
 

ParColl: Partitioned Collective I/O on the Cray XT
 

Weikuan Yu, Jeffrey Vetter

Computer Science and Mathematics
Oak Ridge National Laboratory 

Oak Ridge, TN 37831-6173 
 {wyu,vetter}@ornl.gov  

 
Abstract 

 
Collective I/O orchestrates I/O from parallel processes by 

aggregating fine-grained requests into large ones. However, its 
performance is typically a fraction of the potential I/O 
bandwidth on large scale platforms such as Cray XT. Based on 
our analysis, the time spent in global process synchronization 
dominates the actual time in file reads/writes, which imposes a 
‘collective wall’ on the performance of collective I/O. In this 
paper, we introduce a novel technique called partitioned 
collective I/O (ParColl). ParColl augments the original two-
phase collective I/O protocol with new mechanisms for file area 
partitioning, I/O aggregator distribution and intermediate file 
views. Through these mechanisms, a group of processes and 
their targeted file are consistently divided into a collection of 
small subgroups, each performing I/O aggregation in a disjoint 
manner. File consistency is maintained through intermediate file 
views when necessary. Together, these mechanisms greatly 
reduce the cost of global synchronization. Our experimental 
results demonstrate that ParColl significantly improves the 
performance and the scalability of collective I/O. In one case, 
we show a 416% improvement on 1024 processes for a 
visualization I/O benchmark. We also show that the I/O patterns 
in scientific applications can benefit significantly from this 
technique, e.g. BT-I/O and Flash I/O. 

1 Introduction 

Today’s Massively Parallel Processing (MPP) 
platforms are deployed with 100s of TeraFlops (1015) [4]. 
To meet the needs of data-intensive scientific 
applications, these MPP systems such as BlueGene/L [6] 
and Cray XT [29] are often deployed with a scalable I/O 
subsystem. For example, Tera-10 at CEA in Europe has 
reported aggregated I/O throughput reaching 100GBps 
[9]. However, our experiences with scientific applications 
show that they use higher-level, hierarchical data 
structures, such as multi-dimensional arrays with complex 
data decompositions among parallel processes. These 
higher-level abstractions often translate into fine-grained, 
hierarchical, typically non-contiguous data accesses [13, 
23]. Such I/O patterns result in I/O throughputs that are 
orders of magnitude lower than the potential performance 
of the physical storage hardware [26]. Collective I/O is a 
strategy developed to cope with such patterns [23, 25]. It 
is carried out as interleaved phases of data exchange and 
file I/O (reads/writes) on the linearly partitioned file 
domains, thereby aggregating small I/O requests into 
larger ones for better performance. 

However, this two-phase protocol inherently imposes 
scalability bottlenecks for large-scale platforms, due to its 
requirement of frequent synchronization between data 
exchange and file I/O. We have profiled a parallel 
visualization benchmark, MPI-Tile-IO [19] on the Jaguar 
Cray XT platform [17]. Figure 1 shows the trend of 
synchronization cost. For a small number of processes, 
the actual synchronization cost for a small number of 
processes, does not pose a limit to the I/O performance. 
However, we found that, with 512 processes MPI-tile-IO 
spends 72% of its total time in global synchronization, 
which dominates the time spent on file reads/writes. 
Amdahl’s law tells us that this essentially imposes a wall 
for scalable and efficient collective-I/O. We refer to such 
dominance of synchronization cost as the collective wall 
to denote the fact that it imposes a global barrier to the 
I/O performance of all participating processes. As this is a 
noticeable problem at 512 processors on current 
architectures, it can lead to a colossal scalability challenge 
for upcoming ultra-scale computing platforms that have 
hundreds of thousands of processors and beyond. Thus it 
is critical to address this problem in order to ensure that 
future ultra-scale systems are successful in delivering 
scalable I/O performance to real scientific applications 
I/O patterns. 

40%

45%

50%

55%

60%

65%

70%

75%

8 16 32 64 128 256 512
No. of Processes

 
Figure 1 The Collective Wall in Collective IO 

Through an open-source MPI-IO implementation 
[32] with comparable performance, we have examined the 
processing of collective I/O, and uncovered the collective 
wall problem as shown in Figure 1. The synchronization 
that causes the collective wall is actually implemented in 
the original MPI-IO protocol using global collective 
operations include allgather, alltoall and allreduce. It may 
be tempting to address this synchronization problem via a 
simple replacement of these collective operations with 
many point-to-point operations. However, the real issue 
here is the inherent need of synchronization inside the 
original two-phase protocol. Using point-to-point 



 

 

operations for the synchronization purpose would lead to 
a similar problem, let alone the collective operations are 
typically conglomerates of point-to-point operations.  

