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Abstract—Current I/O techniques have pushed the write per-
formance close to the system peak, but they usually overlook
the read side of problem. With the mounting needs of scientific
discovery, it is important to provide good read performance for
many common access patterns. Such demand requires an organi-
zation scheme that can effectively utilize the underlying storage
system. However, the mismatch between conventional data layout
on disk and common scientific access patterns leads to significant
performance degradation when a subset of data is accessed. To
this end, we design a system-aware Optimized Chunking model,
which aims to find an optimized organization that can strike for
a good balance between data transfer efficiency and processing
overhead. To enable such model for scientific applications, we
propose SMART-IO, a two-level data organization framework
that can organize the blocks of multidimensional data efficiently.
This scheme can adapt data layouts based on data characteristics
and underlying storage systems, and enable efficient scientific
analytics. Our experimental results demonstrate that SMART-IO
can significantly improve the read performance for challenging
access patterns, and speed up data analytics. For a mission critical
combustion simulation code S3D, Smart-IO achieves up to 72
times speedup for planar reads of a 3-D variable compared to
the logically contiguous data layout.

Keywords-Smart-IO; ADIOS; Data Organization; Parallel I/O;
S3D

I. INTRODUCTION

The increasing growth of leadership computing capabilities,

both in terms of complexity as well as computational power,

has enabled scientific applications to solve complex scientific

problems at large scale. This is accompanied by a gigantic

volume of complex data produced, driving data intensive

computing as a propelling task force for scientific discovery.

The size of dataset is typically on the order of terabytes,

growing towards petabytes. As a major portion of application

turnaround time, I/O plays a significant role in determining

simulation productivity and energy efficiency.

Many efforts, both past and present, have heavily focused

on improving the I/O performance by studying the write

side of the problem, but the read performance of scientific

applications on large-scale systems has not received the same

level of attention, despite its importance to drive scientific

insight through scientific simulation, analysis workflows and

visualization. Worse yet, current I/O techniques often overlook

the need of good read performance. The major reason for

this discrepancy between writes and reads is due to the

physical limitations of magnetic storage and the common

access patterns of scientific applications. Physical disks are

optimized for one-dimensional large sequential blocks of data

while scientific datasets are usually multidimensional. Data

elements from a multidimensional scientific dataset are usually

stored to a one dimensional physical disk space based on

the order of one primary dimension. This results in noncon-

tiguous placement of data elements on secondary and tertiary

dimensions. When reading the data elements in the order of

higher dimensions, the performance degrades significantly due

to the expense of coping with noncontiguity, either because

of extra disk seeks or because of extra retrieved data. In

addition, the peak aggregated bandwidth of parallel storage

systems cannot be effectively utilized when only a subset of

the data is requested. This occurs because the requested data

is concentrated on a very small number of storage targets

with current data placement strategies, causing a substantial

performance degradation and limited scalability. Systems such

as the Gordon [2] supercomputer at San Diego Supercomputer

Center attempt to address this problem through new hardware

such as solid-state devices (SSDs). However, without optimiz-

ing data organizations, even SSDs cannot achieve an efficient

utilization of its peak disk bandwidth.

To enable efficient I/O, another issue that needs to be ad-

dressed is the complexity of the simulation output. One simula-

tion dataset is normally a collection of many multidimensional

variables. Each variable possesses distinct characteristics. For

example, a simulation may generate one variable that is on

the order of hundreds of gigabytes, while another variable is

only hundreds of megabytes. After domain decomposition, a

common parallelization strategy in scientific applications, such

differences become even more pronounced. It is difficult to

achieve the optimal performance by applying a uniform data

organization strategy to all variables. Therefore, a technique

that can dynamically organize each variable to match with the

underlying storage system is desired.

To address the aforementioned issues, we have introduced
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a theoretical Optimized Chunking model to derive the op-
timized chunk size and guide data organization during the

simulation run-time. Such a model is established upon a

collection of system parameters. So the organization is able to

adapt to the underlying system. To enable optimized chunking,

we propose a two-level data organization scheme. The first

level is focused on the construction of optimized sized chunks.

A Space Filling Curve based data placement strategy is used

to ensure near-maximum data concurrency at the second level.

