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ABSTRACT
Over the past decade, the trajectory to the petascale
has been built on increased complexity and scale of the
underlying parallel architectures. Meanwhile, software de-
velopers have struggled to provide tools that maintain the
productivity of computational science teams using these
new systems. In this regard, Global Address Space (GAS)
programming models provide a straightforward and easy to
use addressing model, which can lead to improved produc-
tivity. However, the scalability of GAS depends directly
on the design and implementation of the runtime system
on the target petascale distributed-memory architecture.
In this paper, we describe the design, implementation,
and optimization of the Aggregate Remote Memory Copy
Interface (ARMCI) runtime library on the Cray XT5 2.3
PetaFLOPs computer at Oak Ridge National Laboratory.
We optimized our implementation with the flow intimation
technique that we have introduced in this paper. Our
optimized ARMCI implementation improves scalability of
both the Global Arrays (GA) programming model and a
real-world chemistry application – NWChem – from small
jobs up through 180,000 cores.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming

General Terms
Performance
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Systems with unprecedented computational power are
continuously pushing the frontier of high performance com-
puting (HPC) [2]. Several sites have deployed systems
that can perform 1015 floating point operations per second
(petaflop): Cray XT5 (a.k.a. Jaguar) at the Oak Ridge
National Laboratory (ORNL), IBM Cell-based system at
Los Alamos National Laboratory (LANL), BlueGene/P
at Forschungszentrum Juelich (FZJ). These facilities are
used to solve important computational science problems in
areas such as climate modeling, life sciences, and energy
production. Yet many challenges in scientific productivity
and application efficiency continue to plague these systems
as they grow to unprecedented number of processes and
complexity.

In this regard, GAS (Global Address Space) programming
models - both the Partitioned and Asynchronous Partitioned
Global Address Space - are being considered as an alter-
native model for programming these complex machines to
improve productivity and application efficiency.

Briefly, a GAS model provides an abstraction that allows
threads to access the remote memory of other nodes as
if they were accessing local node memory using hardware
shared memory. By virtue of the abstraction they provide,
partitioned Global address space languages like Unified
Parallel C (UPC) [3], Co-Array Fortran (CAF) [11], and
Global Address Space libraries such as Global Arrays (GA)
Toolkit [1] have the unique ability to expose features, such
as low-overhead communication or global address space
support in the underlying hardware. Systems that lack
one or more of these features typically result in poor
performance.

Conceptually, Global Address Space (GAS) models do not
differentiate between local and remote accesses. By contrast,
Partitioned Global Address Space (PGAS) is a category
of GAS models that requires applications to explicitly
distinguish between local and remote memory accesses,
while providing simple mechanisms for reading, writing, and
synchronizing remote memory. One benefit of this explicit
separation is that the user is forced to consider and optimize
the performance of remote memory access while leaving the
optimization of local memory accesses to the compiler.

Recently, a slightly different category of PGAS model,
termed Asynchronous Partitioned Global Address space
model, has emerged to add additional capabilities such as
remote method invocations. IBM’s X10 language [5] and
Asynchronous Remote Methods (ARM) [23] in UPC have
pioneered this new model.



All the above mentioned GAS languages and libraries
use the services of an underlying communication library
(which we refer to as the GAS Runtime) for serving their
communication needs. GAS languages normally use this
runtime as a compilation target to do the data transfers on
distributed memory architectures. They have a translation
layer that translates a GAS access to a corresponding data
transfer on the underlying system using the GAS runtime.
Two example GAS Runtime libraries are GASNet [7] and
ARMCI [18], both of which are used in numerous Global
Address Space languages and libraries. In these runtime
systems latency tolerating features such as non-blocking
data transfers and message aggregation enable the GAS
languages and libraries to obtain the best possible, close to
the hardware, performance on clusters.

In this paper, we demonstrate the scalability of a specific
Global Address Space model - Global Arrays - by designing
and implementing a highly scalable port of its GAS runtime,
ARMCI . This scalable GA/ARMCI ultimately enables the
scaling of a real scientific application (the electronic struc-
ture methods of the chemistry computer code NWChem) to
180,000 cores on the 2.3 PetaFLOPs Cray XT5 at Oak Ridge
National Laboratory. Our design and implementation of the
Aggregate Remote Memory Copy Interface (ARMCI) on the
Cray XT5 hardware uses the Portals communication layer1.
To achieve this scalability, we introduce the concept of flow
intimation – a unique and a useful technique that enables
us to achieve performance at scale and yet use limited
buffer space for one-sided communication. This end goal
of performance at scale influenced every step of this project
by aiming to efficiently exploit all of the system’s hardware
components: high-speed network, aggregate memory size,
and multi-core components of the processing nodes of the
Cray XT5.

