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Abstract 
This paper presents an extensive characterization, 

tuning, and optimization of parallel I/O on the Cray XT 
supercomputer, named Jaguar, at Oak Ridge National 
Laboratory. We have characterized the performance 
and scalability for different levels of storage hierarchy 
including a single Lustre object storage target, a single 
S2A storage couplet, and the entire system. Our 
analysis covers both data- and metadata-intensive I/O 
patterns. In particular, for small, non-contiguous data-
intensive I/O on Jaguar, we have evaluated several 
parallel I/O techniques, such as data sieving and two-
phase collective I/O, and shed light on their 
effectiveness. Based on our characterization, we have 
demonstrated that it is possible, and often prudent, to 
improve the I/O performance of scientific benchmarks 
and applications by tuning and optimizing I/O. For 
example, we demonstrate that the I/O performance of 
the S3D combustion application can be improved at 
large scale by tuning the I/O system to avoid a 
bandwidth degradation of 49% with 8192 processes 
when compared to 4096 processes. We have also 
shown that the performance of Flash I/O can be 
improved by 34% by tuning the collective I/O 
parameters carefully. 
 

1 Introduction 

Systems with unprecedented computational power 
are continuously pushing the frontier of high 
performance computing (HPC). Various sites have 
already launched efforts to build systems that can 
perform a thousand trillion floating point operations 
per second (1015 flops) [18, 23]. Furthermore, the U.S. 
Department of Energy has also launched initiatives to 
prepare for the future era of exa-scale computing [4]. 
On such large-scale systems, scientific applications, 
such as those in astrophysics, climate, fusion, 
combustion, biology, and chemistry, are very data-
intensive, requiring adequate I/O capability. In 
addition, to cope with various forms of system 
reliability issues, applications need to checkpoint their 
intermediate results to the storage system, which 
further increases the need for scalable and efficient I/O. 

In fact, oftentimes, checkpoint operations are charged 
to users as allocated CPU hours, so they are desired to 
be as transparent and fast as possible. Hence, it is 
important for the scientists to understand the system’s 
I/O software and storage architecture on their target 
platforms. 

Jaguar is a Cray XT supercomputer platform at the 
Oak Ridge National Laboratory; it is equipped with a 
significantly large storage system. Jaguar provides 
computational services for a broad spectrum of 
applications, such as GTC for fusion [20], Parallel 
Ocean Program (POP) for ocean modeling, and 
Chimera for nuclear physics, among others. Not 
surprisingly, a team of researchers have performed an 
early performance evaluation of Jaguar [6]; they 
examined the majority of performance features of the 
processor, memory, and message passing system. This 
study, as well as several other studies on the I/O 
performance of Cray XT platforms [19, 27], has 
investigated the I/O subsystem using micro-
benchmarks. These microbenchmarks have provided 
relevant information for scientific applications, such as 
peak system throughput, and the impact of Lustre file 
striping patterns. However, few insights are provided 
on how to correlate micro-benchmark results with the 
organization of the storage system, or their relevance to 
the applications’ I/O performance.  

In this paper, we present an extensive 
characterization of the performance of parallel I/O on 
Jaguar, and accordingly, the benefits of tuning and 
optimizing scientific application and benchmarks. 
First, using regular contiguous I/O patterns, we 
characterize the I/O performance of individual storage 
units, such as a single OST and a single storage 
couplet, S2A 9550 from Data Direct Networks, Inc 
[13]. Second, we evaluate the scalability trends of the 
entire system, in terms of both peak I/O bandwidth and 
the latency of metadata operations like parallel file 
open and creation. Third, we characterize the strengths 
and pitfalls of using parallel I/O techniques–data 
sieving and two-phase collective I/O–for small and 
non-contiguous data accesses on Jaguar. Finally, based 
on our characterization, we demonstrate that it is 
possible to optimize the I/O performance of 



 

 

benchmarks and applications. In one case, we have 
demonstrated that the I/O performance of S3D 
combustion application can be improved by using a 
shared file, avoiding a bandwidth drop of 49% for 
8,192 processes. In another case, we have shown that 
the performance of flash I/O is improved by 34% by 
carefully tuning collective I/O parameters. 

