
J. Parallel Distrib. Comput. 72 (2012) 1481–1492
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

HiCOO: Hierarchical cooperation for scalable communication in Global Address
Space programming models on Cray XT systems

Weikuan Yu a,∗, Xinyu Que a, Vinod Tipparaju b, Jeffrey S. Vetter b

a Department of Computer Science, Auburn University, AL 36849, USA
b Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

a r t i c l e i n f o

Article history:
Received 18 July 2011
Received in revised form
3 January 2012
Accepted 30 January 2012
Available online 6 February 2012

Keywords:
GAS
ARMCI
Multicore
Multinode
Virtual Topology
Contention

a b s t r a c t

Global Address Space (GAS) programming models enable a convenient, shared-memory style addressing
model. Typically this is realized through one-sided operations that can enable asynchronous
communication and data movement. With the size of petascale systems reaching 10,000s of nodes and
100,000s of cores, the underlying runtime systems face critical challenges in (1) scalably managing
resources (such as memory for communication buffers), and (2) gracefully handling unpredictable
communication patterns and any associated contention. For any solution that addresses these
resource scalability challenges, equally important is the need to maintain the performance of GAS
programming models. In this paper, we describe a Hierarchical COOperation (HiCOO) architecture for
scalable communication in GAS programming models. HiCOO formulates a cooperative communication
architecture: with inter-node cooperation amongst multiple nodes (a.k.a multinode) and hierarchical
cooperation among multinodes that are arranged in various virtual topologies. We have implemented
HiCOO for a popular GAS runtime library, Aggregate Remote Memory Copy Interface (ARMCI). By
extensively evaluating different virtual topologies inHiCOO in termsof their impact tomemory scalability,
network contention, and application performance,we identifyMFCGas themost suitable virtual topology.
The resulting HiCOO architecture is able to realize scalable resource management and achieve resilience
to network contention, while at the same time maintaining or enhancing the performance of scientific
applications. In one case, it reduces the total execution time of an NWChem application by 52%.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Several supercomputing sites have deployed systems with ex-
treme amounts of computational power [30]. For example, the
Jaguar Cray XT5 system in the US, the Tianhe-1A system in China,
and the K Computer in Japan can perform to the order of 1015 float-
ing point operations per second (petaflop). While supercomputing
systems grow to unprecedented number of processors (with LLNL
Sequoia [21] system and NCSA BlueWaters [22] system in the near
future), scientific applications continue to face many challenges
such as programming productivity, application scalability, and ef-
ficiency. Global Address Space (GAS) or Partitioned Global Address
Space (PGAS)models are emerging as scalable alternatives because
they have the ability to alleviate programming burden by support-
ing data access to both local and remote memory through a simple
shared-memory addressing model.

∗ Corresponding author.
E-mail addresses:wkyu@auburn.edu, weikuan.yu@gmail.com (W. Yu),

xque@auburn.edu (X. Que), tipparajuv@gmail.com (V. Tipparaju), vetter@ornl.gov
(J.S. Vetter).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.01.022
PGAS languages such as Unified Parallel C (UPC) [31], Co-
Array Fortran (CAF) [10], and X10 [26], and GAS libraries such as
Global Arrays (GA) Toolkit [14] are becoming increasingly popular.
These languages and libraries use the services of an underlying
communication library (which we refer to as the GAS runtime)
for serving their communication needs. They normally convert
data transfers through compilation techniques into one-sided
communication messages on distributed memory architectures.
They have a translation layer that translates memory access to
various one-sided messages, with which programmers no longer
have to orchestrate complicated message passing schemes among
many pairs of parallel processes.

ARMCI (Aggregated Remote Memory Copy Interface) [23] is
a popular runtime that has been used to implement both PGAS
languages (such as Co-Array Fortran) and GAS libraries (such
as GA). While some MPI applications have reached a sustained
petaflop performance and beyond, NWChem [17] computation
chemistry code is a GAS-based application and is one of the
three applications to have crossed the petaflop barrier in terms of
sustained performance [2] on Jaguar. This was made possible by
the porting of Global Arrays toolkit, and more specifically, its GAS
runtime, ARMCI [29].

http://dx.doi.org/10.1016/j.jpdc.2012.01.022
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:wkyu@auburn.edu
mailto:weikuan.yu@gmail.com
mailto:xque@auburn.edu
mailto:tipparajuv@gmail.com
mailto:vetter@ornl.gov
http://dx.doi.org/10.1016/j.jpdc.2012.01.022


1482 W. Yu et al. / J. Parallel Distrib. Comput. 72 (2012) 1481–1492
Unfortunately, running a GAS model and its underlying GAS
runtime in the context of a real scientific application at a
scale similar to Jaguar (200,000 + cores) has brought forth a
few staggering challenges. These challenges are a result of the
characteristics and asynchronous one-sided features of the GAS
runtime. The first is that of resource management, incurred
by unpredictable communication patterns and communication
resources (such as buffers) that need to be allocated to support
it. The second challenge is that of network contention—allowing
any process to access the address space of any other process and
supporting load balancing at the same time create an environment
that is prone to contention.

In this paper, we describe a Hierarchical COOperation (HiCOO)
architecture for scalable GAS programming models. HiCOO for-
mulates a cooperative communication architecture with inter-
node cooperation amongst multiple nodes (a.k.a multinode) and
hierarchical cooperation among multinodes that are arranged in
various virtual topologies.We have implemented HiCOO for a pop-
ular GAS runtime library, Aggregate Remote Memory Copy Inter-
face (ARMCI). It leverages the existing multicore cooperation in
ARMCI and extendswithmultinode cooperation and hierarchical co-
operation.

In multinode cooperation, compute nodes form a multinode
group and work together to handle one-sided communication
requests. Their cooperation is realized through (1) request
forwarding in which one node can intercept a request and forward
it to the target node, and (2) request aggregation in which one
node can aggregate many requests to the same target node. With
multinode cooperation, HiCOO no longer has to create one set of
communication buffers on every node for all possible pairs of peer
processes. Instead, it divides the requirement of communication
buffers amongst themselves in a cooperative manner. When a
request reaches one node in a multinode group, it is forwarded
to the target node, and handled accordingly. Through request
aggregation, multinode cooperation also exploits the presence of
multiple requests to the same target node. It consolidates them
together to reduce network contention, thereby alleviating the
pressure to the underlying physical network.

With hierarchical cooperation arranged in various virtual
topologies, HiCOO attenuates contention and efficiently manages
communication resources in ARMCI (and anyGAS/PGAS runtime in
general) at petascale and beyond. HiCOO represents the allocation
of communication resources as directed graphs. While the original
model can be depicted as a fully connected graph (FCG), two new
scalable virtual topologies, Meshed FCGs (MFCG) and Cubic FCGs
(CFCG), have been exploited for scalable resource management
and contention attenuation in HiCOO. We have systematically
examined the communication characteristics of MFCG, CFCG,
and Hypercube. We have successfully implemented these virtual
topologies in ARMCI on Jaguar, and conducted experiments to
evaluate these topologies using microbenchmarks and real large-
scale applications. We then choose MFCG as the default topology
for HiCOO.

While addressing the challenges of resource scalability and
network contention, equally important is the need to maintain
the performance of GAS programming models. Our experimental
results on a large-scale Cray XT5 system indicate that HiCOO
is able to greatly increase memory scalability by reducing
communication buffers required on each node. In addition, it
improves the resiliency of GAS runtime system to network
contention. Furthermore, HiCOO is able tomaintain or improve the
performance of scientific applications. In one case, it reduces the
total execution time of an NWChem application by 52%.