The rest of the paper is structured as follows: we start
with an overview of the structure of Global Arrays library
in Section 2; we discuss the validation benchmarks we used
and the connection setup details in Section 3; we describe
the issues we faced in scaling this model with relation to the
features of the physical network interconnect (Seastar2+)
and the lowest level API to program it (Portals) in Section 4
(this section also introduces flow intimation); and finally we
discuss the achieved performance in the context of NWChem
in Section 5 and conclude with future steps in Section 6.

2. AN OVERVIEW OF GLOBAL ARRAYS
The Global Arrays (GA) library provides an efficient

and portable GAS styled shared memory programming
interface for distributed memory computers. Each process
in a parallel program can asynchronously access logical
blocks of physically distributed dense multi-dimensional
arrays, without the need for explicit cooperation by other
processes. GA is a unique GAS model that provides explicit
functionality to realize the difference between local and non-
local data accesses, supports asynchronous data accesses,
provides interfaces that translate to remote procedure calls,
and naturally supports load-balancing. GA is equipped with
the ARMCI runtime system to support blocking and non-
blocking data transfers for contiguous, vector and strided
data transfers. The model of execution in GA is multiple

1Portals is the lowest level communication library available
on the XT5

Figure 1: The Structure of the Global Arrays library
on the Cray XT5

single-threaded processes per shared memory node, with all
sharing done through the GA library via ARMCI.

The structure of GA is shown in Figure 1. The application
(in our case NWChem) uses only the GA interfaces, a
message passing wrapper (to initialize the message passing
library), and the MA layer. The rest of the elements seen
in the figure are not exposed to the user application. The
highlighted area in the figure shows the primary components
of GA: the Distributed Array layer (DA), ARMCI,
and the Memory Allocator (MA). MA provides simple
interfaces to allocate “local” memory. We will further
describe the DA layer, the GA programming interfaces, and
ARMCI.

2.1 Distributed Array (DA)
DA is the layer in GA that realizes the virtually shared

memory access and translates it to actual process/virtual-
address information. A simple shared memory style access
to a section of a GA data array can translate to multiple
blocks of physically distributed data. This is the layer that
gives the GA operations the information about the actual
location of the data. Such translation subsequently results
in calls to one-sided ARMCI calls.

2.2 Programming Interfaces in GA
GA provides a plethora of interfaces that operate on the

array abstractions. Most of the interfaces are described
in [15]. There are three main categories of GA interfaces of
interest here: array creation, one-sided, and data parallel.
All the GA interfaces have both C and Fortran bindings.

The array creation interfaces result in the creation of data
structures that are later used by the Distributed Array layer.
Subsequently ARMCI memory allocation interface is used
to allocate the actual memory for the array. An example of
2D-array creation interface in Fortran: logical function

ga_create(type, dim1, dim2, array_name, chunk1,

chunk2, g_a). The memory allocation, the data structure
and the allocation, and their sizes need to be handled
carefully.

The GA one-sided operations, after the necessary index
translation using the DA layer, result in calls to the ARMCI
one-sided API. Access to a GA segment via a one-sided
operation may result in multiple non-blocking ARMCI
function calls based on the distribution of physical array.
Very efficient, low latency, non-blocking calls are important
for GA. With the number of ARMCI calls made in a



typical NWChem run (discussed in section 5), even sub-
micro second saving in each call collectively amounts to a
noticeable performance difference in the application. An
example of a GA one-sided operation to get a section of a
remote array into a local buffer is: subroutine ga_get(g_a,

ilo, ihi, jlo, jhi, buf, ld).

GA data parallel operations are collective in nature, and
may translate into several ARMCI one-sided and atomic
function calls, simultaneously, across all the involved pro-
cesses. An example of a data parallel operation to scale
and add two arrays g_a and g_b into a third array g_c in
Fortran is: subroutine ga_add(alpha, g_a, beta, g_b,

g_c). Since several ARMCI function calls may be made
simultaneous at the scale of the entire system, controlling
the flow of these messages is a critical problem to address.

GA is optimized to overlap intra-node data transfers in
shared memory and inter-node data transfers using non-
blocking ARMCI calls.

