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Abstract—Large scale scientific applications are often bottle-
necked due to the writing of checkpoint-restart data. Much work
has been focused on improving their write performance. With
the mounting needs of scientific discovery from these datasets,
it is also important to provide good read performance for
many common access patterns, which requires effective data
organization. To address this issue, we introduce Elastic Data
Organization (EDO), which can transparently enable different
data organization strategies for scientific applications. Through
its flexible data ordering algorithms, EDO harmonizes different
access patterns with the underlying file system. Two levels of data
ordering are introduced in EDO. One works at the level of data
groups (a.k.a process groups). It uses Hilbert Space Filling Curves
(SFC) to balance the distribution of data groups across storage
targets. Another governs the ordering of data elements within a
data group. It divides a data group into subchunks and strikes a
good balance between the size of subchunks and the number of
seek operations. Our experimental results demonstrate that EDO
is able to achieve balanced data distribution across all dimensions
and improve the read performance of multidimensional datasets
in scientific applications.

Keywords-Data Organization; Space Filling Curve; ADIOS;
Parallel I/O; Planar Read Patterns.

I. INTRODUCTION

Large-scale simulation codes can generate massive mul-
tidimensional datasets, from checkpoint-restarts, monitoring,
analysis, and visualization output. Their execution is often bot-
tlenecked by the cost of I/O because of their gigantic datasets.
Many efforts have focused on decreasing the application
turnaround time by studying the output side of the problem,
but few have systematically examined the read performance of
scientific applications on large-scale supercomputers, despite
the importance of read performance to scientific simulation
and analysis workflows.

To improve read performance, a thorough understanding of
application access patterns is crucial. Based on the authors’
direct experience with many application teams in the U.S. and
beyond, including combustion (S3D [6]), fusion (GTC [20],
GTS [45], XGC-1 [5]), earthquake simulation (SCEC [10]),
MHD (pixie3D [4]), numerical relativity codes (PAMR [37]),

and supernova (Chimera [29]) codes, there are four main
fundamental reading patterns for application data analysis:

• Read all of a single variable (c.f. Figure 1(a)). This would
be representative of reading the temperature across a
simulation space, for example.

• Read an arbitrary orthogonal subvolume (c.f. Figure 1(b)).
• Read an arbitrary orthogonal full plane (c.f. Figure 1(c)).
• Read multiple variables together. This would be repre-

sentative of reading the components of a magnetic field
vector, for example.

(a) Variable (b) Subvolume (c) 2-D Planes

Fig. 1: A 5× 5× 5 Array (k: fastest dimension)

Other reading patterns are either composed of a mixture of
these patterns or are minor variations. For example, reading
entire checkpoint-restart datasets can be perceived as an ex-
tended case of reading multiple variables together. Figure 1
gives an example of a 5× 5× 5 3-D array (Figure 1(a)), a
3 × 3 × 3 subset (Figure 1(b)) of the array and three 5×5
planes (Figure 1(c)) in three dimensions: i, j, and k; where
i is the primary, i.e., the slowest varying dimension, and k is
the tertiary and fastest varying dimension. Data in the array is
stored first along the fastest dimension k, then along the slow
dimensions, j and i, on disk.

Among these patterns, reading orthogonal planes has been
the least studied. However, it is a very commonly used data
pattern by scientific applications. For example, for combustion
studies with S3D [16], the computation was targeted at a
variable of 1408×1080×1100 points (12GB), but the majority
of analysis is performed on the orthogonal planes of the
variable (either 1408×1080 or 1080×1100 points). However,
the performance of reading such planes (a.k.a planar read)
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is often bottlenecked by the extremely poor performance in
retrieving data along slow dimensions from multidimensional
arrays [8].

There are two main issues faced by such access patterns
of multidimensional arrays. The first is the disparity between
the order of storage and the order of access for data elements
in a multidimensional variable. When data is not traversed
in the order in which it is stored, reading cannot benefit
from techniques such as data prefetching, caching, etc. For
example, when reading an ij plane, data elements are stored
non-contiguously along these slow-varying dimensions. This
requires a large number of time-consuming seek and read
operations, so that the read performance degrades signifi-
cantly. However, this does not happen to jk planes whose
data elements are stored along the fast-varying dimensions.
Such disparity leads to a phenomenon called performance
bias against the slow-varying dimensions. A current popular
solution to this problem is to store multiple copies of the same
data with a different dimension being used as the primary
dimension in each copy. For example, climate researchers at
the Geophysical Fluid Dynamics Laboratory (GFDL) make
multiple replicas of all datasets with x, y, z and time as the
fastest dimension, respectively. Such workarounds help reduce
the reading time [11], but increase the total storage size by 4
times. Second, there is a lack of data concurrency when a
subset of data elements is retrieved from a multidimensional
variable. When the subset of data elements is not logically
contiguous, it is often concentrated on only a few storage
devices among a large number of total devices that are used to
store the entire variable. For example, with the LC layout, a
plane in the fast dimension will be located on only one storage
target if the plane size is less than the stripe size. In this case,
applications can not make use of aggregated bandwidth from
all devices, and are then limited to the bandwidth available
from a single storage device. Theses issues are examined in
detail in Section II-A.