The rest of the paper is organized as follows. Section 2 discusses
background and motivation. Section 3 describes the architecture
of HiCOO and its two key components: multinode cooperation and
virtual topology. Experimental results are provided in Sections 4
and 5, followed by related work in Section 6. We conclude the
paper in Section 7.
Fig. 1. ARMCI process management.

Fig. 2. ARMCI server’s request buffer management.

2. Background and motivation

2.1. An overview of ARMCI

ARMCI has recently been enabled for Cray XT5 using the native
portals communication library [29]. ARMCI guarantees that its one-
sided operations are fully unilateral, i.e., may complete regardless
of the actions taken by the remote processes. In particular, polling
the application by remote processes (implicitly when making a
library call, or explicitly by calling provided polling interface)
is not required for communication progress. This is realized by
introducing a communication helper thread (a.k.a communication
server) at each compute node. This communication helper thread
is created by the lowest ranked process (master) on a node.
An area of shared memory is allocated for these processes. The
communication server (CS) handles remote one-sided requests
on behalf of all local processes, and exchanges data with them
through the shared memory. Similar to what described earlier,
the communication server pre-allocates buffers and related data
structures for remote requests, in order to support direct one-
sided communication for all operations (particularly for lock,
unlock, accumulate, and noncontiguous data transfer operations)
and allow one process to asynchronously initiate an operation
without the involvement of the targeted process.

2.2. ARMCI process management for one-sided communication

Fig. 1 shows the process management of ARMCI. On two
arbitrary nodes, i and j, each has a set of parallel processes.
All processes have a global rank. Processes on node i are also
denoted as P(i,k),∀k ∈ [0,m − 1]. An area of shared memory
is allocated for these m processes. The lowest ranked process
P(i,0) creates a separate thread as a communication server CSi.
The communication server CSi communicates with all intra-node
processes through the shared memory and handles all incoming
inter-node one-sided communication requests on behalf of them.

Every communication server has to pre-allocate request buffers
for all remote peer processes. Fig. 2 shows the request buffer
management of CSi. Each processes is denoted based on its global
rank Pr ,∀r ∈ [0, n − 1]. A set of request buffers are allocated for
each remote process, e.g. Br for Pr .



W. Yu et al. / J. Parallel Distrib. Comput. 72 (2012) 1481–1492 1483
Fig. 3. A directed graph representing resource allocation for one-sided requests.

Fig. 4. A flat-tree representation of contention among communication requests.

2.3. Critical challenges for GAS runtime

To better formulate the memory resource management of
ARMCI, we define virtual topology as a means to represent the
graph of resource allocation. In the case of memory buffers for
communication, a directed graph can represent the resource
allocation of buffers amongst all nodes. A graph G : (V , E) consists
of a set of vertices V and a set of edges E. A vertex i represents all
processes and the CS on a single node i. A directed edge E(i, j) from
i to j denotes the fact that there is a set of request buffers allocated
on node i for tasks on node j. For an ARMCI application running on
N nodes, this representation of buffer allocation forms a FCG with
N∗(N−1) directed edges. There are (N−1) outgoing edges at each
vertex (node), representingN−1 sets of buffers fromN−1 remote
nodes. Fig. 3 shows the resource allocation graph for a 6-node case.

The directed graph representation of resource allocation in
Fig. 3 reveals two critical challenges that a GAS model (in our case,
Global Arrays) poses to its underlying GAS runtime (in our case,
ARMCI).

ResourceManagement—The first challenge is on the allocation of
resources for communication. Consider an example of the targeted
systems for this work, the Cray XT5. Cray XT5 has Seastar2 + in-
terconnect and uses the connection-less Portals messaging li-
brary as the lowest level communication protocol. To support the
connection-less Portals interface, the Cray Seastar2 + allows for
256 simultaneousmessage streams.When additional streamsneed
to be initiated (or in case of resource exhaustion), the Cray BEER
(Basic End to End Reliability) protocol does the necessary flow con-
trol and handles reliability. This means that the resource allocation
problem for ARMCI communication buffers (where a set of buffers
needs to be allocated for every incoming edge as shown in Fig. 3)
maps to parallel message streams in Portals but at a different scale.
The total request buffer requirement in ARMCI for the FCG would
be roughlyN∗B∗M , whereN is the total number of processes (actu-
ally slightly smaller thanN due to local processes), B the buffer size,
and M the set of buffers per process. With only two 16 kB buffers
per process, it would require 1024 MB per CS to support parallel
programs with 32,000 processes, and 32 GB per CS on an future
system with a million processes.

Contention—Another challenge revealed by the FCG model is
the potential contention that could be caused by many concurrent
requests to a single node. Because all nodes (vertices) are directly
connected, the paths for requests from all nodes to traverse a
virtual FCG and reach one node can be represented as a flat
Fig. 5. Software architecture of hierarchical cooperation.

tree of depth 1. Fig. 4 shows a tree representation of request
traversal paths to Node 0. Such a flat tree is very vulnerable
to transient hot-spot access scenarios, such as when thousands
of processes simultaneously accessing one data element in an
address space. These scenarios create a severe hot-spot contention
problem in addition to the resource allocation problem described
above. Under such scenarios, significant burden is placed on the
physical network, which will be forced to adopt some throttling
mechanisms, typically causing serious slowdown of the entire
communication and jeopardizing the system productivity.

3. Hierarchical COOperation (HiCOO)

Fig. 5 shows the software architecture of Hierarchical COOp-
eration (HiCOO). On a system that supports GAS-enabled sci-
entific applications such as NWChem, ARMCI will support the
required one-sided operations, including data transfer, atomic and
locks, memory management, and synchronization. HiCOO extends
ARMCI with an indirect communication model for transmitting
one-sided requests in these operations. It includes two key com-
ponents: multinode cooperation and virtual topology. These two
components are mutually dependent on each other for their func-
tionalities. Multinode cooperation offers the fundamental commu-
nicationmechanisms for different nodes and their communication
servers to cooperate with each other for request handling. Virtual
topology offers a formal model that defines the geometric rela-
tionship among all the nodes, and accordingly their distance in the
topology hierarchy.

3.1. Multinode cooperation

Multinode cooperation is intended to address the scalability
challenge of communication buffers, as well as the associated
network contention, caused by one-sided messages in ARMCI’s
original direct communication model. It is supported through
two communicationmechanisms: request forwarding and request
aggregation. We then focus on describing these two mechanisms
in more detail.

Multinode cooperation fundamentally addresses the scalability
issues of direct one-sided request messages. Instead of allocating
one set of buffers for all remote processes on each node, multiple
nodes form a cooperative multinode group to allocate buffers.
Communication servers on these nodes divide incoming requests
from outside processes amongst themselves. For example, for a
program with N processes, one communication server roughly
has to preallocate N − 1 sets of communication buffers in



1484 W. Yu et al. / J. Parallel Distrib. Comput. 72 (2012) 1481–1492
(a) Flow of request and reply in ARMCI. (b) Request forwarding and aggregation in multinode cooperation.

Fig. 6. Request handling in ARMCI and multinode cooperation.
the original ARMCI. When a K -node group is formed through
multinode cooperation, one communication server will only
need to preallocate (N − 1)/K sets of communication buffers.
Because of the division of requests among servers, a multinode
group effectively reduces each server’s communication buffer
requirement by the size of the multinode group. The servers in a
multinode group then cooperate and handle one-sided requests
from processes outside the group. When one request reaches any
server in the multinode group, it will be forwarded to the actual
target server.

With multinode cooperation, most of one-sided communica-
tion requests are no longer sent directly to the destination com-
munication server. This brings in another beneficial feature. The
risk of network contention caused by many requests to a single
hot-spot target node is significantly alleviated, because requests
are first buffered by cooperative nodes in a multinode group, and
aggregated if they arrive closely with each other in time. Request
aggregation is described in more detail below.