2.3 The ARMCI Runtime System
GA uses ARMCI as the primary communication layer.

Neither GA nor ARMCI can work without a message-
passing library and elements of the execution environment
(job control, process creation, interaction with the resource
manager). ARMCI, in addition to being the underlying
communication interface for GA, has been used to imple-
ment other communication libraries and compilers [11, 21].
ARMCI offers an extensive set of functionality in the
area of RMA communication: 1) data transfer operations
(Get, Put Accumulate); 2) atomic operations; 3) memory
management and synchronization operations; and 4) locks.
Communication in most of the non-collective GA operations
is implemented as one or more ARMCI communication
operations.

ARMCI supports blocking and non-blocking versions of
contiguous, strided and vector data transfer operations
along with Read-Modify-Write operations. ARMCI uses the
fastest available mechanism underneath to transmit data.
For example, it uses shared memory with-in the node and,
on the Cray XT5 system, uses Portals library for inter-
node communication, as will be detailed in this presentation.
ARMCI provides collective memory allocation interfaces,
which allocate communicatable memory2. On the Cray XT5
system, the Portals library can be used to transmit data in a
one-sided fashion from any address in the processes virtual
memory address space, as long as a Memory Descriptor [8]
representing that memory is posted to the portals layer.
Before we describe the design of one-sided communication in
ARMCI that enabled GA and NWChem to run at petascale,
we briefly describe the validation benchmarks and discuss
the network connection details that were required to setup
one-sided communication in ARMCI.

3. VALIDATION BENCHMARKS AND CON-
NECTION SETUP

Strategies for designing ARMCI interfaces on various
networks have always been based on benchmark perfor-
mance and user (Global Arrays, Co-Array Fortran, etc)
requirements. Therefore the challenges are different for

2Memory is communicatable when all the necessary steps
required by the communication library in order to send
messages to this memory are performed at its allocation
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Figure 2: Message Profile of DFT: Total messages
per process divided in power of two bins

various systems [17–20, 25]. The size of targeted systems
for earlier efforts was hundreds or thousands of cores at
the most. Issues like memory usage for connection setup
and duplication of this between the message passing library
and ARMCI were not considered as bottlenecks due to the
small number of processing cores. Design decisions were
focused on performance of each individual functionality and
microbenchmarks.

Systems today have hundreds of thousands of cores and
systems with millions of cores are not too far in the future.
For example, the Jaguar Cray XT5 at ORNL has over
200,000 processing cores. For such large systems it becomes
imperative to consider the impact on the applications for
every design choice. Choices made during connection setup
also need thorough consideration. We will briefly describe
the validation benchmarks used throughout our design
before discussing the connection setup.

3.1 Validation Benchmark
We designed a Get/Accumulate microbenchmark to run

on two nodes (16 cores). All but one process in the
benchmark are computing. The process 0 (which is on node
0) does a one-sided, non-contiguous, ARMCI Get and a one-
sided ARMCI Accumulate to each of the eight processes
on node 1. The objective of this microbenchmark is not
to measure the impact of communication on computation
but, rather, the vice-versa. This microbenchmark is run for
messages sizes varying from 8 bytes to 128KB.

In addition to this microbenchmark, the DFT module
of NWChem is used to validate the choice during each
step of the design (DFT and its details are described
in detail in Section 5). The characteristics of message
sizes and the corresponding computation/communication
intervals of DFT reflect that of some of the other NWChem
modules. Figure 2 shows the sizes and the frequency
of different messages of a 128-process run. The profile
measures the Exchange-Correlation (XC) kernel of DFT,
including approximately 8 million total ARMCI Put, Get
and Accumulate calls. During the measurement, bins are
formed with power-of-two message sizes, the number of
messages are counted into these bins based on the size. For
example, the 4KB message size point in the graph represents
all messages of size between 2048 bytes and 4095 bytes.



Process 0 has a spike at the 4KB point, it sends 150,000
more messages in the 2k-4k range than all other processes.

3.2 Connection Setup and Management
Because of the design of the Cray provided software stack

on the XT5, connection setup and management, which is
otherwise a very challenging issues for ARMCI, is almost
a no-op on the Cray XT5. Application Level Placement
Scheduler (ALPS) is the Cray supported mechanism for
placing and launching applications, ARMCI uses ALPS for
process startup and placement on the Cray XT5 system.