To enable fast access of multidimensional scientific datasets,
it is important to investigate a strategy that can address both
issues. In this paper, we propose an I/O framework named
Elastic Data Organization (EDO) that can support flexible
data organization strategies for different scientific applications.
EDO addresses the challenging issues faced by planar reads
through two levels of data ordering algorithms. At the top
level, it uses Hilbert Space Filling Curves (SFC) to balance
the distribution of data groups (a.k.a process groups) across
storage targets. As we will discuss in Section III, SFC
distributes data elements across parallel storage targets to
aggregate their bandwidth without file system restrictions and
improve concurrency for the aforementioned access patterns.
At a low level, EDO divides data elements within a data group
into subchunks, and balances the cost of seeking through sub-
chunks and that of reading data from them. Neither ordering
algorithm precludes portability nor requires any application-
level changes. They are used to decide the placement of data
elements for optimal concurrency and better exploitation of
bandwidth from storage devices.

We evaluate the performance improvement for planar reads
on the Jaguar supercomputer at Oak Ridge National Labo-
ratory. We show that the performance of planar reads can be
improved by EDO in a balanced manner across all dimensions.
A maximum speedup of 37 times has been observed.

The rest of the paper is organized as follows. In Section II,
we introduce the background for this work. We then describe
the design of EDO in Section III. Section IV provides a
mathematical analysis of data concurrency using different
data organization strategies. Section V further validates our
strategy through a comprehensive set of experimental results.
Section VI provides an overview of related work. Finally, we
conclude the paper in Section VII.

II. BACKGROUND

In this section, we present a short discussion of existing data
organizations and their performance issues. EDO is derived
from ADIOS (Adaptable I/O System), an I/O middleware from
Oak Ridge National Laboratory. We also provide an overview
of ADIOS and its BP (Binary Packed) file format.

A. Common Data Organizations

When an application needs to retrieve data elements from
a multidimensional dataset, two main factors affect the read
performance. One is the contiguity of these data elements,
another is the number of concurrent storage devices that
are supplying the data. The former determines the maximum
number of seek operations, though the actual number of seeks
may be reduced by reading extra data between data elements.
The latter determines the concurrency of storage access in an
application.

Currently there are two popular data organizations: logically
contiguous (LC) and chunking. Figure 2 compares these two
data organizations and show how the read performance can be
different between these organizations. In the figure, a 2-D array
with 9×9 integer elements is written on three storage targets
using LC and chunking, respectively. The stripe width is equal
to 36 bytes. The arrowed lines represent the order in which
these data elements are stored on storage devices, e.g., Object
Storage Targets (OSTs) in the case of Lustre file system. The
circled numbers indicate targets on which data elements are
located; the shaded squares are the requested data elements. If
we read in the row-major order with three processes, for both
organizations, each process needs 1 seek operation and 1 read
operation to retrieve the data. However, chunking is expected
to be 3 times faster than LC since LC serializes read requests
from three processes to one OST.

Concurrency issues are also observed for LC when re-
trieving a column, as shown in Figure 2. Furthermore, the
performance is degraded because each process either has to
perform 3 seeks and 3 reads to retrieve the data, or one read to
get 19 elements at a time. The former is slow due to frequent
expensive seek calls; the latter is also inefficient since 84%
extra data is retrieved. Chunking can not help for such retrieval
patterns as well. Every process either needs the same number
of seek and read operations to obtain the requested data, or
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retrieves 67% extra data. Meanwhile, chunking suffers from
similar concurrency issues. Processes are contending at a small
number of storage targets (only OST0 in this case).