The original ARMCI has a very simple communication model
to support direct one-sided operations. Fig. 6(a) shows the flow
of request and reply between a pair of processes (Pr and Pt ).
The communication server CST (co-located with Pt ) receives the
request from Pr on behalf of Pt . As the requested operation
completes, CST returns a corresponding reply or acknowledgment
(ack/rep) to Pr . This forms a direct request/reply pair and a
simplified flow control scheme between Pr and CST .

The key of multinode cooperation is its indirect request com-
munication model. This is achieved through request forwarding
and request aggregation. Fig. 6(b) shows the flow of requests and
replies inmultinode cooperation. Three processes (Pr0, Pr1, and Pr2)
are initiating three one-sided requests (R0, R1, and R2) to a target
process (Pt ), through the communication server (CSI ) at the same
intermediate node. CSI receives these requests, and detects that
they are targeting for the same communication server CST . So these
requests are aggregated together into a single request and sent to
CST . Only one acknowledgment is needed for the aggregation re-
quest. CST receives a combined request, and processes the embed-
ded requests separately. In the end, it sends back individual replies
or acknowledgments back to three requesting processes.

Request forwarding can be viewed as a special case of the
same diagram, where requests are not allowed to be aggregated
together. When a request arrives at CSI , it is immediately
forwarded to CST . There must be a separate acknowledgment for
every request message.

3.2. Virtual topology

As discussed in Section 2, the default resource allocation in
ARMCI leads to a serious scalability challenge. More importantly,
its resource dependence relationship (irrespective of any underly-
ing physical network topology) can cause contention when some
processes become hot-spots to the communication requests. A
virtual topology FCG can precisely reflect the state of resource al-
location and contention. It also suggests that alternative virtual
topologies may offer a solution for scalable resource management
and contention attenuation. We first introduce two new virtual
topologies: MFCG and CFCG, and examine various features of these
two, alongwith a canonical topology Hypercube. Thenwe describe
the details of request routing in realizing these topologies.

3.2.1. Comparisons of three virtual topologies
MFCG—The first virtual topology we have introduced is called

Meshed Fully Connected Graphs (MFCG for short). Fig. 7(a) shows
an example of MFCG, in which all nodes are virtualized as vertices
in a X × Y mesh (in this case, X = 3 and Y = 3). Nodes with
the same Y -offset are fully connected. That is to say, they all
dedicate request buffers to each other. The samepolicy is applied to
nodes with the same X-offset. Thus, for an arbitrary X × Y MFCG,
an individual node has (X − 1) outgoing edges on X-dimension
and (Y − 1) outgoing edges on Y -dimension. A request routing
mechanism is provided to exchange requests between a pair of
nodes that are not directly connected. Therefore, using MFCG,
the number of request buffers on each node decreases to O(

√
N),

instead of O(N) in FCG.
MFCG is also beneficial in alleviating contention. Fig. 8(a) shows

request paths for nodes in a 3 × 3 MFCG to reach Node 0. Two
types of request paths are possible: the first type is used by the
nodes that are directly connected to Node 0; and the second type
is used by the nodes that are not directly connected. These paths
form a tree of height 2 and rooted at Node 0. Compared to the
flat tree as shown in Fig. 4, the contention is reduced to O(

√
N).

One may rightfully argue that contention as depicted in Fig. 8(a)
does not reflect the actual contention in the physical network.
The purpose of scalable virtual topology is to offer a convenient
tool that can cope with network contention at a software level,
instead of leaving the contention issues completely to the network
hardware.

CFCG—Another virtual topology we introduced is Cubic Fully
Connected Graphs (CFCG). Fig. 7(b) shows an example of CFCG, in
which all nodes are virtualized as vertices in aX×Y×Z cube (in this
case, X = 3, Y = 3, and Z = 3). The nodes with the same offsets
on two dimensions are fully connected as an FCG. For an arbitrary
X×Y×Z CFCG, an individual node have (X−1) outgoing edges on
X-dimension, (Y −1) outgoing edges on Y -dimension, and (Z−1)
outgoing edges on Z-dimension (to clarify, not all vertices/edges
are shown for CFCG). Using CFCG, the number of request buffers on
one node scales in the order of O(

3√N), instead of O(N) with FCG.
A request may have to be forwarded maximally two times before
reaching its destination.



W. Yu et al. / J. Parallel Distrib. Comput. 72 (2012) 1481–1492 1485
(a) Meshed FCGs. (b) Cubic FCGs. (c) Hypercube.

Fig. 7. Three virtual topologies. (For clarity, not all vertices/edges are shown in CFCG.)
Fig. 8(b) shows the tree representation of request paths for
nodes in a 3 × 3 × 3 CFCG to reach Node 0. These directed paths
form a trinomial tree of height 3 and rooted at Node 0. For a system
with N nodes, the tree of request paths rooted at an arbitrary node
will be k-nomial tree where k = 3√N . Compared to the flat tree in
Fig. 4, network contention is then reduced by an order of O(

3√N),
at the expense of up to 2 forwarding steps to deliver a request.

Hypercube—As discussed above, CFCG is more scalable in
resource allocation than MFCG and FCG, despite more steps for
request transmission. Onemaywonder if a virtual topology of even
higher dimension could be aworthy solution. Sowe investigate the
third virtual topology, Hypercube. Fig. 7(c) shows 16 nodes that
are connected as a Hypercube. Each node is directly connected to
log2 N nodes (4 in this case). Fig. 8(c) provides a tree representation
of request paths from all nodes to Node 0. For N nodes, it is
essentially a binomial tree of depth log2 N . Using Hypercube, the
number of request buffers required on one node scales in the
order of O(log2 N). Two nodes may be separated by up to log2 N
dimensions apart. Therefore, up to (log2 N − 1) transmissions are
needed for a request to reach its destination. On the other hand,
at each depth of a request path tree, contention is reduced by an
order of O(log2 N).

3.2.2. Request routing in virtual topologies
We have implemented MFCG, CFCG, and Hypercube in ARMCI

on Jaguar. The support for request routing is the key to realizing
these virtual topologies. Communication servers on intermediate
nodes are used to transmit a request from the original process to
the target server. Upon the arrival of a request, the target sends a
response (or acknowledgment) directly to the original process. If
an intermediate server (or the target) detects that the request is
routed from an upstream server, it sends an acknowledgment to
the upstream server. To support multidimensional topologies such
as MFCG, CFCG, and Hypercube, our implementation also allows a
request to be transmitted multiple steps.

For correct request routing, the actual implementation of
virtual topologies requires proper handling of two important
issues: (a) how to determine the order of routing; and (b) how
to enable virtual topologies, MFCG and CFCG, when the number
of nodes can only be configured as partially-populated topologies
(mesh or cube), e.g., a prime number that cannot be evenly divided.
As mentioned earlier, we include Hypercube only to examine its
tradeoff in resource management and contention, compared to
MFCG and CFCG. For the investigative purpose, we only support
Hypercube when the number of nodes is a power of 2.

