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Abstract—Protein identification is an important objective for
proteomic and medical sciences as well as for pharmaceutical in-
dustry. With recent large-scale automation of genome sequencing
and the explosion of protein databases, it is important to exploit
latest data processing technologies and design highly scalable
algorithms to speed up protein identification. In this study, we
design, implement, and evaluate a new software tool, Bitmapped
Mass Fingerprinting (BMF), that can efficiently construct a
bitmap index for short peptides, and quickly identify candidate
proteins from leading protein databases. BMF is developed by
integrating the FastBit indexing technology and the popular
Message Passing Interface (MPI) for parallelization. By exploiting
FastBit for peptide mass fingerprinting across protein boundaries,
we are able to accomplish parallel computation and I/O for
a scalable implementation of protein identification. Our exper-
imental results show that BMF brings dramatic performance
improvement for protein identification from various protein
databases. In particular, we demonstrate that BMF can effectively
scale up to 8,192 cores on the Jaguar Supercomputer at Oak
Ridge National Laboratory, achieving superb performance in
identifying proteins from the National Center for Biotechnology
Information (NCBI) non-redundant (NR) protein database.

Keywords- Protein Identification; Peptide Mass Fingerprinting;
Protein Databases; FastBit; Cray XT5.

I. INTRODUCTION

Fast protein identification is an important technique for

scientific research in biology, medical sciences, and chemistry.

It is also one of the premier objectives in pharmaceutics

and proteomics. It dates back to the early 1980s when

the molecular weights of peptides and proteins were first

determined by atom bombardment [1]. The most popular

experimental technique for protein identification is tandem

mass spectrometry (MS/MS) [2]. It breaks proteins at different

peptide bonds, and produces ionized fragments with different

molecular weights (mass) and different number of charged ions

(charge). These fragments are then visualized in a graphic tool

called tandem mass spectrum or MS/MS spectrum, based on

their mass/charge ratios.

Various genome projects and proteomic experiments are

quickly generating a vast amount of genomic and proteomic

data. Experimental techniques such as MS/MS are generally

too labor-intensive and time-consuming to meet the growing

needs of scientists for accessing, analyzing, and identifying

their targeted proteins from these extremely large protein

databases. High-throughput, automated protein identification

systems need to be designed with algorithms that can access

the databases in a pipeline fashion with efficiency and accu-

racy.

Protein identification through database searching is one of

the most popular computational approaches [3], [4]. Matching

peptides are identified from protein databases using a scoring

function, based on the probability that a candidate peptide

possesses the observed spectrum. While protein databases are

quickly expanding, protein identification algorithms and tools

face the challenge of meeting the demands of these genomic

and protein databases. It would be beneficial if powerful

supercomputers can be leveraged to expedite the process of

protein identification.

Peptide Mass Fingerprinting (PMF) is a widely adopted

technique for protein identification and validation. It identifies

an unknown protein by cleaving the candidate at certain pep-

tide bonds into many small peptides, and measuring the masses

and charges of these peptides through mass spectrometers.

These known masses are then used to search for candidate

peptide matches. Eventually the identity of the protein can be

determined by the presence of unique peptides.

In this paper, we report a newly developed software,

Bitmapped Mass Fingerprinting (BMF), for fast protein identi-

fication from protein databases, ranging from individual organ-

isms to the largest non-redundant (NR) protein database of the

National Center for Biotechnology Information (NCBI) [5].

We first describe a basic algorithm for computational peptide

mass fingerprinting. Then we develop a new technique that em-

ploys the highly efficient FastBit indexing technology to build

a searchable database from precomputed molecular weights

of all candidate peptides, thereby enabling very efficient PMF.

By exploiting parallel computation and I/O, we design BMF as

a software architecture for fast protein identification. Further-

more, we perform a comprehensive evaluation of BMF using

both a small-size local cluster and the Jaguar supercomputer

at Oak Ridge National Laboratory.

We conduct extensive experiments for testing BMF. Our

experimental results show that BMF brings dramatic perfor-

mance improvement in searching for proteins from various

databases. While BMF does have a costly initial phase to

pre-compute the molecular weights of peptides and build fast

searchable indices, we discover that the cost of index genera-

tion can be brought down to a very low level through parallel

computation and I/O. In particular, we demonstrate that BMF

is able to scale up to 8,192 cores on Jaguar for excellent
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performance in index creation and protein identification from

the NR protein database [5].