(a) LC (b) Chunking

Fig. 2: Current Data Organizations

B. ADIOS and BP File Format
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Fig. 3: Data Organization of BP File Format

ADIOS has demonstrated significant performance benefits
for a number of petascale scientific applications [1], [25],
[27], [47], [36]. It uses a default file format called BP. In
this format, ADIOS applies the chunking strategy for storing
multidimensional datasets. Each process is assigned one data
chunk from one dataset after domain decomposition. If the
application needs to output multiple datasets, each process will
have multiple data chunks, one from each dataset. A group of
chunks from one process, along with their attributes such as
data size and offsets, are grouped together and stored as a
larger unit, called Process Group (PG) in ADIOS. We also
refer to it as a Data Group. An example of BP file output for
one dataset written by N processes is shown in Figure 3. All
PGs are placed within BP file in the order of process IDs.

III. DESIGN OF ELASTIC DATA ORGANIZATION (EDO)

In view of the performance issues of existing data or-
ganizations, we design EDO as an extension of ADIOS to
support elastic data organization algorithms. EDO retains
many salient features of ADIOS, including NSSI [34] for
staging, DataTap [2] for asynchronous I/O, and Dataspace [12]
for memory-to-memory code coupling. Figure 4 shows the
software architecture of EDO. It focuses on enabling elastic
organization algorithms for different scientific applications.
EDO supports Multi-level Data Organization. Varying strate-
gies are provided as selectable algorithms to determine the
placement of data units in EDO. These include the default
linear placement, Hilbert Space Filling Curve (SFC), and
subchunking. Z-curve ordering is still in the development. In
the rest of the section we discuss two algorithms Hilbert SFC
and subchunking in detail, and describe how they are used to
determine different levels of data organization in EDO.

Scientific Application 

ADIOS

Parallel File Systems Parallel File Systems
Lustre, GPFS, PVFS…

DataTap 

Dataspace

NSSI EDO

Linear

PG-level
Ordering

Intra-PG
Orderingg g

Hilbert Curve 

Subchunking…
Z-Curve

Fig. 4: EDO Architecture

A. Multi-Level Data Organization in EDO

EDO formulates the ordering of data placement into two
levels. At a top level, it uses Hilbert Space Filling Curves
(SFC) to balance the distribution of data groups (i.e., PGs)
across storage targets. At the low level, EDO divides data
elements within a data group into subchunks, and organizes
data in subchunks.

Figures 5(a) and 5(b) compare data organization between
the linear placement (as in ADIOS) and the Hilbert SFC-
based placement as introduced in EDO. A 2-D array of 16
chunks is used here as an example to simplify the description.
These chunks are written to 4 storage targets (OSTs) via 16
processes.

In the original ADIOS, each PG is placed on one storage
device in a round-robin fashion. Good concurrency can be
achieved in row-major order because sequential PGs are placed
on different OSTs, leading to good data distribution. However,
such placement may face severe concurrency issues when data
is accessed along the slow-varying dimensions, similar to the
case in Figure 2(b), .

A better method is needed to order PGs so that data chunks
on any dimension can be clustered, i.e., achieve good data
locality. We use the Hilbert Space Filling Curve (SFC) [17]
because it is a strategy to map a multidimensional space
onto a one-dimensional space, and has been used in a wide
variety of applications, especially when data locality is of
concern. The Hilbert curve guarantees the best geometric
locality properties [33]. Additionally, the cost of transforming
the index of data units is low [19], a strength also shared by
other strategies such as the morten (z-curve) index.

The 2-D array on the left of Figure 5(b) shows the placement
of PGs using Hilbert curve. Using this algorithm, data chunks
are shuffled among all OSTs. For example, instead of writing
to OST2, chunk 5 will be placed on OST3, while chunk
14 will be placed on OST2 instead of OST3. This strategy
does not impact the read performance of the entire array
because the number of total storage targets remains the same.
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A slight impact is observed for the row-major order, such as
the first and second rows, where data chunks are now placed
on fewer storage targets. However, a significant difference is
shown for data access in the column-major. Instead of striding
among multiple rows, many data chunks become sequentially
organized. Thus when one column is requested, the targeted
data chunks will spread to 3 OSTs, compared to only 1 OST
under the original data organization. Thus the Hilbert curve
can improve concurrency for data planes from slow-varying
dimensions.
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Fig. 5: Comparison of Different Data Organizations

EDO supports a second level of data organization: intra-PG
ordering. This level governs the order of data elements inside
a PG. For applications that generate gigantic datasets, their
PGs can grow very large to the extent in which data elements
inside a PG are sparsely retrieved for certain visualization
and the analytics tasks. As discussed in section II-A, one
way to read in column-major order with chunking involves
retrieving redundant data. Such approach is efficient when data
chunks are small, where sequential read has less overhead
than frequent seek operations. However, when data chunks
are large, the time of retrieving extra data can be significant.
For example, retrieving a column from a 2-D array with
1200*1200 elements requires 92% read overhead.