One of the first steps in the initialization of ARMCI
is network connection setup. This part of ARMCI and
is dependent on the support from the underlying network
hardware and its communication software library. On the
Cray XT5, the Portals communication library is the lowest
level library available to program the Seastar2+ network
interconnect. The Portals library doesn’t require its users
to maintain connection state. Just a Network ID (NID) and
Process ID (PID) pair is sufficient to send a message to any
process in the system. Even this NID/PID pair doesn’t need
to be exclusively stored by the user (in this case ARMCI).
An array of NID/PIDs is created in shared memory and
a pointer to this shared location may be obtained. This
eliminates the need for redundant copies of the NID/PID
information needed for subsequent communication to the
processes in the rest of the system. Note that despite the
fact that NID/PID are merely two integers, on a system with
hundreds of thousands of cores, just a copy of this on each
process amounts to a lot of memory that would otherwise
be available to applications.

To support the connection-less Portals interfaces, the Cray
Seastar2+ allows for 256 simultaneous message streams.
When additional streams need to be initiated (or in case
of resource exhaustion), the Cray BEER (Basic End to
End Reliability) protocol does the necessary flow control
and handles reliability completely transparent to the user.
This makes it much easier to write the network connection
setup code for the Portals communication layer. We believe
“hiding” (e.g. Seastar) or eliminating the need to maintain
pair-wise connection state at the user level is essential to the
scaling of PGAS runtime systems.

4. DESIGN OF ARMCI ONE-SIDED COM-
MUNICATION ON XT5

All contiguous ARMCI Put/Get interfaces were directly
implemented on top of the Portals Put and Get calls.
The three categories of one-sided calls in ARMCI to be
considered during the design are: a) non-contiguous ARMCI
Put/Get; b)accumulate; c) Read-Modify-Write(RMW); and
d) Lock/Unlock. In addition, there are the collective
memory allocation operations to prepare communicatable
memory. We first started with a naive solution (described
in [24]), translating all the above mentioned categories into
multiple contiguous portals calls.

Several techniques for transmitting non-contiguous data
have been discussed in Tipparaju et al. [25], all of them can
be applied here. However, preliminary benchmarking (cf.
Section 4.2) demonstrated that the server-based technique
was ideal for non-contiguous and atomic operations on the
XT5. In this technique, a communication helper thread
is spawned on each node. One-sided messages that don’t

directly have a corresponding portals call are packed and
sent to the communication helper thread. The helper thread
receives, unpacks and processes the messages on behalf of all
the processes on the node. For the rest of this discussion, all
the application processes are referred to as clients and the
Communication Helper Thread is referred to as CHT. Before
discussing CHT, we first describe how CHT can access the
memory of any client on the node.

4.1 Collective Memory Allocation
The collective memory allocator in ARMCI is used to

allocate memory for global arrays of data. One restriction
of ARMCI library is that ARMCI one-sided calls may
only access remote memory when it is allocated with
an ARMCI memory allocator. Both collective and non-
collective versions of the memory allocator are provided in
ARMCI. System V shared memory is allocated on the Cray
XT5 by the ARMCI memory allocators. This enables intra-
node data movement through shared memory. It also makes
the entire memory available for remote communication on
a node accessible by any client on the same node, including
CHT.

4.2 Communication Helper Thread (CHT)
The CHT in ARMCI (also referred to as the Data

Server) has traditionally been spawned either as a duplicated
process (using fork() system call) or as a thread by using
the pthreads library. However, neither of these methods
are suitable for Cray XT5. The child process must not
inherit the parent’s stack as this contains “network identity”
information for the portals library to identify a process.
This network identity, which seeps into multiple network
data structures in the portals library, prevents CHT from
initializing or using the Portals library. To address this
problem, we used the clone() system call to start CHT
with a clean stack. This enables CHT to initialize its own
Portals communication including the network identity, and
use it for sending and receiving messages.

The lowest ranked client in every node clones to create
the dedicated thread CHT. This thread is then used in
receiving non-contiguous messages, accumulate messages,
read-modify-write, and lock operations. A CHT receives
messages for all the clients on the same node. It waits for
messages from the clients. CHT does so by waiting on events
generated from any communication to its portal. If a CHT
were to poll on this event queue, valuable CPU resources
may be wasted in polling. The Cray Portals library allows
for an alternative. To avoid polling, we set the environment
variable CRAY_PORTALS_USE_BLOCKING_POLL from CHT to
make the thread block when no messages are in the queue
and leave the compute core for the client to do their
computations. This logic is simple and yet has several
characteristics that reduce the pressure on the network.