In summary, our contributions in this research are twofold:

• We design and develop a parallel tool, BMF, for peptide

mass fingerprinting using the highly efficient FastBit

indexing technology and the popular Message Passing

Interface.

• We leverage parallelized computation and I/O for fast

protein identification. By bridging the power of FastBit

indexing and that of parallel processing, BMF enables

efficient PMF portably on any parallel computing envi-

ronment.

• We document the use of a powerful supercomputer for

efficient peptide mass fingerprinting and and evaluate

the performance of BMF in identifying proteins from

leading protein databases. The benefits of BMF have been

demonstrated across 8,192 cores on Cray XT5.

The rest of the paper is organized as follows. In the next

section, an overview is provided on FastBit Indexing. Then

we describe the design of BMF in Section III. Experimental

results are provided in Sections IV. Related work on protein

identification and mass spectrometry is presented in Section V.

We conclude the paper in Section VI.

II. FASTBIT INDEXING OVERVIEW

FastBit is an efficient searching tool with a proven record of

uses in scientific applications [6]. Its core technology utilizes

a set of compressed bitmap indexes. FastBit incorporates

several techniques to achieve a very fast searching capability.

It employs a bitmap compression method called Word-Aligned

Hybrid (WAH) code that performs bitwise logical operations

significantly faster than other similar approaches [7]; it imple-

ments a set of multi-level bitmap indexes that not only reduce

the number of bitmaps needed to answer a query but also

reduce the number of bytes it accesses [8]; and it contains a set

of advanced binning techniques that reduces the index sizes but

at the same time keeps the query response time low [9], [10].

In tests against commercial database management systems,

FastBit is shown to answer queries more than 10-50 times

faster on a set of realistic scientific data collections [11].

The effectiveness of FastBit is not only demonstrated through

timing measurements, but also through a series of rigorous

theoretical analyses [7], [8]. These analyses show that FastBit

indexes possess the theoretical optimality of providing search

time proportional to the number of elements qualified by the

query.

A FastBit index can be used to resolve conjunctive or

disjunctive range conditions such as “temperature > 800” and

“density between 0.3 and 0.4.” It produces a compressed

bitmap where each row satisfying the specified conditions is

marked 1, and otherwise 0. This allows the answers from

different index searches to be combined efficiently by using

logical operations over the compressed bitmaps [11]. This

feature is particularly useful to search for records that are

independent from each other, such as high-energy collision

events or network scan-attack patterns [12], [13]. There are

many cases where the records are related, for example, they

might be defined on a set of regular mesh points. In such cases,

the users might be more interested in finding coherent regions

in space, such as flame fronts in combustion simulations [14],

[15]. For such applications, FastBit compressed bitmaps are

used directly by region-growing methods to efficiently gener-

ate the regions of interest. Recently, FastBit is used to compute

histograms for multi-dimensional parallel coordinate displays

of particles in a laser-based particle accelerator [16]. FastBit

is an open source tool, and is used by many applications

without any involvement of the FastBit developers. For ex-

ample, Yahoo employs FastBit to query internal data about

advertisements, a German bioinformatics company utilizes it

to speedup molecular docking [17], and a Brazilian research

group uses it in a geographical data warehousing system [18].

III. PARALLEL MASS FINGERPRINTING

THROUGH BITMAPPED INDEX

In this section, we describe the design of Bitmapped Mass

Fingerprinting (BMF), a parallel program for peptide mass

fingerprinting and protein identification. We focus on the com-

putational efficiency of protein identification given a peptide

of known mass. First, a basic algorithm for computational

mass fingerprinting is described. Then we discuss the use of

FastBit for peptide mass fingerprinting. Finally, we examine

and exploit various parallelisms in the FastBit-based BMF.

A. Computational Peptide Mass Fingerprinting

In a simplistic form, proteins are basically represented as

strings of single-letter codes. Each code denotes one of the

twenty amino acids, and has its canonical molecular weight

(mass). Peptides are short sequences of amino acids, i.e.,

substrings of proteins. A protein database contains many

protein sequences, each of which is preceded with their names

and other annotation information. We use the FASTA format

for protein databases.