Thus, we introduce a subchunking algorithm at the intra-
PG level. Subchunking divides data in a PG into smaller
subchunks and order them according to the chunking strategy.
As shown in Figure 5, one PG contains one data chunk; each
chunk contains many data elements, 16 in this case. In the
original ADIOS, such elements inside a data chunk are ordered
in a logically contiguous manner. With subchunking, a chunk
is divided into 4 subchunks. These subchunks are then stored
based on the linear ordering. Note that, at present, SFC-based
ordering is not necessary inside an ADIOS chunk, because
the number of subchunks is typically small. EDO does allow
other ordering algorithms when the need arises. With such
organization, the overhead of retrieving on column-major can
be decreased significantly. As show in Figure 5, the overhead
is reduced from 9 to 2 elements (light shaded blocks) when
the column (dark shaded blocks) is requested, with 1 more
seek operation required.

IV. ANALYTICAL MODELING OF DATA CONCURRENCY

To validate the function of new organization algorithms in
EDO, we analytically model the performance of different data
organizations, where a 2-D plane is retrieved from a 3-D
dataset. We first introduce one formula to quantify the data
concurrency. Our study is based on the Lustre [9] file system.
The concurrency of a plane is determined by the number of
OSTs that data elements are placed. While the placement
of data elements are determined by their offsets within the
file and striping parameters. Thus, we introduce the following
formula to calculate the concurrency:

Concurrency = |α0
⋃

α1
⋃

...
⋃

αi|,where

αi =
o f f seti

stripe width
%stripe count, i ∈ [0...(n− 1)]

(1)

where n is the number of data elements on the plane. Note
that the offset of data element is different under different data
organizations.

Based on the above formula, several programs are developed
to calculate the concurrency of reading 2-D planes from a 3-D
data array. We then compare the average concurrency across
three dimensions. Figure 6 shows the result of concurrency
when reading 2-D planes from an 800×800×800 3-D global
array. The initial array is created by 4,096 processes. Each
process writes 50× 50× 50 elements either as a 3-D chunk
or a contiguous segment, depending on the data organization.
The stripe size is 1MB. With such dataset, we vary the stripe
count from 2 to 160, the maximum stripe count allowed by
Lustre, and compare the data concurrency on three dimensions
using different organization strategies. Note that the theoretical
maximum concurrency for a plane equals to the configured
stripe count for the output file. An optimal data organization
should show a concurrency that is equal or close to the
maximum concurrency on all dimensions.

Under the logically contiguous organization, shown by
Figure 6(a), the average number of OSTs for jk planes
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(a) Logically Contiguous
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(b) Linear Placement
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(c) Hilbert Curve

Fig. 6: Concurrency Modeling of a 2-D Plane on 3 Dimensions

is consistently small. Severe contention will occur if such
plane is retrieved by many processes in parallel. The data
concurrency of ik planes varies. In some cases, It drops to
less than half of the stripe count. The i j planes have the
highest concurrency. Note that the highest concurrency does
not necessarily mean the best performance which also depends
on the contiguity of the read operations.

Figure 6(b) shows the data concurrency using the linear
placement of data chunks. The jk planes have the highest
concurrency, i.e., they are able to use the maximum number
of OSTs. Due to high variances of concurrency on the ik and
i j planes, low concurrency for these two planes is common.
For example, when a stripe count is set to the maximum 160
on Lustre, where the highest aggregated write bandwidth is
expected, the resulting concurrency for planar reads is rather
low to 80 and 10 for the ik and i j planes, respectively.

Figure 6(c) shows the data concurrency of Hilbert curve. All
three types of planes show close-to-optimal concurrency, more
than 76% of the available storage targets are utilized. There
is little variation among different types of planes. Thus, a
balanced performance can be expected. When the stripe count
for an array is set to 160, the Hilbert curve organization is
able to achieve a concurrency of 132, 130 and 122 OSTs,
respectively for jk, ik, and i j planes. There are cases that the
linear placement can utilize more OSTs than the Hilbert curve,
for instance when the stripe count is 121. But such sweet
spots require either a sophisticated calculation that involves
the number of read processes, the stripe count, the stripe
size, the size of dataset, and/or an extensive set of tuning
experiments. Worse yet, one set of parameters will not fit for
different multidimensional data arrays. Application scientists
would rather be relieved from having to understand such
calculation or go through time-consuming tuning experiments.
The Hilbert curve-based ordering frees them from such per-
formance concerns. Application scientists can then intuitively
choose the striping parameters for their datasets, and/or expect
a consistent and well balanced read performance in return.