Lowest-Dimension-First Routing—Multiple communication steps
are needed for an ARMCI request to properly reach its destination,
in multi-dimensional virtual topologies such as MFCG, CFCG and
Hypercube. Each step corresponds to a relationship in which an
upstream node is dependent on the availability of request buffer
at the downstream node. If the routing of requests were to happen
arbitrarily, it would create cyclic dependences and lead to dead-
locks in a multi-dimensional virtual topology.
Algorithm 1 Lowest Dimension First Routing
1: {Dimension: k}
2: {Current Node: S = (s0, s1, ..., sk−1)}
3: {Destination Node: T = (t0, t1, ..., tk−1)}
4: D← S {Initialize D as the next node}
5: i← 0
6: while (D ≠ T ) do
7: if si ≠ ti then
8: D← (s0, s1, ..., si−1, ti, si+1, ..., sk−1)
9: {Forward the request to the next node, D}

10: end if
11: i← i+ 1
12: end while

We develop a lowest-dimension-first (LDF) protocol to ensure
deadlock-free routing in virtual topologies. Algorithm 1 illustrates
the selection of next node for request routing in LDF. For two
nodes S = (s0, s1, . . . , sk−1) and T = (t0, t1, . . . , tk−1) on a
virtual topologywith k dimensions, LDF always chooses the lowest
dimension i on which S and T differ. A request is then forwarded
to the next destination D, which is a number derived by replacing
si of S with ti. Since the order of routing is established in an
monotonic dimension order, breaking any cyclic dependence.
Therefore LDF is deadlock-free. When the number of nodes allows
virtual topologies to be fully populated as meshes, cubes, or
Hypercubes, LDF as shown in Algorithm 1 works perfectly.

Routing on Virtual Topologieswith AnyNumber of Nodes—Routing
in a virtual topology is similar to routing in a physical interconnect.
In the case of a fully populated two-dimensional MFCG, LDF can be
reduced to the classic turn model [13] that was designed for 2-D
meshes. However, the key difference is that a virtual topology is
very dynamic and frequently partially populated. For this reason,
each node frequently changes its position from one topology to
another. It is important that deadlock-free routing be enabled on
virtual topologies (MFCG and CFCG) with any number of nodes.

We achieve that by strictly ordering all nodes in a lowest
dimension first manner. For a virtual topology G with dimension
k, the lower order dimensions are first populated with available
nodes. Only the highest dimension, k− 1, is allowed to be partially
populated. Assume that a virtual topology G has M as its highest
ranked node, where M = (M0,M1, . . . ,Mk−1). With all nodes
ordered this way, we extend the LDF algorithm slightly. It allows
routing only when the next destination D is a number smaller than
or equal to M . An extra condition, ‘‘if (D ≤ M)’’, is introduced to
Algorithm 1 before a request is forwarded. With this extension,
if routing paths of a set of requests did not violate this extra
condition, there would not be a deadlock because their routing
paths are determined by Algorithm 1. For a possible deadlock to
occur, one request must have violated this condition once in its
path. This is not possible because the nodes are strictly ordered and
no node can have a rank higher thanM (by definition). Therefore, it
prevents any circle in request routing. The listing of the extended
LDF algorithm is not included here, due to the simplicity of this
addition.



1486 W. Yu et al. / J. Parallel Distrib. Comput. 72 (2012) 1481–1492
(a) Tree for MFCG. (b) Trinomial (or K -nomial) tree for CFCG. (c) Binomial tree for Hypercube.

Fig. 8. Tree representations of request paths in virtual topologies.
Fig. 9. Scalability virtual topologies for memory management.

4. Analysis of memory management and contention
attenuation

In this section, we describe our experiments that evaluate the
impact of different virtual topologies onmemorymanagement and
contention attenuation. Performance results from these topologies
are compared to the original ARMCI that uses the FCG pattern for
request buffer allocation.

4.1. Scalable memory management

Jaguar runs the Compute Node Linux operating system. On each
node, the/proc file system reports the memory footprint of all
processes as the resident working set size (VmRSS). We create
an ARMCI program that reports VmRSS from all processes. This
number represents the total memory consumed by an ARMCI
process at runtime before any additional application-levelmemory
consumption.

We measure the impact of virtual topologies on memory
resources. Our experiments are conducted with 12 processes per
node. All processes start with a memory consumption of about
612 MB. However, due to the allocation of request buffers by
the internal CS, a master process requires more memory for an
increasing number of remote processes. The size of each buffer in
CS is 16 kB; and the number of buffers per process is 4. Fig. 9 shows
the memory consumption of master processes, using different
virtual topologies. As expected, the memory requirement of the
original ARMCI increases linearly. On 12,288 processes, the original
has a memory consumption of 1424 MB, an increment of 812 MB,
on top of 612 MB that is needed to run a few processes. The other
three virtual topologies provide much better scalability in terms
of memory resources. Compared to the original, HiCOO-MFCG,
HiCOO-CFCG, and HiCOO-Hypercube cut down the increment in
memory consumption significantly, by 7.5, 16.6, and 45 times,
respectively.
4.2. Contention attenuation

Virtual topologies are also designed to address the other critical
challenge, hot-spot contention in the GAS runtime. We evaluate
contention for all one-sided ARMCI operations, and observe
that virtual topologies are beneficial to the contention caused
by lock, accumulate, noncontiguous data transfer, and atomic
operations. Herein presented are results for two representative
operations, noncontiguous vector data transfer and atomic Fetch-
&-Add operations.

4.2.1. Description of contention experiments
We define hot-spot contention as the percentage of processes

in a program that are contending for communication to a single
process, or access to a single data element. It is understood that
such contention can arise from sources outside of a program,
e.g., from other programs or system services. But, for practical
purposes, we consider those beyond the scope of this study, and
focus on hot-spot contention within a program.

We use programs with 1024 processes for contention assess-
ment, 4 processes per node across 256 nodes. These numbers
provide a reasonable balance between the need of many nodes to
exhibit contention and the need of clarity in visualizing all data
points of the results. In these programs, each process (except those
on the same node with Rank 0), prepares its data as needed (vec-
tored or strided data in the case of noncontiguous data transfer op-
erations), and then performs one or more one-sided operations to
Rank 0. This is then repeated for 20 iterations. The average time
for these iterations is taken as the time to complete an operation
between the respective process and Rank 0.

Measurements are collected under three different contention
scenarios. In the first scenario, each process sequentially performs
its own one-sided operations to Rank 0, repeats for 20 iterations,
and records the time. At the same time, all other processes are
idle in a barrier. This effectively measures the performance of
one-sided operations between Rank 0 and all other processes,
without any contention. In the second scenario, each process
sequentially performs the same number of operations to Rank 0,
for the same number of iterations. However, in the meantime, one
in every nine processes performs the same operations to Rank
0, while the remaining processes are idle in a barrier. Therefore
this corresponds to 11% contention. The third scenario is very
similar to the second one, except that one in every five processes
concurrently invokes one-sided operations to Rank 0. This then
corresponds to 20% contention.

4.2.2. Noncontiguous data transfer operations
We conduct experiments to measure the performance of vec-

tored put and get operations as representatives of noncontiguous
data transfer functions. Fig. 10 shows the time of vectored put
operations from all remote processes to Rank 0. Comparisons are
provided among varying levels of contention (no contention, 11%
contention, and 20% contention).



W. Yu et al. / J. Parallel Distrib. Comput. 72 (2012) 1481–1492 1487
(a) Original-ARMCI & HiCOO-MFCG with no
contention.

(b) Original-ARMCI & HiCOO-MFCG with 11%
contention.

(c) Original-ARMCI & HiCOO-MFCG with 20%
contention.

(d) HiCOO-CFCG & HiCOO-Hypercube with no
contention.

(e) HiCOO-CFCG with 11% contention. (f) HiCOO-CFCG with 20% contention.