The goal of computational PMF is to search peptides that

have expected lengths and a molecular weight between a

targeted range. We can define it formally as follows.

Protein Database: It is a string D of amino acids, separated

by protein names at their boundaries. Every letter has an

associated mass W, where W ∈ {Wi,∀ i ∈ [0,19]}, the set of

molecular weights for twenty amino acids. | D | represents the

total number of amino acids in the database.

Input Parameters: Each query has four input parameters:

two integers (K, N), and two floating numbers M and ε. K

and N specify the range of peptide length from K to N. Ap-

proximately, there are | D | ∗(N−K+1) of possible substrings

with length from K to N. Typically, peptides of interest on a

mass spectrum have up to 40-50 amino acids. Each peptide

has a “mass” m, which is the combined molecular weight from

its constituent amino acids. M is a targeted mass value, and

ε a precision parameter. A peptide p is a good match if it

satisfies two conditions: its length | p |∈ [K,N], and its mass

m ∈ [M− ε,M+ ε].
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Query Output: The output of a query is a list of two-tuples

(loc, len) that specifies the matching peptides. The number

loc indicates the starting position of a peptide (hence the

embedding protein), and len its length.

Algorithm 1 shows a basic serial computational algorithm

for identifying a list of peptides from a database.

Algorithm 1 Basic Peptide Mass Fingerprinting

1: {Initiate peptides Pi where i ∈ [K,N]}
2: for all i = K to N do
3: mass(Pi)← {Sum of mass from D[0] to D[i-2]}
4: end for
5: for all j = 0 to | D−1 | do
6: for all l = K to N do
7: if ( j+ l)<| D | then
8: mass(Pl)← mass(Pl)+D[ j+ l −1]
9: if mass(Pl) ∈ [M− ε,M+ ε] then

10: output ( j, l)
11: end if
12: mass(Pl)← mass(Pl)−D[ j]
13: end if
14: end for
15: end for

B. PMF with FastBit

While Algorithm 1 defines the computational PMF for

protein identification, it is important to investigate efficient

and scalable approaches. In view of the efficiency of FastBit

and its practicality for scientific applications, we consider it a

worthy attempt to design a FastBit-based PMF and evaluate

its potential benefits.

Construction of Weight Tables – The core requirement of

FastBit is to organize input data in a two dimensional table.

To enable FastBit for peptide mass fingerprinting, we compute

the molecular weights of all peptides with matching lengths,

and then store them into a 2-D table. Figure 1 shows a 2-D

weight table for a protein of length d. It contains the masses for

peptides of length from k to n. Molecular weights for peptides

ending at position i are stored as the i-th row; and those for

peptides of length j are stored in the j-th column. Thus, a

value W (i, j) in the table represents the mass of a peptide that

ends at position i, and has a length of j.
Demarcating Protein Boundaries – In the FASTA format,

the first line of a protein sequence typically starts with a

“>”, followed by a description of its name, origin, and other

attributes, and finally the actual sequence of amino acids. A

protein database composed of many proteins will have multiple

FASTA sequences concatenated together. Figure 2 shows an

example of two FASTA protein sequences taken from the

Bacteria database as described in Section IV-A. To properly

demarcate protein boundaries, we use −1.0e6 as an impossible

mass for a peptide, a.k.a INF. In the weight table, the value

INF will be stored for W (i, j) if there is no peptide that has a

length l ∈ [K,N], and ends at position i. For example, when i

k−1

0

k k+1 n−1 n

n−1

W(k−1,k)

W(n−1,k)

W(i,n)

INF

INF

W(n−1,k+1)

INF INF INF INF

INF INF INF

W(n−1,j)

j

W(i, n−1)

W(n−1,n)W(n−1,n−1)

W(i,k) W(i,k+1) W(i,j)i

d−1 W(d−1,k) W(d−1,k+1) W(d−1,j) W(d−1,n−1) W(d−1,n)

Fig. 1: A 2-D Table Represents Peptide Masses for One

Protein.

points at one of the first (K − 1) amino acids, or falls at the

protein boundaries. Figure 1 shows that the first row of the

2-D weight table has all values as INF. The weight table for a

protein database consists of many small 2-D weight tables that

are concatenated together vertically, one for each protein. The

size of a column will be proportional to the number of amino

acids in a protein database. One column of the weight tables

for a protein database is stored as a separate file. FastBit also

requires an auxiliary file named “-part.txt” to be associated

with a weight table. This file contains a description of data

files for all columns.

