate that
SLOAV can significantly outperform the state-of-the-art by up
to 86.4%.

Multicore systems with shared memory are becoming ubiq-
uitous in supercomputing infrastructure. Efficient usage of
shared memory can dramatically mitigate the overhead of
network message latency during the collective communication.
Therefore, in this work, we further exploit the optimization
spaces of SLOAV algorithm on multicore systems by lever-
aging the advantages of shared memory. Based on SLOAV,
we introduce a new algorithm, called SLOAVx. SLOAVx is
designed to orchestrate multi-layer AlltoallV communication.
On each node, SLOAVx elects a group leader to manage data
collection and transmission through using shared memory.
To realize global exchange in AlltoallV, only group leaders
conduct inter-node communication through SLOAV algorithm.
The resulting scheme effectively cuts down on the number
of messages over the network, thus reducing the impact of
network message latency. We demonstrate experimentally that
SLOAVx can further optimize the performance of SLOAV
by 83.1% on multicore systems and provide near optimal
scalability.

In summary, we make the following contributions on the



AlltoallV collective communication in this paper:
• We introduce a Scalable LOgarithmic AlltoallV (SLOAV)

algorithm. It is designed, implemented and demonstrated
to support AlltoallV in logarithmic complexity, signifi-
cantly reducing the number of messages for a global data
exchange in AlltoallV.

• We optimize the SLOAV algorithm on multicore systems
and introduce the SLOAVx algorithm. Compared to the
pure SLOAV algorithm, SLOAVx further reduces the
impact of network message latency by leveraging shared
memory.

• We have implemented both algorithms in Open MPI
and conducted a systematic evaluation on large-scale
supercomputing infrastructure. The experimental results
demonstrate that SLOAV can outperform the existing
implementations by up to 86.4% in terms of the message
latency. SLOAVx can further outperform SLOAV on
multicore system by as much as 83.1%.

In the rest of the paper, we discuss related work in section II.
This is followed by a detailed description and analysis of
SLOAV in section III. We then describe the SLOAV algorithm
and introduce the SLOAVx algorithm in section IV. Experi-
mental results are presented in section V and we conclude this
paper in section VI.

II. RELATED WORK

Collective communication has been extensively researched
in High-Performance Computing (HPC), however, very little
research has been conducted for AlltoallV collective commu-
nications. In addition, none of the early work has studied All-
toallV communication with logarithmic complexity. Jackson
and Booth [11] have proposed Planned AlltoallV to optimize
AlltoallV in the clustered architecture. Their optimization
collects data into one single message from all processes on the
same node before conducting inter-node communication, so
that the number of messages sent between different nodes can
be dramatically reduced. Goglin et al. [3] proposed a kernel-
assisted memory copy module (KNEM). It can bring benefits
to collective intra-node AlltoallV communication. Later on,
Ma et al. [12] optimized the KNEM by making use of memory
architecture on NUMA architecture. However, the complexity
of above algorithms and optimizations still require linear
complexity to accomplish AlltoallV communication.

Brightwell and Underwood [4] carried out a deep analysis
of the advantages of leveraging offload in MPI collectives to
overlap the communication and computation and demonstrated
the performance improvements for the NAS Parallel Bench-
mark [2]. However, the performance of MPI AlltoallV was
not improved. Faraj and Yuan [7] optimized MPI programs
by leveraging compiled communication, taking advantage of
the compiler’s knowledge of network architecture and ap-
plication communication requirements. The effectiveness was
also been shown on NAS Parallel benchmark [2]. However,
it was only effective for static communication with fixed
patterns at compilation time. This work was unable to optimize

dynamic communications, such as AlltoallV operation, since
the compiler is unable to do array analysis. Plummer and
Refson [14] optimized the MPI AlltoallV for materials science
code CASTEP [6], their approach is to breakdown AlltoallV
into multiple groups of processors and only require the group
leader to participate in AlltoallV communication. However,
the improvement is limited due to linear complexity and the
organization of processes on each node can cause performance
bottleneck.

Recursive Doubling (RDB) [16] and Bruck [5] algorithms
are two logarithmic algorithms used in Alltoall communication
to exchange small messages. When the process number is
power of two, Bruck algorithm sends fewer amounts of data
in comparison to RDB, and it works much better than RDB in
realistic cases. However both of them cannot support messages
of variant sizes.