The rest of the paper is organized as follows. In 
the next section, we provide an overview of Jaguar and 
the configuration of its I/O subsystem.  In Section 3, 
we provide a detail evaluation, characterization and 
tuning of Jaguar’s I/O performance. In Section 4, we 
demonstrate the tuning and optimization of I/O patterns 
for applications and benchmarks over Jaguar. Section 5 
concludes the paper. 

2 Jaguar and Its I/O Subsystem 

In this section, we provide an overview of Jaguar 
and its I/O subsystem. 

2.1 An Overview of Jaguar 

 
Figure 1 Cray XT System Architecture of 

Jaguar (Courtesy of Cray) 

Jaguar is ranked as the second fastest 
supercomputer as of June 2007 [3]. It is a combination 
of Cray XT3 and Cray XT4 technologies. Cray XT3 
and Cray XT4 represent a line of massively parallel 
processor (MPP) products from Cray. They have 
similar architectures, except that XT4 is equipped with 
higher speed memory (DDR2-667MHz) and its 
SeaStar2 interconnect has higher sustained bandwidth.  

The basic building block of Jaguar is a Processing 
Element (Compute PE or Service PE), as shown in 
Figure 1. Each PE has a dual-core AMD processor 
along with 2GB/core of memory, an integrated 
memory controller, HyperTransport links, and a 
dedicated communication chip–SeaStar/SeaStar2. 
Jaguar inherited its system software from a sequence of 
systems developed at Sandia National Laboratories and 
University of New Mexico: ASCI Red [33], the Cplant 

[24], and Red Storm [8]. Jaguar Compute PEs run a 
lightweight operating system called Catamount. The 
Catamount kernel runs only one single-threaded 
process and does not support demand-paged virtual 
memory. On the other hand, service PEs (i.e., login, 
I/O, network, and system PEs) run Linux to provide a 
user-familiar environment for application development 
and for hosting system and performance tools. Portals 
[10] is used for flexible, low-overhead inter-node 
communication on Cray XT. It delivers data from user 
space to user space between processes without kernel 
buffering.  

2.2 Configuration of the Jaguar I/O 
Subsystem  

 
Figure 2: A Diagram of the S2A 9550 Couplet 

and its LUN configuration on Jaguar 

Storage Hardware – The Jaguar I/O subsystem is 
provided by 18 Silicon Storage Appliance (S2A) 9550 
storage targets [12] from Data Direct Network, Inc, 
often referred to as DDN S2A 9550 couplets. Each 
couplet has a capacity of 32 TB as shown in Figure 2. 
Every couplet is composed of two singlets, each 
containing a Parallel Parity Processing Engine (P3E) 
and a number of Disk Controller Engines (DCE). 
Within a couplet, there are 16 tiers of storage disks, 
offering storage as 16 LUNs (Logical Unit Number). 
P3E horizontally stripes a serial data stream into 
parallel segments to an array of DCEs, which in turn 
provides vertical striping of its data segments. Through 
vertical striping, every LUN spans two tiers of disks. 
All sixteen tiers share the same set of data channels to 
reach DCEs, P3Es and the fibre channel interfaces to 
the external hosts. On Jaguar, each LUN has a capacity 
of 2TB and a 4KB block size. The write-back cache is 
set to 1MB in each DCE. 