• Fair communication scheduling: this is probably the
biggest advantage. Each source that needs to send
a message via CHT can only send n messages asyn-
chronously (n determined based on the total process
count to limit the server buffer memory). It can only
send the n + 1th message when one of the previous n

has been acknowledged. The first advantage is that
even when the server has thousands of messages to be
processed in the queue, n messages can still be sent
by each client asynchronously. The second advantage
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Figure 3: Naive implementation vs. Helper thread for non-contiguous Get and Accumulate (left) and
NWChem DFT Benchmark (right)

is that if a client has to send a very large number
of messages to CHT, it prevents other clients from
starving for CHT’s processing of its messages.

• Many to one case: when pathological scenarios (such as
all clients in the system trying to increment one value)
arise, CHT is able to process them in a sequential and
fair manner. For example, in a general case, when
a network is used to implement a lock functionality3,
every failed attempt from every client to acquire a lock
results in one additional network message. On the
other hand, when using CHT, a lock request is only
sent once and the request stays on at CHT until it
succeeds.

• Natural Serialization: operations such as Accumulate
merely require the guarantee of the commutative
property [16]. Hence they can be implemented without
a need for explicit locks if multiple simultaneous
accumulates can be serialized. CHT, with its network
message queues, provides the serialization at no addi-
tional cost (such as the cost of a lock). When there
are many threads serving as CHTs, each thread still
provides natural serialization for the client processes
it supports (communication between clients served by
a CHT is via a CHT).

• Cache Reuse: All incoming message that CHT pro-
cesses have the potential to be reused by the applica-
tion running on the same CPU socket. Note that we
haven’t measured the percentage of cache reuse for our
application.

We have two different tests that evaluate the benefits from
CHT:

• The first, Figure 3 (left), is a microbenchmark that
measures the bandwidth of Accumulate and non-
contiguous Get. It compares the difference between
using CHT vs. converting the non-contiguous data
transfer to multiple portals calls (these two methods
implement Accumulate as described in [16]). This
is also a benchmark that selects the most suitable

3that can be implemented by using the Portals Ptl GetPut
call

method from the ones described in [25]. In addition
to the Naive and the CHT method, the Host-Assisted
Zero-Copy (HAZC) method is also shown in Figure
3 (left). In this method, non-contiguous calls are
converted into portals network scatter/gather calls. It
is important to note that that the HAZC numbers in
the graph are not much better than our naive approach
as both of them are implemented in software (the
portals vector calls don’t utilize any additional Seastar
hardware support and are implemented in software).

• The second, Figure 3 (right), is a DFT run as described
in Section 3.1. The DFT benchmark executes in much
shorter time when using CHT.

Clearly, the helper thread approach is more suitable for
both the microbenchmark (Accumulate and non-contiguous
data transfers) and the application benchmark (DFT).
Many of such helper threads may be spawned for larger
SMP- and Many-core architectures. In our case, with
the 8-core XT5 node, one helper thread was sufficient.
Contiguous Get and Put messages are transmitted directly
through the portals calls without the involvement of CHT
while non-contiguous, accumulate, lock, and Read-Modify-
Write(RMW) operations are sent to CHT to be processed
on behalf of all the processes on the remote node.

4.3 Core Affinity
CHT shares the CPU core with the client that spawns it,

in our case, this is the lowest ranked application process.
However, the scheduling of CHT needs thorough considera-
tion. Leaving it to run on the same core as the client causes
imbalance in computations because CHT also processes
accumulate calls (accumulate, in addition to data movement,
also requires computation). Rapidly moving the helper
thread between CPU cores is expensive, it impacts the cache
usage and has latency associated with rescheduling. Hence
we adopt a formula that considers the following logic to
reschedule the helper thread: n*(8*compute_bytes + com-

munication_bytes)>Threshold. If this boolean expression
is true, the CHT thread is rescheduled. However, for most of
the NWChem runs on the Cray XT5, this is not required for
the reason described below. The glibc sched_setaffinity

call was used to change the CHT affinity.
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The 8-core Jaguar Cray XT5 system at ORNL has about
75 GigaFlops floating point compute capacity per node, 25
GB/s shared bandwidth to memory and 3GB/s unidirec-
tional shared bandwidth to network. This gap between
the memory bandwidth and floating point performance can
be utilized to our advantage. CHT checks to see if the
application has been spawned on all the cores on the XT5
node. If not, CHT sets its affinity to any unused core on the
node. Instead of contending for memory bandwidth with
all eight clients and one CHT, NWChem may also run 7
compute processes and let the CHT utilize the remaining
CPU core. There are some modules of NWChem that
benefit from running on 7 of the 8 compute cores on the
XT5 node. When only 7 out of the 8 CPU cores are
used for computation, the helper thread is automatically
scheduled to the free core. The affinity logic helps balance
the CHT load better for codes that use all 8 cores on
the XT5 node and prevent interference with applications
computation for codes that use less than all 8 available
cores on the XT5 node. We ran both the microbenchmark
and DFT application kernel to compare the runs with and
without affinity. Figure 4 shows both the runs. For the
DFT benchmark here (Figure 4 (right)), the advantage of

balancing the CHT load by changing affinity can be clearly
seen from the figure. The microbenchmark (Figure 4 (left))
however shows the opposite behavior. This is due to the
tight loop in which the measurements are taken. The cost
of moving this thread around reflects directly on the tight
communication loop so does the cache footprint. Given the
benefit to the application benchmark, the affinity switching
logic has been made a configurable option.