We have implemented this multi-level strategy as a light-

weight middleware called Smart-IO. Smart-IO has been tested

and evaluated as a part of the ADaptable I/O System (ADIOS)

framework [1]. We use ADIOS to leverage its penetration

amongst existing scientific applications. For our experimental

evaluation we use the Jaguar Cray XT5 [3] supercomputer

at Oak Ridge National Laboratory(ORNL) to demonstrate

that Smart-IO is able to achieve both good balance and

high performance for reading some of the challenging access

patterns of scientific applications. In our test case for S3D, a

mission-critical combustion code, we obtain a 72x speedup

to the planar read performance compared to the logically

contiguous data layout, while introducing negligible overhead

in data generation.

The rest of the paper is organized as follows. We first

discuss the background and motivation of this work in detail

in Section II. We then introduce the Optimized Chunking

model in Section III. The design details of Smart-IO are

described in Section IV. Section V validates our strategy

through a comprehensive set of experimental results. A survey

of literature review is provided in Section VI. Finally, we

conclude the paper in Section VII.

II. BACKGROUND AND MOTIVATION

In order to improve the read performance for scientific

applications, a thorough understanding of application access

patterns is crucial. This is because the physical limitation of

magnetic disks where varying access patterns can result in

substantial changes in the performance of reads. Two scenarios

are highly important when optimizing read performance for

end-to-end simulation workflows: 1) checkpoint-restart, for

which a fraction of the memory image is read from storage

in order to recover from failure; 2) data post-processing, for

which a smaller data subset is read in for the purpose of

visualization or data analytics. In our previous work [30], we

have identified major access patterns into three categories.

• Read in all of a single variable

• Read an arbitrary orthogonal subvolume
• Read an arbitrary orthogonal full plane
More complex reading patterns can be described through

a composition of these three patterns, or through minor

variations. Figure 1 gives an example of a 3-D array, a 3-

D subvolume in the center of the array, and three 2-D planes

in three dimensions: i, j, and k; where i is the primary, i.e., the

slowest varying dimension, and k is the tertiary i.e., the fastest

varying dimension. Data in the array is stored first along the

i 

j 
k 

Fig. 1: Data Organization and Performance

fastest dimension k, then along the slower dimensions, j and

i, on disk.

Among these patterns, significant performance variations

are observed for range queries on the data subsets, particularly

on the orthogonal planes. Such phenomenon is often referred

as “dimension dependency” [28], where the read performance

depends on the dimensions of the query, rather than the

data size of the query. Despite the performance concerns,

this access pattern is commonly used by scientific post-

processing [9].

A. Optimizing the Chunk Size

Our previous work [30], [29] have shown that utilizing

a Space Filling Curve-based (SFC-based) data placement

strategy can obtain a high degree of concurrency of storage

access for common access patterns of scientific analytics. Such

strategy is based on the chunking data organization, which

outperforms logically contiguous (LC) as it is able to alleviate

the dimension dependency [28]. However, the impact of the

chunk size on read performance can create a severe bottle-

neck. For example, if an application with a uniform domain

decomposition outputs multiple variables with distinct sizes,

a large number of different segments in the logical file will

be produced. For the smaller sized variables, the performance

of reading is bottleneck by the excessive seeks required to

retrieve the large number of small data chunks. For larger

variables, the dimension dependency remains a significant

bottleneck when reading data on the slow dimensions, as the

layout forces the I/O subsystem to read a significant amount

of unnecessary segment gaps in order to complete the request

without excessive seeking. Thus it is an important concern to

find the correct chunk size for the system.

To address the aforementioned challenges, we conducted

an initial study in [31]. In this paper we propose a simplified

model to describe the effect of the chunk size on the read

access time. We have also introduced a two-level data orga-

nization scheme that combines this chunk size optimization

with the SFC-based data layout optimization to significantly

improve read performance for typical access patterns. Next we

describe the development of this model as well as the selection

of an optimized chunk size.

III. OPTIMIZED CHUNKING

In order to find the good data organization, we first need

to theoretically investigate what is the correct chunk size for

multidimensional data on a parallel storage system. The I/O

performance on a large-scale system is influenced by many
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factors, such as the communication cost, the number of writers,

the size of the chunks, the number of storage targets, etc. As

mentioned earlier, for a chunk based data organization, the

size of chunks plays a critical role in determining the read

performance for query on a data subset where data points are

not contiguously stored. Thus optimizing read performance

requires a model to find an effective chunk size that works

well under the constraints of HPC system characteristics.