File Systems -- Jaguar uses Lustre [11] for its IO 
subsystem. Lustre is an object-based parallel file 
system composed of four components: Object Storage 
Targets (OST), Metadata Servers (MDS), Object 
Storage Servers (OSS), and clients. Further details on 
Lustre are available in [11]. Jaguar is configured with 



 

 

three Lustre file systems, providing the scratch storage 
space for experimental data: scr144, scr72a and scr72b. 
72 service nodes are configured as OSSes for these 3 
file systems. In addition, each file system has its own 
dedicated MDS node. Every LUN is configured as a 
single OST for one of three Lustre file systems. Figure 
3 shows the mapping of LUNs to the services nodes 
and Lustre file systems. The biggest file system, 
scr144, is equipped with 144 OSTs, i.e. 8 LUNs from 
every S2A 9550 storage devices, with a storage 
capacity of 288TBs; the other two, scr72a and scr72b, 
each with 72 OSTs - 8 LUNs each from 9 of S2A 9550 
targets. In other words, each OSS node is configured 
with 4 OSTs. Two of these OSTs are for scr144, the 
remaining two OSTs for scr72a and scr72b, 
respectively. 

 
Figure 3: Assignments of OSTs (LUNs) for 

Lustre File systems on Jaguar 

Parallel I/O libraries -- Parallel processes from 
compute PEs can directly invoke POSIX read/write 
functions or call through an MPI-IO library for I/O 
services. Cray provides a proprietary MPI-IO [30] 
implementation–referred to as AD_Sysio due to its 
leverage of the SYSIO library. There is also an open-
source MPI-IO library called OPAL, which has been 
deployed as an alternative package on Jaguar. OPAL 
[39] is designed to provide a Lustre-specific 
implementation of the ADIO interface inside MPI-IO, 
enabling a number of good features such as arbitrary 
striping of MPI files and stripe-aligned domain 
partitioning. We have used this library for some of our 
experiments. 

3 Parallel I/O Characterization on 
Jaguar 

In this section, we examine the characteristics of 
individual storage components, the scalability of the 
entire storage system, the strengths and pitfalls of I/O 
techniques for small and non-contiguous I/O, and the 
scalability of metadata operations in terms of parallel 
file open and creation. The default Cray MPI-IO 
implementation is used for the majority of the 
experiments unless otherwise noted.  

3.1 Contiguous, Independent I/O 

Contiguous, independent I/O is one of the most 
common I/O patterns for scientific applications 
running on Jaguar. This scenario includes the pattern in 
which all processes writes/reads their own datasets 
to/from either separated files or separated regions of a 
larger shared file. We measure the performance of 
Jaguar storage using the IOR benchmark [2] from 
Lawrence Livermore National Laboratory. In addition, 
applications also have small input files, generally read 
by the leader process (rank 0) at the beginning of the 
execution, and then broadcasted to all other processes. 
Because these input files are of a small number and 
have a very low data volume, we omit these scenarios.  

3.1.1 Single OST 
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Figure 4: Performance of Single OST 

In the single-OST experiments, a varying number 
of parallel processes are concurrently reading from or 
writing to a single OST, i.e. a LUN in a DDN couplet. 
The transfer size per client is set to vary between 4 and 
64 MB. The total data volume is 512MB per process. 
Figure 4 shows the measurement results for both a 
shared file and separated files. The I/O bandwidth is 
not sensitive to transfer sizes in this experiment, so 
only results using a transfer size of 4MB are shown. In 
the case of a shared file, the maximum read or write 
bandwidths are measured at 406 MB/s, which come 
close to the peak bandwidth of a single OST with 
4Gbps fibre channel links. Comparing the read and 
write bandwidths, it is evident that the write bandwidth 
has a much more graceful scaling trend under the hot-
spot pressure from many processes. In addition, we 
have measured the bandwidth of single-OST using 
different Lustre stripe sizes. It is observed that the 
stripe size does not affect the I/O bandwidth within a 
single OST (data not shown). Also shown in the figure 
are the bandwidth results with separated files on a 
single OST. Again, the write bandwidth is more 



 

 

graceful to hot-spot pressure. Both reads and writes can 
reach close to the peak bandwidth per OST 
(406MB/sec). 