III. SLOAV: A SCALABLE LOGARITHMIC ALLTOALLV
ALGORITHM

Traditional MPI logarithmic collective algorithms, such as
Bruck algorithm, can only work for Alltoall operation whose
message sizes are uniform. In this section, we introduce our
new Scalable LOgarithmic AlltoallV algorithm (SLOAV) for
processing AlltoallV collective communication.

Our work is built on top of Cheetah [9], which is a collective
communication framework embedded in Open MPI. In this
framework, the MPI-level communication is controlled by a
component in the Multi-Level (ML) manager, named COLL
in Open MPI. Subgrouping (SBGP) component is used to
extract topology information. At the communicator creation
time, COLL takes advantage of SBGP to discover communi-
cation hierarchies and makes use of the subgroup information
generated by SBGP to do collective communication within
subgroups using the BCOL (Basic Collectives framework).

A. Drawbacks of Existing Solutions

Bruck algorithm emerged as a logarithmic algorithm to
conduct Alltoall for small messages. In this algorithm, three
imperative steps are carried out sequentially. Assume that
the total number of processes that participate in the Alltoall
communication is N and the rank of current process is n.
In Step 1, the Local Rotation Step, message elements are
rotated inside each process to prepare data for the next Step
2. Then in Step 2, inter-process communication is performed
for dlog2Ne rounds. At each round, data elements for the
same destination in one process are merged before being sent
out. In round s (starting from 1), process n sends data to
process (n + 2s−1)modN and process n receives data from
process (n − 2s−1 + N)modN . After dlog2Ne rounds of
communications, all the data elements can arrive at their final
destination process. In Step 3, another intra-process rotation
is proceeded to relocate the data elements to correct positions.

However, Bruck algorithm cannot deal with data elements
of different sizes because the length of data input buffer
used in this algorithm is fixed. We term the segment for
holding an initial element in the data input buffer as an
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element segment. Such algorithm cannot be directly applied
to AlltoallV because, during the inter-process communication,
the received intermediate data element can be much larger
than the capacity of the element segment, thus making the
communication inapplicable.

To address such issue, we introduce a logarithmic algorithm
- SLOAV with new data structure support and a two-phase data
transmission scheme for AlltoallV.

B. Scalable Logarithmic AlltoallV Algorithm (SLOAV)

In this section, we firstly describe the data structure for
SLOAV and then introduce the two-phase message transmis-
sion technique. We then explain how data elements are rotated,
and transmitted in the SLOAV algorithm.

1) New Data structure for SLOAV Algorithm: The new data
structure support for SLOAV is shown in Fig. 1. Suppose
there are 5 processes. For each process in the AlltoallV
communication, there is an input data buffer that contains N
data elements of various sizes ready to send to N processes
respectively. The input data buffer is enough for a linear
communication algorithm. To enable a logarithmic algorithm
for AlltoallV, we add two new data structures: Element Index
Table (EIT) and SLOAV buffer.

The EIT includes N entries, each of which is for a single
data element. Every entry contains a length specifying the size
of element and an offset pointing the location of the element in
the input buffer or SLOAV buffer. Three benefits are obtained
by using the EIT structure. First, each element is not required
to be of the same length, and data can be placed anywhere, thus
providing high flexibility. Second, it can significantly avoid
memory copy overhead, because we only need to modify the
length and pointer in the EIT without shifting actual data when
a data movement is required. Compared to Bruck algorithm,
which requires local memory rotation and data movement in
both Step 1 and 3, EIT can effectively reduce the amount
of memory copy. Thirdly, this structure is space-efficient and
provides fast search speed.

SLOAV buffer is a temporary buffer to hold the intermediate
elements that are too large to fit in its element segment.
The SLOAV buffer is acquired from the Cheetah buffer pool
(allocated to each process during MPI INIT). Its size is
adjustable, depending on the number of processes and average
element size.

Fig. 1: Data structure for SLOAV

2) Two-phase message transmission: A logarithmic algo-
rithm for AlltoallV operation requires data transmission to
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Fig. 2: SLOAV’s Process to Process Communication

intermediate processes. But intermediate processes have no
knowledge of the exact size of intermediate data they will
receive. Each process only knows how much data it needs
to send out and the length of each data element to receive.
Precalculating the sizes of data elements at each round requires
significant extra collective operations, which can cause extra
communication and computation overhead. In order to address
this, we propose an effective two-phase transmission approach.