Fig. 10. Vectored data transfer operations under different contention.
Fig. 10(a) and (d) show the comparisons under no contention.
Several behaviors are revealed by this figure. First, the use of
MFCG, CFCG and Hypercube increases the time to complete
noncontiguous data transfer operations between Rank 0 and
other processes. Second, even though all processes are one step
away from Rank 0 in the original ARMCI, the time to complete
noncontiguous data transfers gradually increases with process
rank. This suggests that the distance between a processes and
Rank 0 in the underlying physical topology would play a role and
contribute to the increased performance. This increment of time is
magnified by the use of MFCG, CFCG and Hypercube. In particular,
the results from HiCOO-Hypercube indicate that using a topology
with very high dimensions for minimal memory consumption
does not provide a good tradeoff to the performance. Third,
with MFCG, the performance numbers from all processes form
several distinct curves, representing differences in their (virtual-)
topological relationship with respect to Rank 0. The same can
be observed for HiCOO-CFCG and HiCOO-Hypercube as shown in
Fig. 10(d).

Fig. 10(b), (c), (e), and (f) show performance comparisons with
increased contention. HiCOO-Hypercube is not included in (e) and
(f) because it takes too long to get a complete set of numbers.
While contention increases the time to complete noncontiguous
data transfer operations for all cases, it is evident that all virtual
topologies exhibit contention resilience. While the performance
of vectored put operations is degraded by nearly two orders of
magnitude due to contention in the original ARMCI. With 20%
contention, it becomes faster to complete noncontiguous data
transfer operations for nearly all processes in the case of HiCOO-
MFCG, compared to the original ARMCI. Comparing Fig. 10(b) and
(c) it is interesting to note that HiCOO-MFCG also reduces the
variations among all processes at higher hot-spot contention. The
operation time for the group of processes in the middle has been
brought down. This counterintuitive observation is because of the
execution behavior of ARMCI communication server. When more
processes are actively forwarding requests, they stay in the polling
mode for handling requests and therefore have better response
time in average. In summary, these results demonstrate that virtual
topologies, such as MFCG and CFCG, can attenuate the pressure of
many contending noncontiguous data transfer operations, and lead
to graceful resilience to contention.

4.2.3. Atomic fetch-&-add operations
We measure the performance of fetch-&-add as a represen-

tative of atomic operations. Fig. 11 shows the time for fetch-&-
add operations from all remote processes to Rank 0. Comparisons
are provided among different virtual topologies, and among vary-
ing levels of contention (no contention, 11% contention, and 20%
contention).

Fig. 11(a) and (d) show the comparisons under no contention.
Similar observations can bemade for atomic operations as revealed
by Fig. 10(a) and (d). To be brief, these include (1) the use of
MFCG, CFCG and Hypercube topologies increases the time to finish
atomic operations under no contention; (2) the time of an atomic
operation increases with a higher ranked process, suggesting a
correspondence to the distance between the process and Rank
0 in the underlying physical topology; and (3) the performance
numbers of atomic operations from all processes form several
distinct groups, representing their relationship in the virtual
topologies.

Fig. 11(b), (c), (e), and (f) show comparisons with increased
contention. Again, Hypercubewas not included in (e) and (f).While
contention increases the time to complete atomic operations for all
cases, it is also evident that all virtual topologies exhibit contention
resilience. With 20% contention, it becomes faster to complete
atomic operations for nearly all processes using HiCOO-MFCG than
the original ARMCI. Under the same level of contention, even with
HiCOO-CFCG, the time for fetch-&-add is shorter for a majority of
processes compared to the same with the original ARMCI. These
results again demonstrate that virtual topologies, such as HiCOO-
MFCG and HiCOO-CFCG, can greatly attenuate the pressure of
contending atomic operations.

Furthermore, we investigate the benefits of HiCOO-MFCG for
fetch-&-add operations under 100% contention, i.e., all processes
concurrently performs atomic fetch-&-add operations to Rank
0. In this test, within two consecutive barrier (and ARMCI
AllFence) operations, all process concurrently invoke 10 fetch-
&-add operations, record the time, and measure the average



1488 W. Yu et al. / J. Parallel Distrib. Comput. 72 (2012) 1481–1492
(a) Original-ARMCI & HiCOO-MFCG with no
contention.

(b) Original-ARMCI & HiCOO-MFCG with 11%
contention.

(c) Original-ARMCI & HiCOO-MFCG with 20%
contention.

(d) HiCOO-CFCG & HiCOO-Hypercube with no
contention.

(e) HiCOO-CFCG with 11% contention. (f) HiCOO-CFCG with 20% contention.

Fig. 11. Fetch-&-add operations under different contention.
(a) Original-ARMCI. (b) HiCOO-MFCG.

Fig. 12. Fetch-&-add operations under 100% contention.
for these 10 operations on their own. This is repeated for 100
iterations. Fig. 12 shows the performance comparison between the
original ARMCI and HiCOO-MFCG, with 1024 processes and 100
iterations. With 100% contention, it takes 8000 + µs in average
for a process to complete an atomic operation when using the
original ARMCI. In contrast, when using HiCOO-MFCG, contention
is dramatically reduced. Many processes finish within 2000 µs;
nearly all processes complete in 6000 µs. This proves that the
virtual topology HiCOO-MFCG is especially useful in attenuating
the impacts of heavy contention.

5. Performance of communication operations and scientific
applications

We have shown that virtual topologies can be very beneficial
to reduce memory footprint and attenuate contention that would
occur to hot-spot processes. It is important to find out how
HiCOOwill impact theARMCI communication operations andwhat
benefits they have to real applications. In the rest of experiments,
we focus on HiCOO using the default topology MFCG.
5.1. ARMCI one-sided operations

ARMCI offers a rich set of one-sided communication primitives
for GAS programming models. These include (1) contiguous and
noncontiguous data transfer operations, (2) atomic operations,
(3) locks, and (4) synchronization operations. While multinode
cooperation is intended to address challenges faced by direct one-
sided communication in the original ARMCI, it is important to
measure the performance impact of multinode cooperation to
these one-sided operations.

5.1.1. Contiguous data transfer operations
ARMCI supports contiguous data transfer operations, including

direct put and direct get. On the Cray XT5, these direct put/get
operations transfer contiguous data directly between source and
destination memory, using native portals put and get operations
on the Seastar2 + network. No one-sided requests are sent for
these operations, and communication servers are not involved
for these operations. We measure the performance of direct
put/get operations across 16 nodes, each with 12 processes. These



W. Yu et al. / J. Parallel Distrib. Comput. 72 (2012) 1481–1492 1489
(a) ARMCI_Put bandwidth. (b) ARMCI_Put latency.

Fig. 13. ARMCI_Put latency and bandwidth.
(a) ARMCI_PutS. (b) ARMCI_GetS.

Fig. 14. Bandwidth of noncontiguous operations.
nodes form four groups of cooperative nodes. Our latency and
bandwidth tests are different from the conventional ping-pong
latency and stream-based bandwidth tests. 16 nodes are used
to mimic the presence of message forwarding and compare the
performance between the original ARMCI and HiCOO. Since there
are 12processes on eachnode, the latency andbandwidthnumbers
are measured when each node (and its network card) is loaded
with communication generated by 12 processes. Fig. 13 shows
the latency and bandwidth performance comparisons between the
original ARMCI and HiCOO.

It is clear that our design of multinode cooperation has very
little impact on the performance of contiguous data transfer
operations. Note that, for succinctness, we only show the
performance for direct put operations. The comparison is the same
for direct get operations.

5.1.2. Noncontiguous data transfer operations
Multidimensional data arrays are commonly adopted by sci-

entific applications for numerical analysis and matrix calcula-
tion. When such an array is decomposed into many parallel
processes, each process typically owns a noncontiguous set of data
elements. ARMCI supports the movement of such noncontiguous
data through vectored I/O and strided I/O. The former is a general-
ized I/O format that describes noncontiguous data segmentswith a
series of< addr, length> pairs; the latter is an optimization when
segments are of the same length and distance from each other.