3.1.2 Single DDN Couplet 

To measure the performance of a single DDN 
couplet, all files are striped across 8 LUNs, i.e. all 16 
tiers of a couplet. Figure 5(L) shows the bandwidth 
results of a single couplet with different Lustre file 
stripe sizes (1MB, 4MB, 16MB, and 64MB). Reads 
and writes are both measured with 32, 64, and 128 
processes. As shown in the figure, the stripe sizes 1MB 
and 4MB are able to deliver the best performance, 

while 4MB stripe size is slightly better overall. Figure 
5(R) shows the scalability of a single couplet with a 
varying number of processes. As shown in this figure, 
parallel reads provides better peak bandwidth 
compared to writes. The aggregated bandwidth per 
couplet increases initially with the increasing number 
of processes. The peak bandwidths for both reads and 
writes are reached with 16 processes. However, neither 
can sustain with a strong scaling on the number of 
processes. As seen earlier with single-OST 
experiments, the read bandwidth is again more 
susceptible to the pressure from an increasing number 
of processes. 

Single DDN Couplet

0

500

1000

1500

2000

2500

3000

1M 4M 16M 64M

Lustre Stripe Size

Write 32 Write 64 Write 128

Read 32 Read 64 Read 128

 

Single DDN Couplet

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64 128

No. of Processes

Shared Write Shared Read
Separated Write Separated Read

 

Figure 5: Single DDN Couplet: (L) Impact of Stripe Size (R) Performance Scalability  

Figure 5(R) also shows the performance of a 
single couplet with separated files, using the stripe size 
of 4MB. In contrast to the single OST results, when the 
small number of processes is less than 64, the 
performance of reads is significantly better than that of 
writes. However, as the number of processes increases, 
both curves reach the plateau around 2500MB/sec. 
This resulting bandwidth is lower than the aggregation 
from 8 distinct LUNs – 3224MB/sec at 406MB/sec 
each. This means that a DDN couplet does not achieve 
linear scaling with respect to the number of tiers, due 
to the contention for the shared channels, engines, and 
external links when all tiers are utilized. Nonetheless, 
this number is in line with earlier observations made 
by the storage vendor [15].  

3.1.3 System 

We have also measured the scalability trends of 
the entire storage system, using the largest file system, 
scr144. The aggregated I/O bandwidths are measured 
when reading/writing files that are striped across 
different number OSTs, with 1024 processes. In the 
separated-file mode, each file is created to stripe across 
four OSTs. But all processes together access the same 

number of OSTs as the shared file is striped to. Figure 
6 shows the performance comparisons of the two 
different modes with an increasing number of OSTs. 
Note that I/O with a shared file performs better than 
that with separated files when the number of OSTs is 
greater than 96.  
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Figure 6: System Performance Scalability 

These results suggest that the metadata overhead 
associated with separated files, though small initially, 
presents a scalability hurdle to the overall I/O 



 

 

bandwidth. In addition, the bandwidth of reads scales 
better compared to that of write when the number of 
OSTs is more than 96. Writes incur additional process 
costs, such as obtaining locks, allocating storage space, 
and the creation of objects. Even though a reserved 
pool of storage space and objects is provided in Lustre, 
the impact becomes pronounced with many widely 
striped files. Also note that, when files are located 
across a large number of OSTs/LUNs, the achieved 
peak bandwidth per OST is around 300MB/sec for 
both reads and writes. Our measurements are taken 
with 1024 processes, based on the fact that too many 
processes can lead to performance degradation – a 
phenomenon we showed in earlier figures and also 
observed by others from other sites with similar Cray 
XT platforms (c.f. Figure 1 and [19]). 

3.2 Small, Non-Contiguous I/O 

Small and non-contiguous I/O is another common 
pattern for scientific applications, especially when 
applications use higher-level, hierarchical data 
structures, such as multi-dimensional arrays with 
complex data decompositions among parallel 
processes. These higher-level abstractions typically 
translate into fine-grained, hierarchical, often non-
contiguous, data accesses [31]. Such patterns can result 
in I/O bandwidths that are orders of magnitude lower 
than the peak of the physical storage hardware [28, 29]. 
Data sieving and collective I/O are strategies 
developed to improve the performance of small and 
non-contiguous I/O [17]. We obtained a program from 
Argonne National Laboratory that can characterize the 
benefits of these techniques. This program creates a 3-
D global array, and decomposes the data along every 
dimension for I/O. This results in many small and non-
contiguous I/O operations. The program allows three 
options for I/O: direct, data-sieving, and collective I/O. 
In the direct mode, every process directly performs 
many small I/O operations according to the 
offset/length of data chunks. The program measures 
the I/O bandwidth results as the average from 10 
iterations. The same program is executed multiple 
times to filter out noticeable outliers due to other 
concurrent I/O loads. 