In this approach, a process combines the elements that have
the same destination process id, then send the total message
size and data to the targeted process. As shown in Fig. 2,
three rounds of communications are required for an AlltoallV
operation among five processes. In round s, process n firstly
merges all of the elements e with (e/2s−1)mod 2 equal to 1,
then sends the size and data of the merged message to process
(n+ 2s−1)modN . Similarly, it receives the size and data of
a combined message from process (n− 2s−1+N)modN . In
the example, for round 1, process 2 merges its element1 (16B)
and element3 (24B) as a message, next, it sends the size of the
message as a new message (4B) to process 3, and then send the
merged (52B) to process 3. The merged message contains the
number of elements, the lengths of each element and the data.
At the same time, process 2 receives the message size and data
from process 1. Totally, the two-phase message transmission
requires 2 ∗ log2N start-up costs for each process but is still
orders of magnitudes faster than linear algorithm which takes
N start-up costs, especially for communication among large
number of processes and small sizes of messages.

3) Element rotation, send and receive in SLOAV: Fig. 3
illustrates how one process rotates, sends and receives the
message elements in SLOAV for AlltoallV communication
among five processes.

Fig. 3(a) depicts the status of a process after it rotates by
two positions. Note that for local data rotation in one process,
we only need to rotate the entries in EIT without data moving.

As shown in Fig. 3(b), after some elements are sent out,
the value of that element entry in the table is set to NULL.
Before a process receives new data element, the former data
element at the same position of input data buffer must be sent
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(a) Local Rotation (b) Send Data to Another Process (c) Receive Data from Another Process

Fig. 3: Operations of each process in SLOAV algorithm

out as required by the algorithm to avoid conflicts.
In Fig. 3(c), when an element arrives, if the length of

received element is smaller than the capacity of the element
segment in the data input buffer, the received data element
is placed into the data input buffer like data element Data3.
Otherwise, that element is placed into SLOAV buffer such as
Data0 and the offset of that entry is set to point to its location
in the SLOAV buffer. We use a unified range for the offset
value in the EIT, if the offset value i is smaller than the size
of the input buffer S, it directly points to the position of i in
the input data buffer. If not, it points to position of i − S in
the SLOAV buffer. This SLOAV buffer can be recycled if the
occupying data element has been sent out later.

C. Theoretical Analysis of Communication Complexity

During the AlltoallV collective communication, the size
of data sent by one process to the other is unknown to the
receiver. Therefore, it is imperative for the sender to firstly
notify the receiver about the size of message before conducting
the data transportation. This educes the basic model for a
process to accomplish data transfer in AlltoallV operations:

TSLOAV = Tsize + Tmsg (1)

where Tsize is the time for the sender to notify the receiver
about the size, and the Tmsg is the time to send message data.
From the Hockney model [10], assuming there’s no contention
in the network, the latency of sending data between a pair of
end-points can be modeled as

T = S +
c

B
(2)

, where S stands for the cost of start-up, B is the network
bandwidth, and c the amount of data transferred between
endpoints. Based on this point to point exchange formula in
which the time required to perform local memory copy is
ignored, the time of transmitting message size and data can
be expressed by the following two equations:

Tsize = dlog2Ne ∗ (S +
4

B
) (3)

Tmsg = dlog2Ne ∗S+

∑dlog2Ne−1
i=0

~Ck ∗ ~Mdlog2Ne−1−i

B
(4)

In the two formulas above, N is the total number of
processes in the communication. dlog2Ne rounds are required
to complete process to process communication. A 4-byte Int

variable is large enough to indicate the size of message. The
time used in each round to send the message size is the sum
of start-up time and the 4-byte integer tranmission time.

To calculate the message latency, besides the cost of start-
up, the time of sending all of the data by each process in the
network needs to be calculated. Equation (4) is the latency of
adopting SLOAV to transfer data elements of various lengths.
Vector ~Ck is a 1 × N array, storing the length of process
k’s each data element that needs to be sent to N processes
(including itself) in the current round. Thus ~Ck changes at
every round. M is a N × dlog2Ne binary matrix, ~Mk is M ’s
k-th column, and the combination of 1 or 0 at each row is the
binary number of the corresponding row index. For example,
when N is 5, the M is shown in Equation 6. M indicates
which elements the sender needs to send at each round, starting
from right to left.