V. EXPERIMENTAL PERFORMANCE RESULTS

We deploy EDO on the Jaguar supercomputer at Oak Ridge
National Laboratory (ORNL) to evaluate its performance.
Jaguar is currently the second fastest supercomputer in the
world [31]. It is a massively parallel, distributed memory
system composed of a 2.3 PetaFlop/s Cray XT5 partition and

a 263 TeraFlop/s Cray XT4 partition, a 5 PB file system
known as Spider. The Cray XT5 partition is used for our
experimental evaluation. It contains 18,688 compute nodes
besides login/service nodes. Each compute node contains dual
hex-core AMD Opteron 2435 (Istanbul) processors running
at 2.6GHz, 16GB of DDR2-800 memory, and a SeaStar
2+ router. The entire partition contains 224,256 processing
cores and 300TB of memory. The Spider file system is the
largest Lustre file system in the world, with 672 storage
targets (OSTs) on its widow-1 section and over 26,000 clients,
and it is the fastest Lustre file system in the world with a
demonstrated bandwidth of 240 GB/s.

A self-contained I/O kernel for S3D [6] from Sandia Na-
tional Laboratories is used in our experiments. S3D is a high-
fidelity, massively parallel solver for turbulent reacting flows.
It employs a 3-D domain decomposition to parallelize the
simulation of combustion. S3D generates datasets of different
sizes. Four test cases: small (S), medium (M), large (L) and
extra large (X) are shown in Table I.

TABLE I: Test Cases Written by 16×16×16 Writers

Per Process Entire Array
Elements Data Size Elements Data Size

S 203 62.5KB 3203 250MB
M 503 0.95MB 8003 3.8GB
L 1003 7.6MB 16003 30.5GB
X 2503 119.2MB 40003 476.8GB

According to the previous practice with ADIOS on Jaguar,
the stripe size is set as the size of PG, a technique that
maximizes concurrency and reduces false sharing on the Lustre
file system. A separate test program is created to read planes
and subvolumes from the logically contiguous file format.

We measure the read performance using three different types
of data organization strategies: Logically Contiguous (LC),
linear placement of PGs by the original ADIOS (ORG), and
EDO (EDO). Each test case is run 10 times for every data
point. The median of top five results is chosen to remove the
transient effect.

A. Performance of Planar Reads with PG-level Reordering

We first evaluate the performance of planar reads. In this
test case, only PG-level organization using the Hilbert curve is
applied by EDO. As shown in Figure 6, the most variation is
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observed for linear placement when the stripe count is divisible
by 2. Linear placement can achieve better concurrency when
the stripe count is a prime number. We set the stripe count to
two representative cases, 128 and 137, respectively. Table II
shows the theoretical concurrency achievable by different data
organizations on three dimensions for two cases: S and X. The
numbers are calculated based on the formula we introduced in
section IV. The maximum or the exact number of OSTs are
listed wherever applicable.

As discussed in section II-A, the read performance is also
impacted by the number of seek operations. Table III gives
measured numbers of seeks required by each process under
different organizations when 64 processes (readers) are used.
The numbers may vary when the number of readers changes.
ORG and EDO both are based on ADIOS BP format, resulting
in identical numbers of seek operations. Because ADIOS uses
aforementioned strategy that reads in redundant data to avoid
frequent seek operations, it requires much less seeks compared
to LC. When 64 (8×8 on one plane) readers read out the data
written by 4096 (16× 16 on one plane) writers, each reader
needs to retrieve 4 (2×2) PGs. Thus 4 seeks are required for
each process. We omit one seek operation needed to consult
the variable metadata. Because the metadata is only read by
the first process, and then passed to the rest of processes. This
does not affect the overall analysis.