In general, the response time for a read request on a large

scale system can be expressed in terms of five parameters,

RT =(Tcomm + Tseek + Tio + Tlocal)× α

Here Tcomm is the time for each client to send out the

request to the storage system over the network. Tseek is the

total time to perform seek operations to locate the data on

disk. It is the sum of the seek time, disk head settling time

and rotational latency, which are all dependent on the physical

characteristics of the disk and the physical location of the

data on the disk. Without taking into account the physical

placement of data on a particular disk, we use the return time

of seek calls at the file system level to quantify the seek time.

Tio is the time taken to read out all the requested data from

disk. Since storage systems are commonly attached to the

computation partition as separate units, this time is taken from

the perspective of the client. Thus we include the data transfer

time for the network to return data. The last parameter, Tlocal,

is the time that a client takes to perform local processing

such as the memory copy. Tlocal depends on the contiguity

of requested data in memory, but is significantly smaller than

the other costs of I/O. α represents the interference factor

on the large-scale system. However, to determine this factor

needs a thorough study of the system and it is not the focus

of this work. For a simplified analytical model, the external

and internal interferences to the storage system are ignored.

Such finely guided modeling can help pinpoint a solution

that enables near-optimal I/O performance tuning in a timely

fashion.

Given the read time as describe by Equation (1), we now

expand the model to calculate a chunk size that can provide

near-optimal performance. Assume this optimized chunk size

is OCS and the original chunk size is CS. A data chunk that

is larger than OCS needs to be divided, while smaller data

chunks require aggregation to the proper size. Therefore, we

have

OCS =

{
CS
Nocs

,when dividing large chunks

CS ×Nocs,when aggregating small chunks,

(1)

where Nocs is the number of chunks of size OCS.

Assume a read request contains K optimized chunks,

according to Equation (1), the read time RT on the slow

dimension(s) can be expressed as

RTslow = K × (CC + Ts +
OCS

BWio
+ Tlocal), (2)

where CC is the communication cost unit, BWi/o is the

I/O bandwidth, Ts is the time unit for each seek operation,

and Tlocal is time to perform memory copy operation for each

chunk. The relationship between OCS, K, Nocs and Tseek

can be described as OCS ∝ 1
K ∝ 1

Nocs
∝ 1

Tseek
. Since we do

not have a numerical relationship between K and Nocs, there

are two scenarios to be considered separately in order to solve

Equation (2).

I/O Bounded: When OCS is too large, the time spent on I/O

outweighs the cost of communication and seek operations. In

this case, the entire read time is dominated by Tio, resulting

in Tseek and Tcc being obviated in the expression. The read

time on the slow dimension RTslow can be represented as:

RTslow =K × (
OCS

BWio
+ Tlocal),

when K × (CC + Ts) <<
K ×OCS

BWio
.

(3)

Seek Bounded: When OCS is too small, i.e., Nocs is large,

because Nocs ∝ Tseek, response time is more dominant by

Tseek, and Tio will not appear in the expression. Therefore,

we have

RTslow =K × (CC + Ts + Tlocal),

when K × (CC + Ts) >>
K ×OCS

BWio
.

(4)

Notice the combination of Equations (3) and (4) can be

visualized using the dark red curved line in Figure 2. The left

part of the curve represents the Equation (3), while the right

side of the curve represents the Equation (4).p q ( )

Number of Chunks 

R
ead

 T
im

e 

1 Nocs
 

RTfast 

I/O bounded 

Lnocs Rnocs NocsNNNNNN11 LnocsL ocs RnocsR

RTslow: equa(4) 

Seek bounded RTfast’ I/O b d d

RR

k b d dSSI/O bounded eek boundeddedddd SSSS

RTslow: equa(3) 

Fig. 2: The Read Time vs. the Number of Chunks

The function’s minimum is achieved at the point of discon-

tinuity, that is, when:

K × (CC + Ts) =
K ×OCS

BWio
(5)

Canceling K out from both sides of the equation, we have

the Optimized Chunks Size:

OCS = BWio × (CC + Ts) (6)

183



Correspondingly, Nocs can be calculated as:

Nocs =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

CS
BWio×(CC+Ts)

,

when dividing large data chunks

BWio×(CC+Ts)
CS ,

when aggregating small data chunks

(7)

It should be noted that the strategy of chunking is to improve

the read performance when accessing the slow dimension(s)

by sacrificing the performance on the fast dimension. This may

cause the read performance on the fast dimension to become

slower than the read performance on the slow dimension! This

relationship is represented in Figure 2 by two orange straight

lines. As mentioned earlier, in view of the general performance

for any access pattern, the fastest total response time may

not occur at the point Nocs but still within the Optimized
Region of L′

nocs and Rnocs”. The performance difference

inside the Optimized Region is within a small range. As this

study is aimed at finding an optimized chunk size, we use

our solution of Nocs as the guidance for data organization. As

presented later, our experimental results demonstrate that this

value provides satisfactory performance.