3.2.1 Data Sieving 

Data sieving is developed for small and non-
contiguous I/O on a single process. It allocates an 
intermediate buffer, performs I/O on a contiguous 
region, and then extracts the needed data chunks. This 
can avoid many I/O operations on many small data 

chunks. With holes between the data chunks, the writes 
are implemented as read-modify-write to avoid 
overwriting the holes. 

Figure 7 (L) shows the performance results with 
different process counts and different array sizes (1283, 
2563, and 5123). Several observations can be made 
about the strengths and weaknesses of data sieving on 
Jaguar. First, the I/O performance for small, non-
contiguous I/O is very low on Jaguar as shown by the 
direct mode. Second, the performance of writes is 
much lower than that of reads because all processes are 
trying to gain exclusive write permission to a small 
region, therefore contending for exclusive write locks 
at the Lustre file system layer. Third, the I/O 
performance increases with an increasing array size for 
both direct and data-sieving modes; for the same array 
size, increasing process counts leads to poorer 
performance. These are expected because the average 
data size gets smaller for the latter but bigger for the 
former. Fourth, data sieving does improve the 
performance of reads as expected, but in contrast, it 
leads to performance degradation for writes. For both 
reads and writes, data sieving triggers the system call 
flock() to lock the I/O segment for maintaining data 
consistency. However, flock() has a costly 
implementation on the current catamount kernel for 
Jaguar. Because reads do not involve internal lock 
contention, the benefits of reading larger data chunks 
can offset the cost of a single lock system call. 
However, for the writes, while paying the cost of 
flock(), it does not benefit from larger data chunks 
because the internal file system lock contention–for 
exclusive write permission on the overlapped data 
chunks–remains the same, if not worse. For the writes 
to gain the same benefits as the reads, a file system 
optimization is needed to eliminate the internal write 
locks when a file region is already locked by a 
previous flock() call. The unusually high cost of flock() 
system call is only a side effect of the catamount 
system used for the Cray XT. It does not happen on 
regular Linux platforms.  

In addition, we have measured the effects of data 
sieving buffer size for this program on Jaguar, and the 
results are shown in Figure 7 (R). By increasing the 
default data-sieve buffer size of 512KB to 8MB, the 
performance of writes can be improved by 4.5 times, 
and that of reads can be improved by 54%. Therefore, 
larger buffer sizes are beneficial for data sieving over 
Jaguar if this is possible by the application’s memory 
requirement. Though 8MB is good for our test 
program, an appropriate size is mostly application 
dependent. 
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Figure 7: Data Sieving: (L) Comparisons to Direct Mode; (R) Increasing Buffer Size 

3.2.2 Collective I/O 

Collective I/O is a technique developed for small, 
non-contiguous I/O across a group of processes. The 
collective I/O protocol implements interleaved phases 
of data exchange and file I/O (reads/writes) on the 
linearly partitioned file domains. It is designed to 
aggregate small I/O operations into large I/O requests 
for better performance. With the same program used in 
the data sieving experiments, we characterized the 
benefits of collective I/O as Figure 8 shows. While 
increasing array sizes leads to better I/O bandwidth, the 
same array size with more processes–that is finer data 
chunks–does not lead to degraded I/O performance. 
These are expected because collective I/O aggregates 
small I/O requests for better I/O performance, and 
some variations in small data chunk sizes can also be 
smoothed out. 