TABLE II: Concurrency of Planes (number of OSTs)

(a) stripe count=128

jk ik i j
EDO (Max/Min) 100/92 104/56 104/74

ORG 128 16 8
LC (S/X) 13/1 10/128 28/128

(b) stripe count=137

jk ik i j
EDO (Max/Min) 124/115 135/105 134/107

ORG 137 137 137
LC (S/X) 13/1 137/137 137/137

TABLE III: Number of Seeks per Reader (64 Readers)

S X
LC ADIOS LC ADIOS

jk 40 4 250 4
ik 40 4 250 4
i j 160 4 62500 4

The performance results for a stripe count of 128 are shown
in Figure 7. For both cases S and X, LC has better or
close performance compared to the other two organizations
with small numbers of readers on jk planes. This is because
LC places these planes as large, sequential data blocks to
a few storage targets while the same plane spreads across
many OSTs in small units under the other two organizations.
Small number of readers also result in more seeks for each
process with the ADIOS BP format. Thus, LC particularly
favors a small number of reading processes to retrieve data.
More processes suffers from contention because read requests
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Fig. 7: Planar Performance (writers=4096, stripe=128, plane
size (S/X) = 800KB/122MB)

will conflict with each other on a few OSTs. The story is
different for ik and i j planes. Because a large number of seek
and read operations are required, and because data spreads
across a small number of OSTs, the performance of LC drops
significantly. In contrast, ORG and EDO are able to bring the
read performance of ik and i j planes close to that of the jk
planes in Case S. The decreasing number of OSTs leads to
a performance loss to ORG, especially for the i j planes. In
Case X, ORG performs similarly compared to LC on ik and
i j planes because small concurrency and large amount of read
overhead unnecessarily consuming a lot of I/O bandwidth.
Even though EDO suffers from the same amount of read
overhead on these two dimensions, good concurrency helps
it achieve much higher read performance.

Figures 8(a) and 8(b) show the peak performance of two test
cases. Good concurrency and fewer seek and read operations
help EDO achieve a maximum speedup of 37 times and 7
times for planes of slow-varying dimensions compared to LC
and ORG, respectively. We also observe that read overhead of
chunking do not impact the performance of EDO for Case S.
But distinct performance differences are observed for Case X
across three planes.

We conduct the same evaluation when the stripe count is
changed to 137 with maximum of 512 readers. We show
peak performance in Figures 8(c) and 8(d). Adding more
OSTs help three data organizations improve their bandwidth.
Particularly, ORG delivers the best performance because of
good concurrency as shown in Table II. Even so, EDO is able
to achieve performance close to ORG, without sophisticated
user efforts in determining that 137 storage targets are optimal
for this combination of data size, writing process count and
data organization. Same cost of redundant read is observed on
Case X, which will be discussed in Section V-B.

In view of its consistent and balanced performance results
for all planes with different stripe counts, we believe EDO
can be used as a better data organization strategy, particularly
beneficial in supporting user convenience and consistent near-
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Fig. 8: Performance Differences Across Different Planes
(Logscale)

optimal performance.

B. Performance of Intra-PG Ordering for Large Datasets

As observed in the previous section, the problem of reading
extra data becomes more pronounced when the array size
becomes larger. This happens to both ORG and EDO. Thus,
on top of PG-level organization using Hilbert Curve, we
apply subchunking for intra-PG ordering and then evaluate
the performance for planar reads.

Our tests focus on Case X, for which we have observed
a great deal of imbalance across different planes. With sub-
chunking, each PG is decomposed into up to 16 subchunks.
The main purpose of this approach is to further improve the
read performance of i j and ik planes. Thus, only the results
for these planes are shown. In Figure 9, subchunking for intra-
PG ordering speeds up the read performance further. This is
because the finer the PG decomposition is, the less redundant
data will be read. Moreover, decomposing PGs reduces the
size of each request, which can be served faster by storage
devices. However, more seeks are involved with subchunking.
Overall, we observe EDO with 8 subchunks delivers the
highest bandwidth, achieving an improvement as much as 3
times compared to EDO organization without subchunking
(EDO-1subchunk), and 22 times compared to ORG. Further
decomposition of PG into 16 subchunks degrades the perfor-
mance due to more seek operations. It also can be attributed to
contention at the storage side because of the increasing number
of small requests. Last but not least, the intra-PG ordering with
8 subchunks does not increase the time of data generation. For
the maximum of 1,024 writers , an increase of 6% to the write
time is observed.

C. Scalability of Planar Reads

We also examine the performance of planar reads with an
increasing number of writers. In this experiment, the number
of readers is fixed to 512, while the data being read is written
by different number of processes ranging from 1,024 to 8,192.