IV. SMART-IO: TWO-LEVEL SYSTEM-AWARE DATA

ORGANIZATION

To enable the Optimized Chunking model for efficient sci-

entific data analytics, we introduce Smart-IO, a light-weighted

software framework that can dynamically construct the mul-

tidimensional scientific data into an optimized organization.

Figure 3 shows the software architecture of Smart-IO and its

components.
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Fig. 3: Two-Level Data Organization of Smart-IO

From high level, Smart-IO sits between the application

layer and the storage system. It provides a two-level data

organization. The first level is intra-chunk level, which focuses

on building the data chunks into optimized size (OptSize).

OptSize is a system-aware value derived from our Optimized
Chunking model, which can achieve a good balance between

the data transfer efficiency and processing overhead through

specific system parameters. For a data chunk that does not

satisfy the OptSize, it needs to be reconstructed accordingly.

To serve this purpose, two strategies are designed, namely

Hierarchical Spatial Aggregation (HSA) and Dynamic Sub-
chunking (DYS). At the second level, which is the chunk level,

a default SFC (Space Filling Curve)-based reordering is used

to distribute data chunks among storage devices to enable good

data parallelism. Under such organization, a data chunk has

three paths moving towards the storage system, as shown in

Figure 3.

As we can see, a decision window is constructed as

[OptSize
2 , OptSize × 2n−1]. The rational of this window is

provided in section IV-D to determine the path of the data

chunk. Essentially the goal of the HSA and DYS is to construct

data chunks that fall into the window, where the SFC-based

chunk ordering is applied. The rest of this section describes

the design of these components in detail.

A. Hierarchical Spatial Aggregation

Even though the scientific applications normally generate a

gigantic amount of data, it is not rare for an output dataset

contains one or few small variables. A small variable is

turned into even smaller pieces after domain decomposition.

A significant number of seeks and memory operations are

required for common access patterns, correspondingly leading

to limited read performance. Aggregation is a technique that

widely used to converge small pieces of data. However,

simply concatenating small chunks does not solve the problem.

Because the number of disk and memory operations remains

the same for reading. Thus, we design Hierarchical Spatial

Aggregation which aggregates data chunks in a way that their

spatial localities are reserved. For every spatially adjacent

2n processes, an Aggregation Group (AG) is formed. Within

each AG, one process is selected as the aggregator for one

variable. If there is more than one variable needs to be

aggregated, the aggregator process will be selected in a round-

robin fashion within the same group to achieve load balancing.

The aggregator aggregates data from 3 closest neighboring

processes and constructs them into a larger data chunk. If

the aggregated chunk size still does not fall into the decision

window for output, a second level of aggregation will be

performed among the first level aggregators who have hold

all the data in their memories. Figure 4 shows an example of

aggregating one variable from 16 processes in a 2-D space. For

every spatially adjacent 4 processes, an Aggregation Group is

formed. Process 0 is selected as the first aggregator. In our

case, process 0 is chosen as the second level aggregator. After

aggregation, only the aggregators will be writing out the data.

Figure 5 gives an example of data movement and file output

for 3 variables where 2 of them, var2 and var3, qualify for the

HSA. After HSA, only process 0 needs to write out var2 and

process 1 needs to write out var3. With HSA, the amount of

requests and seek operations are reduced by level× 2n times,

where level is the level of HSA performed.
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Fig. 4: Hierarchical Spatial Aggregation
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Fig. 5: Data Movement and File Output

B. Dynamic Subchunking

Chunking has shown its capability to alleviate the dimension
dependency for reading. However, because data points are

laid out sequentially within a chunk, dimension dependency

can be significant again when a data chunk itself is large.