Collective IO

1

10

100

1000

10000

100000

coll-write coll-read coll-write coll-read

Nprocs=128 Nprocs=256

B
an

dw
id

th
 (M

B
/s

ec
)

128^3 256^3 512^3

 
Figure 8: Benefits of Collective I/O 

3.3 Parallel File Open 

Besides the need for scalable bandwidth, there is 
also an increasing need on metadata scalability for 
large-scale applications. In particular, the problem of 
creating and opening files in parallel across tens of 

thousands of processes is a significant scalability 
challenge. For example, a team from DOE laboratories 
is working on extending the current POSIX IO 
interface with routines that can facilitate scalable 
implementation of parallel open [16].  

Using the scr72b file system over Jaguar, we have 
measured the scalability of creating/opening files in 
parallel across an increasing number of OSTs. Figure 9 
shows the time taken for opening a shared file across 
all processes and the same for opening one file per 
process. In our tests, all files are created with its first 
OST corresponds to the first LUN of the first couplet. 
As shown in the figure, for either mode, the time 
increases dramatically with the number of processes, as 
well as with the increasing number of OSTs. The one-
file-per-proc mode is about an order of magnitude 
more costly than the shared-file mode. 

As mentioned earlier, the results in Figure 9 were 
obtained with all files starting from the first OST of the 
file system. A common execution mode on Lustre is to 
give a parameter ‘-1’ for the starting OST, which 
leaves this choice open for the operating system to 
make a decision dynamically. Instead of leaving the 
choice for the operating system, we emulated a 
dynamic, yet balanced distribution of the first OST 
based on the rank of processes. Using the OPAL 
library, we have measured the scalability of the 
dynamic method. Figure 10 shows the scalability with 
dynamic balanced distribution as compared to the 
earlier results when the first OST is statically 
determined. When all the OSTs are within a single 
DDN couplet, the static mode performs better than the 
dynamic mode. However, the dynamic mode is much 
more scalable when a file is striped cross multiple 
DDN couplets–more than 8 OSTs. Even when the files 
striped across all 72 OSTs in scr72b, the dynamic 
mode still reduces the parallel open time by 25%. 
These results suggest that, when files are striped less 
than 8 OSTs, there is a trade-off between using the 
static mode to achieve efficient parallel file open and 



 

 

the need of more OSTs for better bandwidth. For files 
with large strips, the default dynamic mode for the first 

OST is always beneficial. 
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Figure 9: Scalability of Parallel File Open: (L) With increasing OSTs; (R) With increasing processes 

4 Improving the Performance of 
Different Scientific I/O Patterns 

In this section, we demonstrate several case 
studies in tuning and optimizing the parallel I/O 
performance in scientific applications and benchmarks.  

4.1 Independent I/O Optimization: a 
Case Study with Combustion 

Combustion simulation represents a critical 
domain of the scientific applications because of the 
great dependence of the world’s energy production on 
combustion. Even with numerous efforts in renewable 
energy resources such as solar and hydrogen power, 
the combustion still produces 85% of the total energy 
for the world. In addition, the aggravating impacts of 
green house gases call for more efficient and cleaner 
combustion technologies. S3D, as a leading 
combustion application developed Sandia National 
Laboratories, performs the direct numerical simulation 
of turbulent combustion [26]. It is also an INCITE 
(Innovative and Novel Computational Impact on 
Theory and Experiment Program, Department of 
Energy, U.S.) application on Jaguar at Oak Ridge 
National Laboratory.  

S3D is based on a high-order accurate, non-
dissipative numerical scheme and solves the full 
compressible Navier-Stokes, total energy, species and 
mass continuity equations coupled with detailed 
chemistry. S3D is parallelized using a three-
dimensional domain decomposition and MPI 
communication. Each MPI process is in charge of a 
piece of the three dimensional domain. All MPI 
processes have the same number of grid points and the 
same computational load. A complete run of a S3D 

simulation can take millions of computation hours to 
finish. To save its intermediate simulation results, the 
original S3D code writes its output from each process 
into individual files, periodically at every simulation 
step, which creates an enormous amount of data for the 
storage system, nearly a terabyte per hour across 24K 
processes with a checkpoint interval of every half an 
hour.  
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Figure 10: Parallel File Open with Different 
Selections on the First OST 