~Ck =
[
ck0 ck1 · · · ck(N−1)

]
(5)

M5∗dlog25e =
[
~M0

~M1
~M2

]
=


0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

 (6)

In contrast, the cost of linear AlltoallV algorithm is:

Tlinear = N ∗ S +

∑N−1
j=0 ckj

B
(7)

As can be seen from the above formulas, when the aver-
age message size is small, the collective communication is
dominated by the overhead of start-up operation (S). So the
logarithmic algorithm can achieve better performance, which
only requires d2 ∗ log2Ne times of start-up costs. However,
when the message size becomes large, the network trans-
mission time turns to be bottleneck. In addition, because in
logarithmic AlltoallV, intermediate processes need to transfer
or relay the messages, it can cause lots of duplicated messages
sent/received in the network. For that reason, the performance
of SLOAV is not ideal for dealing with large messages. If the
maximum amount of data needs to be received in the AlltoallV
operation is greater than a threshold, the program will switch
to the large message algorithm.
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Fig. 4: SLOAVx Algorithm

IV. SLOAVX: OPTIMIZE SLOAV ON MULTICORE SYSTEMS

We have described the SLOAV algorithm, which supports
AlltoallV to realize a global message exchange in a logarith-
mic number of rounds. Although SLOAV reduces the com-
plexity, the required number of messages to achieve AlltoallV
is still a function of the number of processes involved in the
communication. Nowadays, large-scale scientific applications
launch hundreds of thousands of processes to fulfill task com-
pletion. At such scale, message latency can quickly prevents
SLOAV from achieving the optimal performance. Therefore, in
this section, we exploit the advantage of fast shared memory in
multicore systems to optimize the SLOAV algorithm. We name
such optimization as SLOAVx, which collects all messages
from all processes on the same node before conducting inter-
node communication. As a result, SLOAVx can efficiently cut
down the number of messages exchanged between nodes,
reducing it to be a function of the number of nodes in the
cluster, thus dramatically mitigating the performance impact
of network message latency.

Different from SLOAV algorithm which is unaware of the
topology of processes, SLOAVx collects all messages from all
local processors and delegates the group leader to perform
inter-node communication via the SLOAV algorithm. Fig. 4
illustrates the high-level description of SLOAVx algorithm.
On each node, one process is selected as the group leader.
Such leader election can be achieved through using simple
consensus algorithm. For the example in Fig. 4, processes
P00, P04, and P08 are selected as group leaders for the
processes on node 1, 2 and 3, respectively. After the leader
is selected, all the rest processes on the same node are
organized into a binomial tree, as shown in the Fig. 4. Such
organization prevents the root process (group leader) from
being the potential bottleneck and allows multiple processes to
collect and forward messages simultaneously. Note that, under
such tree structure, each process is aware of its parent and
children processes based on the topology information provided
by SBGP component in Cheetah framework.

Upon finishing the above setting up phase, on each node,
SLOAVx continues AlltoallV communication by determining
the offset for each process in the shared memory into which
each process writes the message data. To calculate such offset,
each process needs to notify its parent about the message size

at the first place and then write the actual data. This step is
shown in Step (1) in the Fig. 4. However, there is no existing
MPI function support such functionality. Therefore, SLOAVx
modifies MPI Gatherv function to achieve such local message
gathering in the shared memory.

Once all messages from all local processes have been
collected, the group leader partitions the data according to
the destination processes, and groups all the data going to the
same compute node into the same partition. In our example, on
each node, there are three such partitions, each one of which
targets at a different compute node. After that, group leaders
of the compute nodes apply the SLOAV algorithm to exchange
the partitions, as shown in Step (2) in Fig. 4.

Upon receiving the data partitions for all the processes on
the node, a group leader needs to transmit the data to each
local process. Similar to gatherv in Step (1), such functionality
is achieved by asking processes to read data from shared
memory. Therefore, in Step (3), group leader notifies each
process about the offsets from which each local process can
read data from all the other processes in the cluster. Such
notification goes through the tree structure instead of using
broadcast. SLOAVx employs a modified MPI Scatterv function
to achieve this.

V. EXPERIMENT EVALUATION

In this section, we conduct a systematic evaluation of our
SLOAV and SLOAVx algorithms, which have been implemented
into the MPI Alltoallv in latest Open MPI.

A. Experiment Environment

1) System Configuration: All experiments are conducted on
the two environments, which are the Jaguar supercomputer and
the Smoky development cluster at the Oak Ridge National
Lab. Jaguar features 18,688 physical compute nodes, each
with a 16-core 2.2GHz AMD Opteron 6274 processor and
32GB memory. All compute nodes are connected through
Cray’s high-performance Gemini networking system. The
Smoky cluster contains 80 Linux nodes, each with 4 quad-core
2.0GHz AMD Opteron processors, 32GB of memory (2GB per
core), and a gigabit Ethernet network, along with Infiniband
interconnect. Both Jaguar and Smoky share a center-wide
Lustre-based file system, called Spider.