A range query on a slow dimension either has to perform

a large amount of seek operations, or to read in a lot of

redundant data from the start to the end point of request,

as shown in Figure 6(a). Even though the latter option is

more preferable on parallel file system, fundamentally neither

approach is efficient. As OptSize provides the good balance

between the size of data transfer and the processing overhead,

each large data chunk can be decomposed into subchunks with

the size of OptSize to further alleviate dimension dependency.

Subchunking the large data chunk is important for applications

that access data with a high degree of locality.

(a) Original (b) option 1 (c) DYS (d) option 3

Fig. 6: Design of Dynamic Subchunking

However, how to decompose a chunk needs to be investi-

gated. Figure 6(b) to Figure 6(d) provide examples of three

common options for subchunking. The red arrow represents

seek operation. The shaded region represents the amount of

data needs to be read in for a request on slow dimension. The

row major is the fast dimension and column major is the slow

dimension. As we can see, subchunking on the slow dimension

does not benefit reading on that dimension instead of intro-

ducing more seek operations. The amount of data overhead is

determined by the amount of subchunking on the fast dimen-

sion, which also is proportional to the performance degradation

on the fast dimension. However, reading on fast dimension

normally is always efficient compared to the slow dimension(s)

because data is laid out contiguously. For example, reading

120MB data on Jaguar is expected to cost less than half a

second with one process. Assume the read time is proportional

to the number of seeks, which normally can be optimized by

using more readers, subchunking into 9 subchunks along the

fast dimension will increase the read time to 4.5 seconds. This

is still within the tolerable margin, compared to more than

60 seconds for read time on the slow dimension as measured.

Thus, we choose option 2 as subchunking distribution strategy

for our design. Essentially, subchunking will be performed on
all the dimensions except the slowest dimension for an n-
dimensional data chunk. The number of subchunks on each
dimension will be well balanced.

In the following sections, we use a series of numbers X1-
X2...-X(n) to represent the number of subchunks on an n-

dimensional array, where n represents the slowest dimension.

C. Data Organization based on Space Filling Curve

After the Optimized Chunks are constructed, a Hilbert Space

Filling Curve ordering is used to rearrange the placement of

data chunks on storage. The rational of such strategy is based

on our earlier work [30].

D. Optimized Chunk Size Decision Window

For a n-dimensional array, the decision window is con-

structed as [OptSize
2 , OptSize × 2n−1]. The upper bound of

this window is decided by our subchunking strategy. Because

we only partition data on n-1 dimensions as described in IV-B,

and the minimum partition on each dimension is 2. Therefore

given a data chunk, the minimum number of subchunks

is 2n−1, leading to the minimum chunk size qualifies for

subchunking to be OptSize × 2n−1. On the other hand,

the Hierarchical Spatial Aggregation is performed among the

closest neighbors on n dimensions, leading to minimum 2n

chunks to be aggregated. However, we do not want to over

aggregate data chunks that result in a chunk size where

subchunking is required. As the upper bound of the chunk

size is OptSize × 2n−1. So we have the lower bound as
OptSize×2n−1

2n , which is OptSize
2 .

V. EXPERIMENTAL RESULTS

We have implemented Smart-IO within ADIOS, an I/O

middleware from ORNL that has been used by a number of

scientific applications [4], [14], [16], [36], [20] for optimized

I/O performance. By default ADIOS applies chunking for

multidimensional arrays. We evaluate Smart-IO on the Jaguar
supercomputer at ORNL. Jaguar is currently the third fastest

supercomputer in the world [17]. It is equipped with Spider

(an installation of Lustre) for the storage subsystem. In our

experiments, we used Widow 2 partition of Spider which

contains 336 storage targets (OSTs).

The I/O bandwidth on Spider is approximately 250MB/Sec

per OST, the average seek time is 8ms, and the commu-

nication cost is about 1.9ms. Thus, the OCS is calculated
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as 2.5MB using Equation (6). The decision window size is

[1.25MB, 10MB] for Optimized Chunking policy. Based on

the previous practices of the ADIOS team on Jaguar, the

stripe size is set as the size of ADIOS process group. This

practice can maximize data concurrency, reduce false sharing

on the Lustre file system, and reduce the internal and external

interferences [15].