4.4 Buffers and Flow Control
Buffer management and flow control are critical to the

performance for messages transmitted via CHT. Several
techniques have been proposed for buffer management [6,19].
Here we describe the details of buffer management and its
flow control. We propose a scalable technique referred to as
flow intimation, to achieve performance with a few buffers.
There are two kinds of buffers in use when utilizing CHT
for message transmission: client buffers and CHT buffers.
Client keeps a few (static number) of buffers to send data to
CHT. CHT has to allow for at least one unacknowledged
message per client and hence requires at least as many
buffers as the number of clients. We discuss the performance
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Figure 6: Flow Intimation: non-contiguous Get and Accumulate (left) and NWChem DFT Benchmark (right)

impacts of the size and number of buffers, as well as that of
flow control.

4.4.1 Number and Size of Buffers
For a scalable solution, CHT bounds the value of the total

memory it uses for receiving client messages. The upper
bound on the individual buffer size is based on the number
of processes that are being used. Although there isn’t an
accepted or recommended size of the total memory to use
inside a GAS runtime, considering our largest configuration
(150K process run), we limit our memory usage to under
5% of XT5 node memory. By limiting the total amount of
memory consumed by the GAS runtime, we are able to scale
the application successfully by allowing it to use most of the
available memory on the system. However, Figure 5 clearly
shows that in the Get/Accumulate microbenchmark, more
buffers of larger size show significant increase in bandwidth,
in some cases the bandwidth was doubled. In Figure 5
(left), the microbenchmark shows three different cases for
Get and Accumulate one-sided calls. The label in the figure
indicates how many buffers are available at the CHT for each
client and the size of the buffer. For example, 2 Buffer 4K

means CHT has 2 Buffer per client and the size of each
such buffer is 4 KB. It can be seen in the figure that the
4 buffers each of 128 KB per client case does much better
in the microbenchmark (because all the messages under 128
KB just fit in the buffer and splitting into multiple buffers
is not necessary). But for 150,000 clients, this computes to
about 72GB of buffer space per node. The challenge here is
to minimize the CHT buffer space and yet not compromise
performance. This is addressed by the flow control and the
flow intimation techniques as detailed below.

4.4.2 Flow Control
For every message the client sends from the client buffer

to the CHT buffer, CHT sends an acknowledgment back
to the client. Before sending the acknowledgment back
to the client, the CHT checks to see if it can coalesce
the acknowledgments. Coalescing logic is only enabled
when there are at least four buffers per client. The
acknowledgment both synchronizes the client-CHT buffers
and does flow control. In addition to this, all the contiguous
Put and Get messages that are not transmitted via the

buffers or CHT have a simple source-credit based flow
control. A combination of CHT acknowledgments and credit
is used to implement the Fence4 operation. When using
the client-CHT buffers for transmitting non-contiguous data
and accumulate, the performance depends on the number of
buffers and their size.

4.4.3 Flow Intimation
To achieve the effect of using many large buffers and

yet not increase the overall CHT buffer usage to over 5%
of total memory per node, we propose and implement the
Flow Intimation technique. The GAS Runtime message
transmission logic is aware of whether an individual message
is first among many. Some scenarios of this awareness
include:

• transmissions of multidimensional strided data involve
the parsing of data structure through a recursive pack-
ing routine, hence some information about subsequent
transmissions is available

• any large accumulate or vector message that needs to
be broken down into smaller blocks for transmission
(based on buffer size) knows the total number of
upcoming blocks

• any one-sided call that needs to fence before sending
the message (this is typically done for correctness, for
example, to ensure message ordering).

As an example, to transmit a 128 KB non-contiguous block
with 16 KB buffers, the message is broken down into 16 KB
chunks, and individual chunk is packed and transmitted in
a pipelined fashion with flow control (described in [19]).