2) Benchmarks: To measure the efficiency of SLOAV and
SLOAVx algorithms, we employ the widely-used OSU Micro-
Benchmarks 3.7 [13] and the popular NAS Parallel Bench-
mark (NPB) [2]. The OSU benchmark, uses MPI Alltoallv
operations in a tight loop to warm up the caches, and then
measure the performance of 10,000 MPI Alltoallv operations.
The final result reports the average latency. Regarding to the
NAS benchmark, we adopt IS (Integer Sort) kernel to evaluate
the performance of MPI Alltoallv function, every test runs IS
for 10 times and reports the average. Note that our algorithm
mainly focuses on optimizing the small message exchange,
and is not very suitable for large data. Therefore, in our
experiments, we focus on the evaluation of small messages.
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Fig. 5: Effectiveness of SLOAV Algorithm

B. Benefits of SLOAV Algorithm

We start our evaluation by measuring the latency of
MPI Alltoallv on the Jaguar supercomputer, and demonstrate
the efficiency of SLOAV through two test cases. In the first
test case, we increase the number of processes, while the
message size varies from 1 byte to 8 bytes. In the second test
case, we fix the number of processes (128) in the AlltoallV
communication while varying the maximum size of message
from 1 byte to 64 bytes. In both cases, we compare the results
of SLOAV algorithm to those of the default MPI Alltoallv
function in Open MPI (BASIC) and MPI in Jaguar Cray system
(CRAY). We have also evaluated Tunned Open MPI [8], called
Tuned MPI. However, across the tests, we observe that the
performance of AlltoallV in Tuned MPI is very close to BASIC
with 1%-3% difference. Therefore, in the following sections,
we only report the results of BASIC for succinctness and clear
presentation.

Fig. 5 (a) shows the results of first test case. On average,
SLOAV algorithm significantly reduces the latency by up to
40.5% and 56.7%, when compared to the BASIC and the
CRAY, respectively. More importantly, we observe that the
improvement ratio increases proportionally to the number of
processes involved in the AlltoallV communication, indicating
superior scalability of SLOAV. For instance, when the number
of processes increases to 1024, SLOAV outperforms BASIC
and CRAY by as much as 62.3% and 86.4% respectively.
These results adequately prove the efficient design of our
SLOAV algorithm.

The results of second test case are shown in Fig. 5 (b), in
which the x-axis represents the maximum message size sent
by one process to the other. As shown in the figure, SLOAV
performs 51.4% and 61.4% better on average than BASIC and
CRAY, and achieves up to 59.3% and 67.5% latency reduction
when the maximum size is 1 byte. However, we notice that
SLOAV only maintains a constant latency until the maximum
message size reaches 8 bytes, after which, when message
size further increases, SLOAV shows degraded performance.
This is mainly because that in log scale algorithm all of
the participant processes (including source and intermediate
processes) need to merge different data elements that has the

same destination into one message before sending them out,
this can cause large amount of memory copies. In addition,
the SLOAV algorithm can generate lots of duplicated data
elements in the network due to message relay through interme-
diate processes, leading to larger size of the merged message
in each communication round.

C. Benefits of SLOAVx Algorithm

Recall from section IV that SLOAVx algorithm is designed
to optimize the SLOAV in clusters equipped with multi-
core system by leveraging the advantages of shared memory
on each node. Through aggregating all the messages from
local processes before conducting inter-node communication,
SLOAVx aims to reduce the number of network send/receive
operations, thus improving the latency. In this section, we
evaluate the performance of SLOAVx on the Smoky cluster
and compare the results to that of SLOAV and other alternative
MPI solutions. All the experiments in this subsection run 16
processes on each node.