We have measured the performance of ARMCI strided data
transfer. Our experiments are conducted on sixteen nodes each
with 11 processes. Processes on the first node are paired with, and
initiate one-sided ARMCI_PutS (and ARMCI_GetS) operations to,
their counterparts on the last node. Fig. 14 shows the performance
results of ARMCI for short messages, with and without multinode
cooperation. ARMCI_PutS requests are usually large and contain
data inside. So they cannot be merged. Large requests with data
need to be forwarded to the target server separately as the size
of aggregation buffer is limited. On the other hand, ARMCI_GetS
requests have to retrieve data separately. This leads to very low
bandwidth for ARMCI_GetS operations in general. But there is little
difference between the original ARMCI and HiCOO, These results
indicate that, while the performance of noncontiguous data put
operations can be affected by the additional overhead of request
forwarding, HiCOO is effective in minimizing such overhead with
its request aggregation and hierarchical cooperation mechanisms,
resulting in close performance to the original ARMCI.

5.1.3. Atomic and synchronization operations
ARMCI supports a number of atomic and synchronization

operations for GAS models. These include lock, accumulate, and
fetch-&-add. The lock operation acquires a specified mutex on the
target process on behalf of an initiating process. The accumulate
operation atomically updates one or more variables on the target
process. The fetch-&-add operation retrieves an integer variable at
a remote location, and at the same time atomically updates the
value by an integer.

We measure the performance of these operations across 16
nodes. These nodes are grouped into four sets of cooperative nodes.
All processes are paired with each other for atomic and syn-
chronization operations. In order to evaluate the performance of
multinode cooperation, we tested different numbers of processes
(4, 8, and 11) per node. For example, a process on Node 0 initiates
lock, accumulate, or fetch-&-add operations 1000 times (after the
first 50 warm-up operations) to its counterpart on Node 15. The
average time is calculated as the time for an operation.

Fig. 15 shows the performance results for all three operations.
HiCOO achieves performance comparable to the original ARMCI
for atomic lock operations, but it causes performance degradation
for the accumulate and fetch-&-add operations. This performance
difference is due to the underlying communication characteristics
of these operations. Atomic lock operations do not transmit
actual data between processes, but accumulate and fetch-&-add
operations do.



1490 W. Yu et al. / J. Parallel Distrib. Comput. 72 (2012) 1481–1492
(a) ARMCI_Lock. (b) ARMCI_Accumulate. (c) ARMCI_Fetch & add.

Fig. 15. Performance of atomic and synchronization operations.
Fig. 16. The performance of NAS LU.

Taken together, our microbenchmark evaluation results indi-
cate that while HiCOO strives to minimize memory consumption,
its indirect one-sided communication through multinode cooper-
ation causes performance overhead to atomic and synchronization
operations. Care must be taken to achieve a good tradeoff between
thememory consumption and the cost of atomic and synchroniza-
tion operations for applications that frequently use such opera-
tions.

5.2. NAS LU application

The LU application in the NAS parallel benchmark suite [3]
has been ported to the ARMCI runtime. It can scale to hundreds
or a couple of thousand processes. We evaluate the performance
impact of HiCOO to LU at this scale. Fig. 16 shows the performance
of LU using HiCOO on a varying number of processes. As shown
in the figure, HiCOO performs better or similar to the original
ARMCI. At a lower number of processes, the benefit of HiCOO
is slightly higher. Two observations can be made about these
results. First, the LU application does not suffer much from hot-
spot contention. Second, the reduction in memory footprint does
not directly lead to the reduction in execution time, which is
quite reasonable. On the other hand, these results are encouraging
because they demonstrate that, despite the additional forwarding
steps on ARMCI operations such as non-contiguous data transfer
and atomic accumulation, HiCOO still brings comparable or better
performance for applications such as LU.

5.3. A large-scale application: NWChem

We evaluate HiCOO using two electronic structure methods
in a large-scale application NWChem [17]: the SiOSi3 method
for Density Functional Theory (DFT) and the water model of
Coupled Cluster (CC) in its CCSD(T) incarnation. Fig. 17 shows the
performance of NWChem with the original ARMCI and HiCOO.
The performance of SiOSi3 is shown in Fig. 17(a). HiCOO clearly
performs better than the original ARMCI. HiCOO reduces the total
execution timeby asmuch as 52%. These results suggest that SiOSi3
is very prone to hot-spot contention, in which case HiCOO is very
effective in mitigating the impact of contention.

Fig. 17(b) shows the performance of CCSD(T)watermodelwhen
using the original ARMCI and HiCOO. ARMCI generally performs
better than HiCOO, except in one case at 10,000 cores. This result
suggests that the total execution time for thewatermodel does not
benefit from HiCOO. The primary benefit of HiCOO is the ability
to significantly reduce memory consumption of ARMCI low-level
runtime library (as detailed in Section 4.1). This spares muchmore
memory to be used by applications and help them achieve better
scaling.

These application evaluation results demonstrate that HiCOO
can hit the best balance of memory consumption, the need
of request forwarding, and contention attenuation for the GAS
runtime.Withmuch reducedmemory consumption at the runtime
level, HiCOO in general performs comparably to the original
ARMCI. Particularly when an application is experiencing hot-spot
contention, HiCOO can mitigate the impact of contention and lead
to significantly reduced total execution time.

6. Related work

The scalability of communication runtime involves a number of
complicated design issues, including process management, selec-
tion of connection models, data communication, communication
buffer management, as well as flow control. The design and im-
plementation of MPI on Portals was first described by Brightwell
et al. [6]. This has been one of the reference implementations
for other programming models on top of Portals, in which com-
munication protocols for different size messages are elaborated.
Huang et al. [15] studied the scalability of communication for MPI
on multicore clusters. Sun et al. [27] re-evaluated the impact of
Amdahl’s law in the multicore era. Our work investigates the scal-
ability of runtime communication throughmultinode cooperation.
Bonachea et al. [5] recently ported GASNet to the Portals commu-
nication library on the Cray XT platform to support UPC and other
GASmodels. Generic issues such as enabling communication oper-
ations, handling requests/replies, and flow control were discussed.
Tipparaju et al. [29] designed and implemented a scalable ARMCI
communication library and demonstrated its strength in enabling
GA and a real world scientific application, NWChem.

Topologies for communication networks have been well docu-
mented in the textbooks [19,12]. Exploiting scalable topologies for
high performance communication networks has also been stud-
ied extensively in the literature, such as those in [8,24,25]. Our
research represents an innovative use of classic topologies. By im-
posing mesh and cube topologies on top of small fully connected
graphs (FCG), we introduced meshed FCGs (MFCG) and cubic FCGs
(CFCG) to formalize challenging issues faced by today’s petascale
programming models.

Numerous algorithms were investigated to support deadlock-
free message routing in interconnection networks. In their clas-
sic paper, Dally et al. [9] proposed deadlock-free message routing
algorithms, such as dimension-order routing, for multiprocessor
interconnection networks using the concept of virtual channels.
Duato et al. [11] investigated deadlock-free adaptive multicast
routing algorithms on worm-hole networks using a path-based
routing model. Lin and Lionel [20] compared different multicast



W. Yu et al. / J. Parallel Distrib. Comput. 72 (2012) 1481–1492 1491
(a) SiOSi3. (b) CCSD(T) (H2O)11 .

Fig. 17. NWChem execution time.
worm-hole routing algorithms, such as dual-path routing and
multi-path routing, for multicomputers with 2D-mesh and Hyper-
cube topologies. Our work builds on top of the dimension-order
routing algorithm, and proposes the deadlock-free LDF (lowest di-
mension first) algorithm. LDF only needs to forward an ARMCI re-
quest once per dimension in MFCG, CFCG, and Hypercube. In addi-
tion, it allows partially populated MFCG and CFCG on any number
of network nodes.