In scenarios such as these, client gives CHT an intimation
of upcoming flow and continues transmission as usual. When
CHT receives a message tagged with this intimation, it
checks to see if additional buffers (spare buffers) can be used
for the transfers it has been intimated about. It then tags
the flow control response with offset and the number of these
spare buffers available. In its regular handling of the flow
control response, if the client sees the acknowledgment tag

4fence is mechanism to check for remote completion of all
initiated one-sided operations



to its intimation, it immediately sends the rest of the buffers
based on the CHT response and expects just one aggregated
flow control response. Notice that flow intimation requires
just four additional long integers to be sent along with
the messages already being transmitted. Hence the lack
of buffers at CHT doesn’t add any more delay to the
communication.

Figure 6 is very similar to Figure 5, but it includes the
intimation logic. The amount of memory that can be used
for implementing this logic is flexible. For the microbench-
mark and application benchmarks in Figure 6, the size of the
spare buffer was 32 KB. Using a larger spare buffer (larger
than 32 KB) will certainly benefit the microbenchmark
(left) however, the impact on the application benchmark
was negligible. Hence with the same, two 3-KB buffers per
client, and merely 4 additional spare 32-KB buffers for all the
clients, flow intimation technique demonstrated significant
benefit. In case of the microbenchmark the bandwidth
was improved by three fold, the application benchmark
performed as well as the large buffer case. Since Global
Arrays is a library based GAS model and ARMCI is not
a compilation target for Global Arrays, the use of flow
intimation here is limited to non-contiguous data transfers
and accumulate operations. However, for scenarios where
ARMCI is used as a compilation target (for example, in
Chapel language [4] or Rice Co-Array Fortran [11]) there
are many more opportunities to utilize this technique.

5. PERFORMANCE AND SCALING WITH
A SCIENTIFIC APPLICATION

In this section, we report results from two most widely
used electronic structure methods in NWChem: Density
Functional Theory (DFT) and Coupled Cluster (CC). DFT
is the workhorse of electronic structure for its balance
between computational cost and accuracy (1998 Nobel prize
in Chemistry), whereas the more expensive CC method, in
its CCSD(T)5 incarnation, is labeled as the “gold standard”
[13] because of its remarkable accuracy. We have used DFT
primarily to measure the benefit of our CHT design, and CC
primarily to verify that the CHT design with flow intimation
has accomplished the goal of scaling an application to
petascale on GA.

5.1 Density Functional Theory (DFT)
The DFT siosi7 benchmark reported below computes the

matrix elements of the Local-Density Approximation (LDA)
Exchange-Correlation potential on molecular fragments for
a total of 3554 basis functions. The distributed-data algo-
rithm adopted in this computational kernel makes extensive
use of two GA calls: ga_get and ga_acc. The get operation
is used to fetch patches of the Density matrix Dµν to
compute the charge density function ρ(rq) on a set of grid
points following Equation 1

ρ(rq)+ =
X

µν

Dµνχµ(rq)χν(rq) (1)

5CCSD(T) is one of several CC methods that estimate
the effect of electron correlations by considering single,
double and triple excitations; single and double excitations
are fully computed with a self-consistent approach, while
the contribution of the triple excitations is computed
perturbatively
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Figure 7: Walltime to solution for the DFT siosi8
benchmark (7108 basis functions). The timing
includes the complete calculation to the convergence
of LDA wavefunction.

The charge density function ρ(r) can be used to compute
the Exchange-Correlation potential VXC [ρ(r)]. In the next
step, the Exchange-Correlation potential VXC [ρ(r)], com-
bined with Gaussian functions χλ(r) and integration weight
w, is then used for the evaluation of the Exchange correlation
matrix element Fλρ by means of numerical quadratures
according to Equation 2

Fλρ+ =
X

q

wqχλ(rq)VXC [ρ(rq)]χρ(rq) (2)

The resulting matrix element Fλρ is then stored into a
distributed global array by means of the GA accumulate

operation. The messages used in this implementation
correspond both to the patches of the Density matrix Dµν

that are fetched, and to the patches of the XC matrix Fλρ

that are stored. As described earlier, their size is fairly small,
in the order of 4KB, therefore resulting in an algorithm
that is more sensitive to the network latency than to the
bandwidth. As shown in the DFT scaling figures in the
previous pages, our optimized ARMCI implementation on
the 8-core Cray XT5 has enabled this critical NWChem
algorithm to achieve very good efficiency. Larger tests cases
(using larger molecules with a correspondingly higher num-
ber of basis functions) will result in even better scalability
at larger processor counts.