Thus the amount of data read by each process increases
accordingly. Both Hilbert curve and subchunking are used
for EDO in this case. The results for Case X are shown in
figures 10. Once again EDO is able to maintain good and
consistent performance.

D. Planar Reads of Multiple Variables

  0
  10
  20
  30
  40
  50
  60
  70
  80
  90

LCORGEDO

B
an

d
w

id
th

(M
B

/S
ec

)  jk
 ik
 ij 

(a) 36 Readers

  0
  10
  20
  30
  40
  50
  60
  70
  80
  90

LCORGEDO

B
an

d
w

id
th

(M
B

/S
ec

)  jk
 ik
 ij 

(b) 72 Readers

Fig. 11: Read Planes from Multiple Variables

Another common access pattern from scientific codes is to
read planes from multiple variables, for example, reading a
slice of data from 9 variables out of 14 variables. The ratio
of writers to readers is normally 10 : 1 or 20 : 1. To evaluate
the performance of EDO for such patterns, we design a test
case that has 8 double precision 3-D arrays written by 720
(10× 6× 12) processes. For each variable, a process writes a
22×36×22 3-D array resulting in a global size of 264×216×
220. So the total data size is 765.7 MB. One plane is 445.5
KB. We set the stripe count as 40 and the stripe size as 2 MB
so that data created by one process is written to one OST.
Only Hilbert curve is used for PG-level organization within
EDO.

We evaluate the performance of reading 2-D planes from 5
out of 8 variables. 36 and 72 processes are used, respectively,
corresponding to 1/20 and 1/10 of the original 720 writers. The
results are shown in Figure 11. LC has the best performance
for jk planes. But because of contention, adding more read
processes decreases the bandwidth. More seek operations
again degrade the performance of ik and i j planes. ORG
achieves nearly the same performance on jk and ik planes be-
cause their data chunks spread to all 40 OSTs. The difference
is due to more extraneous data is retrieved for ik planes. The
performance drops significantly for i j planes, especially for
72 processes. This is because such planes are only located on
10 OSTs, compared to the maximum of 35 OSTs using EDO.
With 36 processes, the contention is not as severe as that of 72
processes, thus relatively higher bandwidth is observed. EDO
performs slightly lower than but comparable to ORG for jk
and ik planes. This can be attributed to the difference between
the number of OSTs. Overall, EDO delivers consistent and
balanced read performance for all planes under both cases and
with any choice of striping parameters.

E. Read Performance of Subvolume

A subvolume is an orthogonal, rectangular cube within a
multidimensional variable. For these experiments, the small
and large data cases are examined using 128 storage targets
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Fig. 9: Benefits of the Hybrid Format of EDO and Data Chunking
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Fig. 10: Planar Performance with Scaling of Writers(Readers=512, stripe=128)

for all three data organizations. To represent an arbitrary
subvolume, a volume that containing one-eighth of the total
data size is read from the center of the logical simulation
area. Each dimension of the subvolume is half of the maximal
dimension size. Only Hilbert curve is used for PG-level
organization within EDO. Figure 12 shows the experimental
results.
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Fig. 12: Subvolume Performance (writers=4096, stripes=128,
subvolume size (S/L) = 31.25MB/3.81GB)

In both cases, EDO is able to cover more OSTs than
ORG, i.e. 128 and 64, respectively. 64 OSTs are enough to
serve up to 512 readers effectively. Thus we observe similar
performance between EDO and ORG, with EDO performing
slightly better. Even though LC is able to use all OSTs in both
cases, its performance suffers because reading a subvolume
requires more seek operations. Overall, EDO is able to provide
consistent and balanced read performance for planar reads.
For cases like reading a subvolume where a dataset covers
enough storage targets, EDO is able to achieve the peak read
performance.

F. Impact to Data Generation

To examine possible performance impact of EDO to write
operations, we evaluate its overhead in terms of time increment
to data generation between ORG and EDO. Overall, a max-
imum of 5% overhead is observed among all the test cases.
Detailed results are not included. This test indicates that EDO
has negligible impact to the generation of multidimensional
datasets in scientific applications.