Many efforts studied the scalability of resource management
for other contemporary programming models. Sur et al. [28]
examined the memory scalability of various MPI implementations
on the InfiniBand network. Koop et al. [18] exploited the use of
message coalescing to reduce thememory requirements forMPI on
InfiniBand clusters. Chen et al. [7] optimized the communication
for UPC applications through a combination of techniques
including redundancy elimination, split-phase communication,
and communication coalescing. Our work differs from these
earlier studies by introducing new virtual topologies to reveal
the challenges of resource management and contention in the
ARMCI Global Address Space runtime system. To the best of our
knowledge, this is the first in literature to exploit the concept
of virtual topology for systematic investigation of scalability and
contention issues in Global Address Space programming models.

7. Conclusion

In conclusion, we have described HiCOO as a hierarchical Coop-
eration architecture for scalable communication in GAS program-
ming models. HiCOO formulates a cooperative communication
architecture with inter-node cooperation amongst multiple nodes
(a.k.a multinode) and hierarchical cooperation among multinodes
that are arranged in different virtual topologies. With HiCOO,
we have systematically studied the resource management and
contention issues in a GAS run-time system, ARMCI, on the petas-
cale Jaguar Cray XT5 system at ORNL. We use several different vir-
tual topologies to represent the management of communication
resources in ARMCI as directed graphs, and substantiate it with
two new virtual topologies, MFCG and CFCG, as well as a canon-
ical topology Hypercube. Our extensive evaluation of all three vir-
tual topologies demonstrates that MFCG is the best choice for
HiCOO in accomplishing scalable memory usage and contention
attenuation. While addressing the challenges of resource scala-
bility and network contention, equally important is the need to
maintain the performance of GAS programming models. We show
that HiCOO improves ARMCI’s resilience to network contention
caused by transient and irregular communication patterns. At the
same time, it canmaintain or improve the performance of scientific
applications.
In the future, we look forward to further optimization of the
GA model and ARMCI on petascale systems. We are investigating
large-scale applications that can leverage more memory at the
application level for better total execution time. We intend to
explore the benefits of virtual topologies to other GAS runtime
systems such as GASNet [4]. We also plan to study the applicability
of virtual topologies on other petascale platforms with different
physical topologies, e.g., BlueGene/P [16,1]. Furthermore, we plan
to investigate the benefits of virtual topologies in the context of
PGAS languages such as UPC [31] and Co-Array Fortran [10].

Acknowledgments

This work was funded in part by NSF award CNS-1059376,
UT-Battelle grant (UT-B-4000087151), and National Center for
Computational Sciences. This research used resources of the
National Center for Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science of the US
Department of Energy under Contract No. DE-AC05-00OR22725.

References

[1] S. Alam, R. Barrett, M. Bast, M.R. Fahey, J. Kuehn, C. McCurdy, J. Rogers, P. Roth,
R. Sankaran, J.S. Vetter, P. Worley, W. Yu, Early evaluation of ibm bluegene/p,
in: SC’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
IEEE Press, Piscataway, NJ, USA, 2008, doi:10.1145/1413370.1413394.

[2] E. Apra, R.J. Harrison, W. de Jong, A. Rendell, S. Tipparaju, V. Xantheas,
R. Olsen, Liquid water: obtaining the right answer for the right reasons,
in: Supercomputing, 2009. SC ’09. Proceedings of the ACM/IEEE SC 2009
Conference, 2009.

[3] D.H. Bailey, L. Dagum, E. Barszcz, H.D. Simon, Nas parallel benchmark results,
in: Supercomputing ’92: Proceedings of the 1992 ACM/IEEE Conference on
Supercomputing, IEEE Computer Society Press, Los Alamitos, CA, USA, 1992,
pp. 386–393.

[4] D. Bonachea, C. Bell, P. Hargrove, M.Welcome, GASNet 2: An Alternative High-
Performance Communication Interface, November 2004.

[5] D. Bonachea, P. Hargrove,W.M., K. Yelick, Porting gasnet to portals: partitioned
global address space (Pgas) language support for the cray XT, in: CUG’09: Cray
User Group Meeting, 2009.

[6] R. Brightwell, R. Riesen, A.B. Maccabe, Design, implementation, and perfor-
mance of mpi on portals 3.0, Int. J. High Perform. Comput. Appl. 17 (1) (2003)
7–19.

[7] W.-Y. Chen, C. Iancu, K. Yelick, Communication optimizations for fine-
grained upc applications, in: PACT ’05: Proceedings of the 14th In-
ternational Conference on Parallel Architectures and Compilation Tech-
niques, IEEE Computer Society, Washington, DC, USA, 2005, pp. 267–278.
doi:http://dx.doi.org/10.1109/PACT.2005.13.

[8] W.J. Dally, Performance analysis of k-ary n-cube interconnection networks,
IEEE Trans. Comput. 39 (6) (1990) 775–785.
doi:http://dx.doi.org/10.1109/12.53599.

[9] W.J. Dally, C.L. Seitz, Deadlock-free message routing in multiprocessor
interconnection networks, IEEE Trans. Comput. 36 (5) (1987) 547–553.
doi:http://dx.doi.org/10.1109/TC.1987.1676939.

[10] Y. Dotsenko, C. Coarfa, J. Mellor-Crummey, A multi-platform co-array fortran
compiler, 2004, pp. 29–40. doi:10.1109/PACT.2004.1342539.

[11] J. Duato, A theory of deadlock-free adaptive multicast routing in worm-
hole networks, IEEE Trans. Parallel Distrib. Syst. 6 (9) (1995) 976–987.
doi:http://dx.doi.org/10.1109/71.466634.

http://dx.doi.org/doi:10.1145/1413370.1413394
http://dx.doi.org/http://dx.doi.org/10.1109/PACT.2005.13
http://dx.doi.org/http://dx.doi.org/10.1109/12.53599
http://dx.doi.org/http://dx.doi.org/10.1109/TC.1987.1676939
http://dx.doi.org/doi:10.1109/PACT.2004.1342539
http://dx.doi.org/http://dx.doi.org/10.1109/71.466634


1492 W. Yu et al. / J. Parallel Distrib. Comput. 72 (2012) 1481–1492
[12] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks: An Engineering
Approach, The IEEE Computer Society Press, 1997.

[13] C.J. Glass, L.M. Ni, The turn model for adaptive routing, SIGARCH Comput.
Archit. News 20 (2) (1992) 278–287.
doi:http://doi.acm.org/10.1145/146628.140384.

[14] Global arrays toolkit. http://www.emsl.pnl.gov/docs/global.
[15] W. Huang, M.J. Koop, D.K. Panda, Efficient one-copy MPI shared memory

communication in virtual machines, in: Proceedings of the International
Conference on Cluster Computing, 2008.

[16] IBM BG/P team, overview of the IBM blue gene/P project, IBM J. Res. Dev. 52
(1–2) (2008) 199–220.

[17] R.A. Kendall, E. Aprà, D.E. Bernholdt, E.J. Bylaska, M. Dupuis, G.I. Fann,
R.J. Harrison, J. Ju, J.A. Nichols, J. Nieplocha, T.P. Straatsma, T.L. Windus,
A.T. Wong, High performance computational chemistry: an overview
of NWChem a distributed parallel application, Comput. Phys. Comm.
128 (1–2) (2000) 260–283. doi:10.1016/S0010-4655(00)00065-5. URL:
http://dx.doi.org/10.1016/S0010-4655(00)00065-5.