In Figure 7 we report the walltime for the complete
calculation of the LDA wavefunction with the DFT siosi8
benchmark; this benchmark is slightly large than siosi7 as
reported above (7108 vs. 3554 basis functions, respectively).
Note that in the previous DFT figures only the time to
compute the XC kernel is reported. The most striking
point in this figure is the larger effect in performance
improvements when CHT is used for the get operations.
Process counts up to 2K are shown. Beyond that, the
wall clock time stays flat primarily due to DFT’s latency
sensitivity and the small array sizes.

5.2 CCSD(T)
As stated above, the CCSD(T) is more expensive than

the DFT methods (its cost roughly scales as N7, while DFT



scales as N−N3, where N is the number of basis functions).
Therefore it is a natural candidate for demonstrating peta-
class performance once an efficient parallel implementation
is in place. We reported performance measurements by
using as the base the parallel implementation of CCSD(T)
in NWChem of Kobayashi and Rendell [14], which was
designed to effectively utilize massively parallel processors
and to minimize the use of I/O resources.

Previous CCSD(T) runs with the same NWChem imple-
mentation achieved a performance of 6.3 TFlops using 1,400
processors [22] on a cluster of Itanium2 processor with a
Quadrics QsnetII network, while more recent runs at PNNL
utilized 14,000 processors on an InfiniBand network of
Opteron processors [10]. What distinguishes the benchmark
numbers reported here is the unprecedented scale of the
calculations and floating-point performance achieved. We
run a series of benchmark with the 5.1 version of NWChem
[9].

We used the (H2O)18 water cluster with a modified cc-
pvtz [12] basis set for a total of 918 basis functions. This
benchmark was run on the Jaguar XT5 at ORNL. Figure 8
shows the walltime for (H2O)18 for different processor runs.
The Jaguar supercomputer used for these tests was recently
upgraded to Hex-core from Quad-core increasing the number
of cores per node from 8 to 12. In the graph on the left side
of Figure 8 we show the scaling for up to 90,000 cores on
the Quad-core Jaguar (before the upgrade). All 8 cores on
each node were used for computation. The last data point
at 90,000 processes reached a sustained 64-bit floating-point
performance of 358 TFlops. In the same figure, the graph on
the right side of the figure shows the scaling of (H2O)18 after
the upgrade. In this case, only 10 of the 12 cores per node
were used for computation. One core was exclusively left for
CHT utilization while the core 0 on socket 0 was left unused
(the reason for this had to do with the amount of OS activity
that was measured on this core and is outside the scope of
this paper). The last data point at 180,000 processes reached
a sustained 64-bit floating-point performance of 718 TFlops.

The above accomplished scaling with DFT and (H2O)18
the unprecedented double precision floating point perfor-
mance with (H2O)18 have adequately validated the effec-
tiveness of our ARMCI Runtime design and exemplified the
impact of GAS models for the Cray XT5.

6. CONCLUSIONS
We have examined a variety of issues in designing a

scalable ARMCI communication layer for the Global Arrays
(GA) programming model. Accordingly, we have exploited
many ideas used across the GAS community so far to im-
plement a petascale-ready GAS runtime. We demonstrated
a complete, successful, petascale GAS runtime solution for
the GA GAS model. We have also demonstrated the scaling
of a real scientific application that uses the GA model. This
solution is applicable to other GAS runtime and hence can
potentially be lent as a good precedent to their scalability.

In achieving our goal to enable a highly scalable GA model
for Jaguar, we have dealt with various issues, such as con-
nection setup and management, the CPU core affinity, buffer
management, and the flow control of buffers. Particularly,
we have found that flow control is critical to the GA model
because of the one-sided communication they advocate and
use. Buffering is necessary to implement some functionality
that network cards and their communication interfaces lack.

The buffer space for communication needs to be limited for
memory intensive applications. At the scale of hundreds
of thousands and millions of cores, smarter ways to utilize
buffer space for communication and deliver performance are
necessary. We have designed a Flow Intimation technique
to reduce the burden on the network, control the number
of total messages in flight, reduce contention, and yet be
able to deliver good performance. Our implementation
of Flow Intimation demonstrated the success with 180,000
cores. We believe issues addressed here at petascale, such as
those on buffering and flow control, can offer an exemplary
perspective on what it will take to support a GAS model
beyond petascale.

In future, we look forward to further optimization of the
GA model on the Cray XT5 system, such as Jaguar, or
better scalability and scientific productivity. We also plan
to study the applicability of ARMCI to enable other GAS
models such as UPC and Co-Array Fortran.
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