S3D [7] combustion simulation code from Sandia National

Laboratories is used in our experiments. It is a high-fidelity,

massively parallel solver for turbulent reacting flows. S3D

employs a 3-D domain decomposition to parallelize the sim-

ulation space. We set up the output file to contain 4 variables

(Var1, Var2, Var3 and Var4) with different sizes. Table I

shows the data chunk size after the original 3-D domain

decomposition and the exemplary variable sizes with 4,096

(16×16×16 ) processes. The Smart-IO operations performed

on each chunk based on the decision window are also listed.

TABLE I: Test Variables (Elements/Size)
Var1 Var2 Var3 Var4

Chunk 2563/128MB 1283/16MB 643/2MB 323/256KB

Variable 40963/512GB 20483/64GB 10243/8GB 5123/1GB
Operations DYS/SFC DYS/SFC SFC HSA/SFC

The performance evaluation of Smart-IO is mainly focused

on the I/O performance of planar read, which is the most

common yet very challenging access pattern. We measure

the read performance among three types of data organization

strategies: Logically Contiguous (LC), the chunking strategy

of the original ADIOS (ORG), and two-level data organization

of Smart-IO (Smart). A separate test program is created to

evaluate the I/O performance of logically contiguous data

layout. Each test case is run 10 times for every data point.

The median of top five numbers is chosen as the result.

A. Data Generation

One of the design considerations of Smart-IO is to constrain

the performance impact on data generation. As shown in

Table I, Dynamic Subchunking is performed on Var1 and

Var2, while one level of Hierarchical Spatial Aggregation is

performed on Var4. We evaluate the write time of using 4,096

processes to output the entire file. The total output time along

with the time breakdown is shown in Table II.

TABLE II: Write Time Break Down

I/O Subchunking Aggregation Total
ORG 41.49 0 0 41.49
Smart 41.67 0.87 0.13 42.67

As we can see, subchunking and aggregation do not cause

significant delays to the write time. Only 2.8% overhead is

observed to the total write time. We also evaluate the weak

scaling of data generation. As shown in Figure 7, very limited

overhead is introduced in all cases.

B. Planar Read with Dynamic Subchunking

As the decision of Dynamic Subchunking is based on

the value of OCS. Thus, we evaluate the performance of
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Fig. 7: Weak Scaling of Data Generation

subchunking to assess the accuracy of our algorithm. Based

on the OCS value and Equation (6), subchunking is performed

on Var1 and Var2. As both cases exhibit the same behavior,

we only show the test results for Var1 as a representative case.

With Smart-IO, a 7-7-1 (49 total) subchunking is performed

on Var1. To evaluate the accuracy of our model, we then vary

the number of subchunks on each dimension within a range

of [NOCS−2, NOCS+2], that is [5, 9] in our case. This leads

to four other different number of subchunks 25, 36, 64 and

81. A planar read is performed on each of three dimensions.

The number of readers varies from 32 to 512, as to follow the

tradition that application scientists often spend only 10% of

the writers to read. The total read time on three dimensions

are shown in Figure 8. The number of X-axis represents the

number of chunks on k, j, and i dimensions respectively, while

O-7-7-1 represents the value calculated from the OCS model.
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Fig. 8: Dynamic Subchunking Performance; O-7-7-1 (49 sub-

chunks) is our calculated value using the Optimized Chunking

formula. We compare the performance with other variation of

chunking from 25 (5-5-1) to 81 (9-9-1) subchunks

As we can see, O-7-7-1 delivers the best read time on

the slow dimensions in most cases. Increasing or decreasing

1 subchunk on each dimension, that is 6-6-1 and 8-8-1 in

our test case, does not achieve a significant performance

improvement. Further tuning of the number of subchunks

suggests that more performance degradation can be caused

by either data overhead or processing overhead. Even though

O-7-7-1 does not give the best performance for overall read

time in some cases due to the overhead on the fast dimension

jk, it is still able to deliver a close-to-optimal performance. As

described in III, the overall best performance can be achieved

anywhere within the optimized region. Therefore, our formula

is able to provide a satisfactory result for a close-to-optimal
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performance, if not the optimal.