[18] M.J. Koop, T. Jones, D.K. Panda, Reducing connection memory requirements of
mpi for infiniband clusters: a message coalescing approach, in: CCGRID’07:
Proceedings of the Seventh IEEE International Symposium on Cluster
Computing and the Grid, IEEE Computer Society, Washington, DC, USA, 2007,
pp. 495–504. doi:10.1109/CCGRID.2007.92.

[19] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes, first ed., Morgan Kaufmann Publishers, Inc., 1991.

[20] X. Lin, L.M. Ni, Deadlock-free multicast wormhole routing in multicom-
puter networks, SIGARCH Comput. Archit. News 19 (3) (1991) 116–125.
doi:10.1145/115953.115965.

[21] LLNL, ASC Sequoia. http://www.llnl.gov/computing_resources/sequoia/.
[22] NCSA, Blue waters: sustained petascale computing. http://www.ncsa.illinois.

edu/BlueWaters/.
[23] J. Nieplocha, V. Tipparaju, M. Krishnan, D.K. Panda, High performance remote

memory access communication: the armci approach, Int. J. High Perform.
Comput. Appl. 20 (2) (2006) 233–253. URL: http://hpc.sagepub.com/cgi/
content/abstract/20/2/233.

[24] D.K. Panda, Fast barrier synchronization in wormhole k-ary n-cube networks
with multidestination worms, in: HPCA ’95: Proceedings of the 1st IEEE
Symposium on High-Performance Computer Architecture, IEEE Computer
Society, Washington, DC, USA, 1995, p. 200.

[25] F. Petrini, M. Vanneschi, k-ary n-trees: high performance networks for mas-
sively parallel architectures, in: Parallel Processing Symposium, International,
1997, p. 87. doi:10.1109/IPPS.1997.580853.

[26] Report on experimental language X10. http://dist.codehaus.org/x10/
documentation/languagespec/x10-170.pdf, 2008.

[27] X.-H. Sun, Y. Chen, Reevaluating amdahl’s law in the multicore era, J. Parallel
Distrib. Comput. 70 (2) (2010) 183–188.

[28] S. Sur, M.J. Koop, D.K. Panda, High-performance and scalable mpi over
infiniband with reduced memory usage: an in-depth performance analysis,
in: SC’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
ACM, New York, NY, USA, 2006, p. 105. doi:10.1145/1188455.1188565.

[29] V. Tipparaju, E. Apra, W. Yu, J.S. Vetter, Enabling a highly-scalable global
address space model for petascale computing, in: Computing Frontiers’09,
2010.

[30] Top 500 supercomputing sites. http://www.top500.org.
[31] UPC specifications, v1.2. http://www.gwu.edu/~upc/publications/LBNL-

59208.pdf.
Weikuan Yu is currently an Assistant Professor in
the Department of Computer Science and Software
Engineering at Auburn University. Prior to joining Auburn,
he served as a Research Scientist for two and a half years at
Oak Ridge National Laboratory (ORNL) until January 2009.
Yu is also a Joint Faculty at ORNL. He earned his Ph.D. in
Computer Science from the Ohio State University in 2006.
Yu also holds a master’s degree in Developmental Biology
from the Ohio State University and a Bachelor degree
in Genetics from Wuhan University, China. At Auburn
University, Yu leads the Parallel Architecture and System

Laboratory (PASL) for research and development on high-end computing, parallel
and distributing networking, storage and file systems, as well as interdisciplinary
topics on computational biology. Yu is a member of AAAS, ACM, and IEEE.

Xinyu Que is a Ph.D. student of Parallel Architecture
and System Laboratory (PASL) in the Department of
Computer Science at Auburn University. Que earned his
master’s degree in Computer Science from University
of Connecticut in 2009. His research interests include
High Performance Computing, High Speed Networking,
Network and Grid Computing.

Vinod Tipparaju is a Research Staff Member in the
Computer Science and Mathematics Division (CSM) of
Oak Ridge National Laboratory (ORNL), where he is a
member in the Future Technologies Group and amatrix-ed
member in the NCCS Scientific Computing and Technology
Integration Groups. He is one of the main developers
of Global Arrays toolkit and the ARMCI communication
library. He joined ORNL in 2008, after over six years
at Pacific Northwest National Laboratory. Tipparaju’s
interests span several areas of high-end computing
including Programming Models for High Performance

Computing, Network Interconnects and Collective Communication Algorithms.

Jeffrey S. Vetter is a computer scientist in the Computer
Science and Mathematics Division (CSM) of Oak Ridge Na-
tional Laboratory (ORNL), where he leads the Future Tech-
nologies Group and directs the Experimental Computing
Laboratory. Dr. Vetter is also a Joint Professor in the Col-
lege of Computing at the Georgia Institute of Technol-
ogy, where he earlier earned his Ph.D. He joined ORNL
in 2003, after four years at Lawrence Livermore National
Laboratory. Vetter’s interests span several areas of high-
end computing—encompassing architectures, system soft-
ware, and tools for performance and correctness analysis

of applications.

http://dx.doi.org/http://doi.acm.org/10.1145/146628.140384
http://www.emsl.pnl.gov/docs/global
http://dx.doi.org/doi:10.1016/S0010-4655(00)00065-5
http://dx.doi.org/10.1016/S0010-4655(00)00065-5
http://dx.doi.org/doi:10.1109/CCGRID.2007.92
http://dx.doi.org/doi:10.1145/115953.115965
http://www.llnl.gov/computing_resources/sequoia/
http://www.ncsa.illinois.edu/BlueWaters/
http://www.ncsa.illinois.edu/BlueWaters/
http://www.ncsa.illinois.edu/BlueWaters/
http://www.ncsa.illinois.edu/BlueWaters/
http://www.ncsa.illinois.edu/BlueWaters/
http://www.ncsa.illinois.edu/BlueWaters/
http://hpc.sagepub.com/cgi/content/abstract/20/2/233
http://hpc.sagepub.com/cgi/content/abstract/20/2/233
http://hpc.sagepub.com/cgi/content/abstract/20/2/233
http://hpc.sagepub.com/cgi/content/abstract/20/2/233
http://hpc.sagepub.com/cgi/content/abstract/20/2/233
http://hpc.sagepub.com/cgi/content/abstract/20/2/233
http://hpc.sagepub.com/cgi/content/abstract/20/2/233
http://hpc.sagepub.com/cgi/content/abstract/20/2/233
http://hpc.sagepub.com/cgi/content/abstract/20/2/233
http://hpc.sagepub.com/cgi/content/abstract/20/2/233
http://dx.doi.org/doi:10.1109/IPPS.1997.580853
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-170.pdf
http://dx.doi.org/doi:10.1145/1188455.1188565
http://www.top500.org
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf

	HiCOO: Hierarchical cooperation for scalable communication in Global Address Space programming models on Cray XT systems
	Introduction
	Background and motivation
	An overview of ARMCI
	ARMCI process management for one-sided communication
	Critical challenges for GAS runtime

	Hierarchical COOperation (HiCOO)
	Multinode cooperation
	Virtual topology
	Comparisons of three virtual topologies
	Request routing in virtual topologies


	Analysis of memory management and contention attenuation
	Scalable memory management
	Contention attenuation
	Description of contention experiments
	Noncontiguous data transfer operations
	Atomic fetch-&-add operations


	Performance of communication operations and scientific applications
	ARMCI one-sided operations
	Contiguous data transfer operations
	Noncontiguous data transfer operations
	Atomic and synchronization operations

	NAS LU application
	A large-scale application: NWChem

	Related work
	Conclusion
	Acknowledgments
	References