>gi|24345355|gb|AAN53092.1|AE015452_5 hypothetical
protein TIGR00278
MAQTQSPLQWLATTLIRGYQIFISPILGPRCRFNPTCSHYAIEAIKVHGT
AKGCWFALKRILKCHPLHPGGSDPVPPKNDRCNK
>gi|24345356|gb|AAN53093.1|AE015452_6 ribonuclease
P protein
MTSYTFTRELRLLTPAQFKSVFSNPIKASSAEITLLAIPNSEQHPRLGLT
VAKRYVKRANQRNRIKRVIRDSFRLNQHNIPHLDIVVLVRNGVMEMENAE
LNKLIEKLWRKLSRRYNG

Fig. 2: Sample Protein Sequences in FASTA Format.

Building FastBit Indices – FastBit builds a bitmap index

for each column that has been created. A mass query for

matching peptides selects a number of bitmaps corresponding

to weights between M−ε and M+ε and then performs bitwise

OR operations on them to produce the answer. These bitmaps

are located next to each other in the FastBit index file. When

such an index file is used to answer a query, FastBit needs

to perform two read operations: one to read the metadata

located at the beginning of the index and the other to read

the needed bitmaps. FastBit enables a number of different

options for reading the indices. It may read the whole index

file into memory, perform the sequential read operations using

1919



the generic read() system call, or read data after creating a

memory map for the file. We used the option of memory

mapped files in BMF because it is typically observed as more

efficient.

C. Parallelizing the FastBit-Based Mass Query

Like many bioinformedical programs, FastBit-Based Mass

Query can be implemented as an embarrassingly parallel

program, particularly if one were to simply divide a large

protein database into multiple small ones. However, partition-

ing the database into many small ones introduces additional

processing steps. Instead of a simple division, we use a tiling

approach for partitioning the 2-D table of peptide molecular

weights.

Parallel Computation – To achieve great parallelization,

we examine the 2-D weight table for protein databases, and the

requirement of FastBit in creating indices from precomputed

molecular weights. Instead of directly breaking up a database

into smaller ones, it is more effective to apply a tiling approach

and break a big weight table into many small 2-D blocks for

parallelized mass fingerprinting. For example, one process is

assigned with a block of the 2-D table, for which it identifies

peptides on a smaller number of rows and columns. This tiling

approach also avoids the data partitioning step, resulting in

flexible output aggregation for parallelized mass query.

Parallel I/O – In addition to parallel computation, we

investigate ways to improve the I/O performance in generating

the 2-D weight table and the FastBit index files. We designed

the system so that all partitioned blocks are organized into

a separated directory. We do not distinguish between chunks

from a big database and those from small databases. This is

to allow flexible partitioning of data and computation. On

parallel file systems such as Lustre, we control the striping

pattern of newly generated files so that they can aggregate

available bandwidth from all storage devices on systems such

as Jaguar [19]. Furthermore, we implement I/O buffering in

BMF to batch small read and write operations into large ones

before accessing the file system. This buffering strategy avoids

flurries of small reads and writes that can degrade the I/O

performance of large parallel file systems [20], [21].

D. BMF Software Architecture

With the aforementioned algorithms and techniques, we

developed BMF, an integrated parallel program for scalable

computational PMF.

Figure 3 shows the software architecture of BMF. To

perform peptide mass fingerprinting, the computation for a

protein database is divided among a number of MPI processes.

Each process has an internal flex [22] based tokenizer, which

scans the original database file from an offset based on the

division of computation as described in Section III-C. The

tokenizer filters out the protein annotations from a FASTA

file, but keeps the protein boundaries intact. Based on the

scanned input, each process then creates a 2-D weight table,

and leverages FastBit to generate searchable bitmap indices. A

query for matching peptides is also processed in parallel based

BMF

Computation
Tiled FastBit Parallel I/O

Protein Databases

Flex Tokenizer

MPI

Fig. 3: Software Architecture of BMF.

on the tiling partition of the 2-D weight table and the FastBit

index files. The query results are combined and returned as a

sorted output file.