C. Planar Read with Hierarchical Spatial Aggregation
We then examine the performance of Hierarchical Spatial

Aggregation by a given OCS. In our experiment, we focus

on examining the threshold for performing HSA and its

performance impact on planar reads. The calculated lower

bound 1.25MB causes a one-level HSA (represented by 1-

level in Figure 9 for Var4 with an aggregated chunk size of

2MB. To evaluate the performance of HSA, we manually set

the HSA threshold to 4MB and 256KB, which lead to two-

level (2-level) of HSA and no HSA (no-aggr) respectively. The

results are shown in Figure 9.
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Fig. 9: Planar Read Performance of HSA

As we can see, 1-level of HSA provides the best perfor-

mance on the system. The performance of no-aggr suffers

from frequent seek operations while 16MB aggregated chunk

size of 2-level HSA introduces large data overhead. 1.25MB

threshold of Smart-IO achieves a good balance between the

number of seek operations and the amount of redundant

data retrieval on the slow dimension. The read performance

becomes closer with larger number of processes because the

amount of overhead is reduced per process.

D. Read Subvolume
Finally we evaluate the performance of reading a subvolume

from a variable. For these experiments, we use variables Var1

and Var4 as the representative cases. A volume containing

one-eighth of the total data size is read from the center of

the logical simulation area. Each dimension of the subvolume

is half of the global dimension size. Figure 10 shows the

experimental results for variables Var1 and Var4.
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Fig. 10: Subvolume Performance

As shown in Figure 10, Smart-IO and the original ADIOS

achieve comparable performance as the dimension dependency

is less obvious for subvolume read access. The performance

of LC suffers because data within a subvolume after 3-D

domain decomposition is not contiguous, causing significant

performance degradation in both cases.

VI. RELATED WORK

Improving I/O performance on large scale systems has been

an active research topic in HPC. While much efforts have been

focused on write side of issue [34], [35]. Read performance

has gained more attention lately. [20] and [15] evaluated and

discussed the performance of many of the reading patterns for

extreme scale science applications. A number of studies [13],

[8], [36], [32] have explored data staging and caching to either

bring data a priori, or buffer data temporarily, respectively, in

anticipation of performance savings of future data access.

A line of work has studied the efficient data reorganization

for multidimensional data organization. For example, log-

based data organization is exploited for databases [12] and

various file systems [22], [27], [33]. Sarawagi et al. [23] cate-

gorized the strategies for efficient organization of large multi-

dimensional arrays. Chunking has been commonly recognized

as an efficient data layout for multidimensional arrays because

of its capability of alleviating dimension dependency [28].

To further speedup Many multidimensional array declustering

algorithms [19], [21], [5], [6] were proposed to improve

common access patterns of a multidimensional array.

Schlosser et al. [25] explored the chunk placement strategy

at the disk level. [10] and [11] examined different caching

algorithm for chunking. However, the future access pattern

for scientific application varies and may not be known a
priori. In [23], Sarawagi et al. gave an initial guidance of

what is the proper way for chunking. Sawires et al. [24] and

Sorouch et al. [26] proposed multilevel chunking strategies

to further improve the performance for range queries on

a multidimensional array. Otoo et al. [18] mathematically

calculated the optimal size of subchunks from a group of

system parameters. However, the study was based on very

limited resource, and did not reflect the reality on modern

petascale systems.

VII. CONCLUSIONS

The complexity of gigantic scientific data, and the physical

limitation of current storage system pose a grand challenge

on providing an efficient I/O method. This work addresses

the read side of I/O issues and focuses on providing a

system-aware data organization that can effectively utilize

the underlying storage system. To guide the proper data

organization for multidimensional scientific data, we have

developed the Optimized Chunking model to find the best

balance between the data transfer efficiency and the processing

overhead. Our model takes a collection of system parameters

into consideration, so that the data chunk size can adapt

to the underlying system. To further enable such model for

scientific applications, we have designed a light-weighted I/O

framework named Smart-IO. Smart-IO provides two levels

of data organization to address the challenges from a single
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storage target and the overall parallel storage system through

the Optimized Chunking model and a Hilbert Space Filling

Curve ordering. By applying such two-level data organiza-

tion, we significantly alleviate the dimension dependency for

multidimensional scientific data. A much more balanced and

consistent read performance is ensured for scientific post-

processing. We evaluated Smart-IO on Jaguar Supercomputer

at ORNL. Our experimental results show that Smart-IO is able

to achieve a maximum of 72 times and 22 times speedup to

the planar reads of S3D compared to the Logically Contiguous

and chunking data layout, respectively.

In the future, we plan to evaluate the Smart-IO on other

type of file systems such as GPFS. Enabling the Optimized

Chunking-based data indexing and processing techniques will

be investigated too.
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