In view of the scalable file open/creation with a 
shared file, we have implemented an optimization for 
S3D to do I/O through a shared file. Figure 11(L) 
shows the delivered I/O bandwidth to S3D at the 
application-level. The overall bandwidth is measured 
as the total amount of application data divided by the 
time to create the files and write the data. With the 
default mode of separated files, the delivered 
application-level bandwidth reaches a plateau at 
33GB/sec, but drops down to 15GB/sec for 8192 
processes. In contrast to the abrupt performance drop 
with a large number of processes, the shared file 
implementation achieves a sustained I/O bandwidth, up 



 

 

to 35GB/sec. We have measured the time to open the 
file(s), which Figure 11(R) illustrates. We observed 
that much of the performance drop is due to the 
increased time in opening/creating the separated files, 
in the default S3D implementation. Note that there is 

no global barrier between the file creation and output, 
so different processes are creating files and writing 
their output concurrently. Thus the time for file output 
is not strictly the subtraction of file creation time from 
the total time.  
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Figure 11: S3D performance: (L) I/O Bandwidth; (R) File Open Time 

4.2 Collective I/O Tuning 

Besides the benefits of I/O aggregating, the 
extended two-phase collective I/O protocol also 
provides a number of tuning parameters, including the 
buffer size for the I/O aggregation (collective buffer 
size) and the number of processes that are responsible 
for the aggregation (the number of I/O aggregators). 
We have selected the following programs to 
demonstrate the benefits of tuning collective I/O. 

MPI-Tile-IO – MPI-Tile-IO [37] is an MPI-IO 
benchmark that tests the performance of tiled data 
accesses. In this application, data I/O is non-contiguous 
and issued in a single step using collective IO. It tests 
the performance of tiled access to a two-dimensional 
dense dataset, simulating the type of workload that 
exists in some visualization and scientific applications. 
In our experiments, each process renders a 1x1 tile 
with 1024x768 pixels. The size of each element is 32 
bytes, leading to a file size of 48*N MB, where N is 
the number of processes. 

BT-IO – NAS BT-IO [1] is an I/O benchmark that 
tests the output capability of NAS BT (Block-
Tridiagonal) parallel benchmark. It was developed at 

NASA Ames Research Center. Its data set undergoes 
diagonal multi-partitioning and is distributed among 
MPI-processes. The data structures are represented as 
structured MPI datatypes and written to a file 
periodically. There are several different BT-IO 
implementations, which vary on how its file IO is 
carried out among all the processes. In the full mode, 
BT-IO performs collective I/O for file output; in the 
simple mode, all processes write out their small I/O 
requests. 

Flash I/O – Flash is an application that simulates 
astrophysical thermonuclear flashes. It is developed in 
part at the University of Chicago by the DOE-
supported ASC Alliance Center for Astrophysical 
Thermonuclear Flashes. The Flash I/O [32] benchmark 
is the I/O portion of the Flash program that measures 
the performance of its parallel HDF5 [32] output. The 
MPI-IO interface is used internally by the HDF5 
library. Three different output files are produced in 
Flash I/O: a checkpoint file, a plotfile with centered 
data, and a plotfile with corner data. These files are 
written through the HDF5 [7] data format.  

4.2.1 Number of IO Aggregators 
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Figure 12: MPI-Tile-IO with Varying Number of 
I/O aggregators  

Figure 13: BT-IO with Varying Number of I/O 
Aggregators  

Figures 12, 13 and 14 show the I/O performance 
of MPI-Tile-IO, BT-IO and Flash I/O, respectively, 
with different number of I/O aggregators. As shown in 
Figure 12, MPI-Tile-IO does gain performance from an 
increasing number of I/O aggregators. MPI-Tile-IO 
needs more I/O aggregators to store the data of 48MB 
per process (as introduced earlier). However, for BT-
IO, the best I/O bandwidth is achieved with 576 

processes, which represents a good balance of tradeoffs 
between the number of processes, the granularity of 
file domains, and the associated communication cost 
for aggregation. Flash I/O was executed with two 
different block sizes 16- and 32-bytes. For an 
execution of Flash I/O with 2048 processes, 256 
aggregators are optimal when the block size is 16bytes; 
while 512 or 1024 is sufficient when block size is 
32bytes. 
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Figure 14: Flash I/O with Varying Number of 
I/O aggregators  