IV. PERFORMANCE EVALUATION

For small scale tests, we conducted our experiments on a

cluster of 27 nodes with 2.1 GHz 64-bit dual-socket, quad-

core Intel Harpertown processors. Each node is equipped with

8x PCI-Express Gen 2.0 bus. These nodes run Linux 2.6.18

kernels. They are equipped with a Gigabit Ethernet network.

One node is configured as an NFS server with local attached

disks. Six other nodes are configured as a small experimental

Lustre file system with one Lustre metadata server (MDS)

and five Lustre Object Storage Servers (OSS). This Lustre file

system has 50GB storage space, aggregated from 10 GB disk

partitions from the five storage devices.

For large scale experiments, we used the Jaguar supercom-

puter from Oak Ridge National Laboratory. Because Jaguar is

a shared computing facility, we observed noticeable variations

in the experimental results depending on the load of the

system. Therefore, we include the error bars in the figures.

For the results from the dedicated 27-node cluster, we omitted

the error bars because variations were negligible.

A. Protein Databases

To examine the performance of BMF, we used a set of

protein databases, including those from individual organisms

such as bacteria, yeast and drosophila, as well as large collec-

tions of protein databases such as SwissProt, PDB, and NR.

All databases were downloaded from NCBI1, unless specified

otherwise.

Bacteria: This is a protein database, AE014299.faa, for

the bacteria strain, Shewanella oneidensis. It contains 4,630

proteins with 1.3 million amino acids. The file size is 1.8

MB.

Yeast: This is a database that contains protein translations

for the genome of yeast, an eukaryotic microorganism. There

are 6,298 proteins with 2.9 million amino acids. This database

1ftp://ftp.ncbi.nih.gov/
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is originally downloaded as a compressed file, yeast.aa.gz. The

file size is 3.3 MB.

Drosophila: This is a database with protein translations for

another eukaryotic organism, drosophila, commonly known as

fruit fly. It consists of 14,331 proteins with 7.8 million amino

acids. This database is originally downloaded as a compressed

file, drosoph.aa.gz. The file size is 8.2 MB.

PDB: PDB is the Protein Data Bank [23], maintained by

Brookhaven National Laboratory (Long Island, New York,

USA). It contains all publicly available solved protein struc-

tures. There are 161,299 proteins with 38.1 million amino

acids. This database is originally downloaded as a file

pdb seqres.txt from a Worldwide Protein Data Bank server2.

The file size is 46 MB.

SwissProt: SwissProt [24] is a protein database maintained

at the University of Geneva. It is a highly-curated, highly-

cross referenced, non-redundant database. It contains 297,480

proteins with 115.6 million amino acids. The database is

originally downloaded as a compressed file, swissprot.aa.gz.

The file size is 139 MB.

NR: The NR protein database is maintained by NCBI [5]

as a target for their BLAST [25] search services. It is a

composite of multiple protein databases, including SwissProt

and PDB, among others. Protein entries with absolutely iden-

tical sequences have been merged. There are 10,434,019,480

amino acids in 3.6 million proteins. This database is originally

downloaded as a compressed file, nr.gz. The file size is 5.4 GB.
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Fig. 4: Fast Mass Query using BMF.

B. Benefits of FastBit

Using the databases for the three organisms, we measured

the performance of BMF on a single compute node. The

performance is also compared to a serial program of mass

fingerprinting without FastBit. We developed a sequential

program based on Algorithm 1. It directly calculates the

molecular weight of peptides of all matching lengths, and

compares them to the range of targeted masses. This “plain”

implementation searches peptides from the first amino acid all

the way to the last one.

Figure 4 shows the execution time of BMF. The candi-

dates are peptides of 3 to 43 amino acids. The range of

2ftp://ftp.wwpdb.org/pub/pdb/derived data/

targeted molecular weights affects the number of candidate

proteins. We used two different ranges: [1900.0,2000.0] and

[2900.0,3000.0]. In our experience, the actual range has little

impact to the computational complexity because all entries in

the weight table are compared with the range in any case.