VI. RELATED WORK

Improving the performance of data-intensive applications
has been an active research topic in various domains. Lofstead
et al evaluate and understand the performance of many of the
reading patterns for extreme scale science applications [26].
Many approaches have explored data staging and caching to
either bring data a priori, or buffer data temporarily, respec-
tively, in anticipation of performance savings of future data
access. For example, staging has been exploited for grid-based
scientific computing [22], [7]. The staging approach adopted
for grid environments is quite different from what is applicable
to closely integrated systems such as supercomputers. The
PreDatA [47] system creates a staging area in which data
can be prepared through annotation, filtering, indexing, and
organization, for efficient post-analysis. Zazen [42] makes
intensive use of more storage devices, and caches simulation
data as a series of small files across multiple disks of a
networked analysis cluster. In doing so, it improves the read
performance of data analysis. However, neither PreDatA or
Zazen examines the performance of data reordering strategies
for I/O performance improvements.
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Many studies have investigated different data organiza-
tions for boosting I/O performance. For example, log-based
data organization is exploited for databases [15] and vari-
ous file systems [39], [41], [44]. Sarawagi et al. [40] have
categorized the strategies for efficient organization of large
multidimensional arrays into four classes, namely chunking,
reordering, redundancy, and partitioning. Fan et al. [13]
proposed a latin cube strategy to put neighbor elements into
one shared memory module to improve I/O performance.
Because of the natural thinking of the disk traversal, the
logically contiguous format has been adopted by many popular
I/O libraries including NetCDF versions 3 [32] and 4 [43],
HDF5 [28], and PnetCDF [24]. Through the terascale era, this
worked extremely well. In fact, HDF5 can achieve excellent
performance [46]. With the size and complexity of modern
storage arrays, the read performance for 3-D arrays for restart
purposes does not measure up for the logically contiguous
format, compared to a log-based format [36]. Our work builds
on these previous results by examining how SFC-based data
organization on storage targets can improve the I/O perfor-
mance of a common analysis pattern, i.e., reading a plane of
different dimensions from multidimensional arrays.

Space filling curves are widely used [3] because of their
good spatial locality properties, especially in spatial database
researches such as [38], [14]. Lawder et al. [23] have explored
different kinds of space filling curves to develop indexing
schemes for data layout and fast retrieval in multidimensional
databases. Pascucci and Frank [35] have used a global indexing
scheme to reorder regular grids based on Lebesgue’s space
filling curves so that the performance of progressively render-
ing of multidimensional datasets was improved. Jagadish et
al. [19] have examined the linearization of multidimensional
data chunks through space filling curves. They have concluded
that the Hilbert Curve outperformed all other curves. Moon et
al. [30] have demonstrated that the Hilbert Curve can achieve
better clustering than both z- and gray-coded curves in two-
dimensional and three-dimensional spaces. Hu et al. [18] have
used a Hilbert curve for data reorganization and achieved
substantial improvements in the performance of fine-grained
irregular applications on shared memory systems. Kuo [21] et
al. also used Hilbert curve to reorganize the multidimensional
datasets. However, they focused on examing the subarray,
which is less impacted by the data distribution, and the scale
of study is not comparable to today’s petascale systems.

In contrast to previous approaches, the present study uses
space filling curves to organize data chunks that naturally
arise from the data distribtion in a parallel simulation. As
we described in the previous sections, this SFC-based data
reordering approach achieves many performance benefits when
reading complex data elements from a multidimensional
datasets without causing performance losses when writing the
same datasets.

VII. CONCLUSIONS

As an extension of ADIOS, we have designed and developed
EDO (Elastic Data Organization) for efficient data retrieval

from scientific multidimensional datasets. Multiple organiza-
tion strategies are supported as selectable algorithms for data
ordering at two different levels. The first level uses Hilbert
curve for distributing and ordering ADIOS data groups. By
using this strategy, data from scientific multidimensional ar-
rays can be distributed in a balanced manner across all storage
devices, so that the aggregated bandwidth can be effectively
aggregated and exploited for challenging read access patterns,
particularly planar reads. A subchunking strategy is also intro-
duced for data ordering at the intra-PG level, splitting a large
data chunk into many small subchunks. This helps achieve a
good tradeoff between the number of seeks and the amount
of read overhead for large data datasets. Together, EDO is
able to deliver consistent and balanced read performance
for all types of planar reads from multidimensional arrays.
We have mathematically validate the performance benefits
of EDO on large-scale parallel file systems. We have also
experimentally evaluated the performance of EDO using the
Jaguar supercomputer at Oak Ridge National Laboratory. Our
results demonstrate that EDO can improve the performance of
planar reads by as much as 37 times.

In the future, we plan to exploit more data ordering tech-
niques to integrate into EDO for other access pattern such
as multi-resolution arrays. We also plan to study the data
organization strategies on the other file systems that do not
support changing the stripe parameters on the fly such as
GPFS.
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