We firstly compare the SLOAVx with SLOAV to assess the
effectiveness of optimization. Fig. 6 (a) shows the comparison
results. In the experiment, we increase the number of processes
from 32 to 512, meanwhile using 16 bytes as the maximum
message size. While both SLOAV and SLOAVx achieve
logarithmic scaling trends, SLOAVx reduces the latency by
83.1% on average. We also observe a consistent improvement
across all the tests. The improvement brought by SLOAVx
is twofold. First, when running multiple processes on each
node, SLOAV invokes traditional send/receive functions to
conduct point-to-point communication even though they may
reside on the same node. This can quickly lead to severe
resource contention when the number of cores on each node
increases, resulting in degraded system performance. In con-
trast, SLOAVx leverages fast shared memory operations, such
as gatherv and scatherv, thus reducing the overhead of going
through the network stacks. Secondly, SLOAVx aggregates all
the messages from local processes before conducting the inter-
node communication. This efficiently reduces the amount of
communication occur on the network.

We further compare the SLOAVx with another two MPI
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Fig. 6: Effectiveness of SLOAVx Algorithm

alternatives, which are BASIC (described in section V-B) and
MVAPICH2 MPI. As shown in Fig. 6 (b), SLOAVx signif-
icantly reduces the latency by 99.3% and 97.4% on average
when compared to BASIC and MVAPICH2, respectively.

D. Sensitivity on the Number of Cores Used on Each Node

As described above, SLOAVx strives to make the best use of
shared memory on multi-core system. During the experiments,
we observe that SLOAVx performs very differently when the
number of cores used on each node differs. Fig. 7 presents
such phenomenon. In the experiments, we carry out 3 test
cases. In each case, we fix the number of total process in
the AlltoallV communication, but change the number of cores
used on each node. As shown in the figure, the more cores
used on each node, the better performance SLOAVx is able
to achieve. This effectively corroborates that SLOAVx can
efficiently leverage the shared memory on each node to reduce
the network operations.
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E. Evaluation with NAS Parallel Benchmark

To further investigate the efficiency of SLOAVx algorithm
for real-world applications. We adopt IS parallel kernel in NAS
Parallel Benchmark. The IS kernel is derived from computa-
tion fluid dynamics (CFD) which applies MPI Alltoallv to
conduct integer sorting using bucket sort. It assesses both the
job execution time and computation throughput (measured by
MOPS). In this subsection, we conduct our experiments on S
class and W class workload in IS kernel.
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Fig. 8: Improvement on S Class

Fig. 8 shows the results of running S class workload,
which only supports up to 128 processes and sorts 64KB
data size. As shown in the Fig. 8(a), SLOAVx can always
achieve superior performance improvement over BASIC and
MVAPICH2 regardless of the number of processes involved.
The improvement can be as much as 79.4% and 60.7%,
compared to BASIC and MVAPICH2, respectively when the
number of processes is 128. In addition, Fig. 8(b) shows that
SLOAVx can not only reduce the job execution time but more
importantly increase the entire system throughput as well,
reaching as much as 385.2% and 150.8% MOPS improvement
when compared to BASIC and MVAPICH2.

The results of running W class workload is shown in
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Fig. 9: Improvement on W Class

Fig. 9. It aims to sort 1MB data and can support very large
number of processes. As shown in Fig. 9(a) and 9(b), SLOAVx
outperforms the other two alternatives in terms of execution
time and throughput when the number of processes increases,
and achieving as much as 476.4% and 187.3% throughput
improvement ratio compared to BASIC and MVAPICH2 when
running under 512 processes. Overall, these experimental
results adequately demonstrate that SLOAVx can efficiently
reduce the job execution time and increase the throughput.

VI. CONCLUSION

The linear complexity in existing MPI AlltoallV operations
severely hinders the scalability of scientific applications. In
this study, we introduce a Scalable LOgarithmic AlltoallV algo-
rithm, named as SLOAV, to reduce the complexity of AlltoallV
collective communication for small messages of different sizes
to logarithmic complexity. With such algorithm, the number of
necessary messages for AlltoallV can be significantly reduced,
thus the scalability of scientific applications can be effectively
improved. Furthermore, to leverage the advantages of shared
memory on multicore systems, we design the SLOAVx algo-
rithm based on SLOAV. SLOAVx elects a group leader for
all the processes on the same node and delegates the leaders
on all the nodes to conduct inter-node communication via
SLOAV. Both SLOAV and SLOAVx have been implemented
and integrated into Open MPI. To assess their efficiency, we
have systematically evaluated their performance on the Jaguar
supercomputer and the Smoky cluster at Oak Ridge National
Lab. Our experimental results demonstrate that SLOAV can

significantly reduce the latency by up to 86.4%, when com-
pared to the existing implementations. SLOAVx can further
improve the performance of SLOAV on multicore systems by
as much as 83.1%.
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