Compared to the plain implementation, BMF significantly

reduces the query time to identify all candidate peptides.

BMF achieved 16, 30, and 45 times speedup in execution,

respectively for Bacteria, Yeast, and Drosophila.

C. Tuning of Performance Parameters

As discussed in Section III, BMF pre-computes molecular

weights of all peptides of suitable lengths. To support fast

query of candidate peptides, it partitions a large 2-D weight

table into many small blocks at protein boundaries. A varying

number of columns were generated for FastBit. The actual

number of columns determines the query range of peptide

lengths in BMF.

We measured the time to create FastBit indexes in BMF,

denoted as the “index” time. This time includes the duration

to pre-compute and store the molecular weights as floating-

point numbers, and the time to index these weights.

Figure 5 shows the timings for different phases of BMF

on a single compute node. They are also compared to that

of the plain implementation, which does not have any extra

phase. We vary the query range from 5 to 40 amino acids

and the chunk size from 16 KB to 16 MB. As shown in the

figure, BMF spends a significant amount of time to create

FastBit indices, the majority of which was spent on indexing

the precomputed molecular weights. Note that the time for

weight computation and index creation are one-time costs for

a mass fingerprinting server. This costly step is rather paid off

with the time savings on numerous queries.

Figure 5 (a) illustrates the performance of BMF with a

varying chunk size. The chunk size of 4 MB and above led to

optimal BMF performance. However, the actual chunk size for

a particular run of BMF is determined based on other tradeoffs

as well. For example, smaller chunk sizes can be helpful to

facilitate parallelized protein identification from a small-size

database.

Figure 5 (b) demonstrates the performance of BMF with

varying query ranges. A wider query range increases the

execution time of BMF. However, the growth of execution

time is slow in comparison to the query range. Thus it makes

sense for BMF to create all columns that can support a wide

query range. In the rest of this performance evaluation, FastBit

indices are always generated for forty columns (an adjustable

query range) in a weight table of a protein database.

D. Benefits of Parallel Computation

Based on results from the above performance evaluation, we

carried out an experiment to examine the benefits of parallel

computation to BMF. To minimize the impact of I/O access,

we replicated the protein databases for bacteria, yeast, and

drosophila across all nodes, on their local disk file system.
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Fig. 5: Performance of BMF with Varying Parameters.

In this experiment, each process creates FastBit indices for

different chunks (or different columns of the same chunk) of

an identical database. Given the small size of three databases,

we used a chunk size of 1 MB to achieve good parallelization.

Figure 6 shows the performance of BMF with parallel

computation. With an increasing number of processes, the

execution times for index creation and protein query are

dramatically reduced. The improvement from parallel com-

putation is in close proportion to the number of processes,

until the execution time is minimized due to the availability

of parallelization, e.g. when using 160 processes to handle a

small bacteria protein database.

E. Benefits of Parallel I/O

BMF generates large amounts of data when when it com-

putes peptide masses and creates a database of searchable

masses from a protein database. In Section IV-D, we demon-

strate that BMF can achieve good parallelized computation

when the protein database is replicated on the local disk

of all nodes. However, contemporary systems are typically

configured with a shared file system. Parallel file systems are

also commonly used to enable parallel I/O for data intensive

applications. Thus, it is very important to examine the impact

of I/O on the performance of BMF in environments with

shared file systems.

We conducted an experiment to evaluate the benefits of

parallel I/O to BMF. In our tests, protein databases for bacteria,

yeast, and drosophila are located on a shared file system, NFS

or Lustre. The files generated by BMF for molecular weights

and their indices are also stored on the shared file system.

We measured the time to index the computed molecu-

lar weights and the time for searching peptides. Figure 7

demonstrates the performance comparisons of BMF on NFS

and Lustre. Lustre performs significantly better than NFS for

indexing the molecular weights. It reduces the index time

by nearly one order of magnitude for all databases. Thus,

Lustre is able to exhibit its performance advantage when

creating the index files from these databases. NFS, on the other

hand, performs better in answering peptide queries, though the

absolute savings are only several 10s of milliseconds.