Figure 15: MPI-Tile-IO with Increasing 
Collective Buffer 

4.2.2 Collective Buffer Size 

Figures 15, 16, and 17 show the I/O performance 
of MPI-Tile-IO, BT-IO and Flash I/O, respectively, 
with varying sizes of collective buffer. For Flash I/O, 
the performance is measured on the checkpoint file 
with the data block size to be 32bytes. A comparison to 
non-collective I/O mode is also shown for Flash I/O in 
Figure 17. Both MPI-Tile-IO and Flash I/O benefit 
from increased collective buffer, while 32MB appears 
to be the optimal for them. However, BT-IO benefits 
only slightly from increased collective buffer. This is 
because the I/O of BT-IO is carried out in 40 different 
iterations. For BT-IO Class C, there is only about 
168MB of I/O data in each step. This results in a file 
domain less than 4MB for each I/O aggregator. 

Therefore, a very large collective buffer does not 
benefit BT-IO.  

5 Related Work and Conclusions 

There is a rich set of literature on the performance 
characterization of HPC systems. Many studies were 
carried out to study the inter-process communication, 
the peak computing power, and the comparisons 
amongst different interconnect technologies or 
different large-scale deployments. For example, [9, 21, 
22, 25, 35, 36] and [29] have studied the 
communication characteristics, the performance 
tradeoffs as well as the comparisons among different 
interconnect technologies, including Myrinet, 
Quadrics, InfiniBand, and 1/10Gigabit Ethernet. [5, 6, 



 

 

34, 35] and [6] have studied the system performance of 
massive parallel systems including the Cray XT and 
Blue Gene/L. However, these studies typically do not 
address the I/O performance of the system. The work 
most closely related to ours is [14, 19, 38]. 
Particularly, [14] and [19] report the I/O performance 
of two popular Cray XT platforms, Red Storm and 
Jaguar, respectively. Both of them have studied more 
on the strong scaling of the peak I/O performance. In 
contrast, we focus more on varying I/O patterns, as 
well as collective I/O. The precursor of our work has 
been presented in [38].  

In this paper, we have extensively characterized 
the parallel I/O performance on the Jaguar 
supercomputer. Our characterization covered the 
performance and scalability of the individual storage 
units, as well as the entire system. We have examined 
the best stripe sizes over Jaguar, and showed that the 
file distribution pattern across the DDN storage 
couplets can dramatically impact the aggregated 
performance. In addition, we have also examined the 
scalability of metadata- and data-intensive operations. 
Our results have demonstrated that, for parallel file 
open, the shared file mode has the best scalability 
compared to the separated file mode. Moreover, we 
have investigated the performance impacts of parallel 
I/O techniques for handling small and non-contiguous 
I/O, including data sieving and collective I/O. We 

documented that, with overlapped file segments, data 
sieving from concurrent processes can lead to 
performance degradations. Increasing the size of data 
sieving buffer can improve the performance, but the 
performance of writes is hindered by the internal lock 
contentions at the Lustre file system layer. 

Finally, we have demonstrated how to leverage the 
insights from our characterizations to tune and 
optimize the I/O performance of scientific benchmarks 
and applications. We have shown that the I/O 
scalability of S3D combustion application over 8192 
processes can be sustained through a simple, yet very 
beneficial optimization. We also have illustrated how 
collective I/O tuning parameters can impact the 
performance of different scientific I/O benchmarks. In 
particular, we have shown that the performance of 
Flash I/O can be improved by 34% with careful tuning 
of the collective I/O parameters. 
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