F. Large-scale Parallelization of BMF

With genomic sequences and their translations into increas-

ingly large protein databases, it is critical for computational

mass fingerprinting programs such as BMF to handle these

gigantic databases.

As described in Section III, BMF is designed to partition

its 2-D table of molecular weights into small blocks, and then

distribute the computation to all available processes. Using

Jaguar, we examined the benefits of massive parallelization to

BMF. In these tests, we used three large protein databases,

PDB, SwissProt, and NR. Given the large size of these

databases, we used a chunk size of 8 MB for this experiment.

Figure 8 shows the performance of BMF in processing

PDB and SwissProt databases on Jaguar. For both PDB and

SwissProt, BMF is able to significantly reduce the index time.

Once the indices for a database of molecular weights are

generated, the query time is very small, and the benefit from

massive parallelization is small.

The NR protein database is a combination of several protein

databases. We evaluated the performance of BMF for NR on

Jaguar, using up to 8,192 cores. Because NR contains 3.9

billions amino acids, BMF is able to make good use of the

massive power of these systems. Figure 9 demonstrates the

performance of BMF in processing the NR database. BMF is

able to reduce the execution time for index creation, Based on

the results from both systems, the query time gradually scales

down until it is about 20 microseconds.

In summary, these results demonstrate that BMF is able

to leverage the massive power of Jaguar supercomputer, par-

ticularly in creating FastBit indices from large-scale protein

databases. In addition, these results suggest that an effective

way to utilize the massive power of supercomputers is to create

the indices on the supercomputers, and then enable peptide
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Fig. 6: Performance of Parallelized BMF.
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Fig. 7: Performance of BMF on NFS and Lustre.

search queries through less powerful computers such as small

or medium size clusters.

V. RELATED WORK

Protein identification is an active topic of research in

proteomics and biology. Here we review several studies that

make use of computing tools and protein databases. Perkins

et al. [26] investigated the use of a scoring function to enable

probability-based protein identification. Brunetti et al. [27]

introduced a parallel algorithm to find peptide sequence tags

for protein identification. Han et al. [28] developed an Internet-

based server that enables protein identification by using amino

acid sequence tags computed through de novo sequencing.

Mann et al. [29] demonstrated the use of combined sequence

tags for highly-sensitive peptide identification, and validated

with practical examples from electrospray mass spectrometry.

Shadforth et al. [30] provided a comprehensive review of

protein identification, and compared recent studies on the basic

algorithms, database searching tools, and de novo sequencing.

All these efforts have not tried to use supercomputers for

protein identification. In this paper, we show how to combine

the strength of FastBit index technology and the power of su-

percomputers to create searchable databases of peptide masses,

thereby enabling efficient and scalable protein identification

from gigantic protein databases such as NR [5].

VI. CONCLUSION

We have successfully demonstrated a massively parallelized

software, Bitmapped Mass Fingerprinting, that can leverage

the power of supercomputers for fast protein identification.

This research is accomplished by defining computational pep-

tide mass fingerprinting algorithmically and designing BMF

from scratch to maximize the parallelism in computation and

I/O. To realize a scalable tool for mass fingerprinting, we

design BMF as a software architecture that integrates a flex-

based amino acid tokenizer, the FastBit index technology,
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Database.

and the efficient and portable MPI programming library. Our

experimental evaluation indicates that BMF is able to deliver

superb performance for protein identification from various

small and large protein databases. In addition, because BMF

exploits the power of parallel I/O and parallel computation, it

is able to efficiently create the index files required by FastBit.

In one case, we demonstrate that up to 8,192 cores from the

Jaguar supercomputers can be effectively utilized by BMF for

protein identification from the world’s largest non-redundant

(NR) protein database [5].

In the future, we plan to build a BMF-based mass finger-

printing server using a hybrid of a supercomputer and a small

cluster, for index creation and query services respectively. We

also intend to study the applicability of BMF to other loosely

coupled computing environments, such as distributed and

cloud computing. We believe that the flexibility of BMF in ex-

ploiting parallelism can also provide a similar advantage when

using contemporary cloud computing software and hardware

tools such as Hadoop [31] and Microsoft Azure services [32].

Furthermore, we plan to investigate the applicability of FastBit

to other computational biology problems such as sequence

alignment and motif identification.
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