We have designed a new collective I/O protocol 
called Partitioned Collective I/O (ParColl) to address this 
problem. ParColl augments the two-phase collective I/O 
protocol with new mechanisms for file area partitioning, 
I/O aggregator distribution and intermediate file views. 
I/O aggregators are the processes that gather the I/O 
requests and perform reads/writes on behalf of the entire 
group. Through these mechanisms, a group of processes 
as well as their targeted file are divided in a consistent 
way into separated subgroups. These subgroups in turn 
perform their own aggregation of I/O requests in a 
disjoint manner, thus avoiding collective I/O across a big 
global group. Together, they reduce the cost of global 
synchronization. The file consistency is still maintained, 
through intermediate file views when necessary. ParColl 
retains the original benefits of I/O aggregation in two-
phase collective I/O, while reducing the synchronization 
costs and cascading effects among processes. Our 
experimental results show that ParColl provides 
significant benefits on the Cray XT. The performance of 
collective I/O can be improved by as much as 416% for 
MPI-Tile-IO with 1024 processes. Scientific application 
such as Flash can also significantly benefit from these 
techniques. In summary, we make the following 
contributions in this paper. 

• Through detailed dissection, we pinpoint and 
quantify the scalability constraints imposed by 
collective communication to collective I/O, i.e. the 
collective wall. 

• To optimize collective I/O, we have designed and 
implemented a new protocol: partitioned collective 
I/O. 

• We demonstrate that ParColl brings significant 
benefits to various benchmarks and scientific 
applications over the Cray XT 

The rest of the paper is organized as follows. In the 
next section, we discuss the motivation. In Section 3, we 
provide an overview of related work. In Section 4, we 
discuss our design of ParColl in detail, followed by a 
performance evaluation in Section 5. Section 6 concludes 
the paper.  

2 Motivation 

2.1 An Overview of the Cray XT 
The Cray XT is a line of massively parallel processor 

(MPP) systems from Cray. It inherits the system software 
from a sequence of systems developed at Sandia National 
Laboratories and University of New Mexico: ASCI Red 
[28], the Cplant [18], and Red Storm [7]. Computing 
nodes on the Cray XT run a lightweight operating system 

called Catamount. The Catamount kernel runs only one 
single-threaded process and does not support demand-
paged virtual memory. On Catamount, data in I/O 
requests are delivered from one process’ user space to the 
other process’ user space without kernel buffering. 

Cray XT uses Lustre [10] for a scalable I/O 
subsystem, supporting I/O services to thousands of 
concurrent clients. Some of the Cray XT nodes are 
configured as Lustre servers that provide I/O and 
Metadata services, being attached with high performance 
storage targets, such as DDN S2A9550 [12]. Applications 
perform I/O through an interface called liblustre that 
converted clients’ I/O requests to the SYSIO and liblustre 
libraries [20], and then to the Lustre servers. Parallel 
processes in an application can perform I/O either by 
directly invoking POSIX read/write, or by calling through 
a MPI-IO library. On the Cray XT systems, a proprietary 
MPI-IO implementation is provided, which offers parallel 
I/O through a SYSIO-specific ADIO implementation 
[24], denoted as AD_Sysio. 

2.2 The Collective Wall on the Cray XT 

We have developed an open-source MPI-IO 
implementation that provides comparable performance to 
that of the Cray implementation [32]. This open-source 
MPI-IO implementation on Cray XT constitutes a 
comparable baseline implementation for further 
optimizations of parallel I/O on Cray XT. Using this open 
source MPI-IO package, we dissect the code path of 
collective I/O and also provide the breakdown timings of 
different processing tasks.  

0
5

10
15
20
25
30

8 16 32 64 128 256 512
No. of Processes

0
0.5
1
1.5
2
2.5
3
3.5

R
el

at
iv

e 
R

at
io

Coll Point-to-Point IO
coll vs. IO P2P vs. IO

 
Figure 2 Collective I/O Time Breakdown 

In the canonical extended two-phase (data exchange 
and file I/O) protocol, the processing of collective I/O can 
be divided into several phases: file range gathering, file 
domain partitioning, request dissemination and 
interleaved phases of data exchange and file I/O. There 
are three main components of processing in these steps: 
data exchange with point-to-point communication, file 
I/O, and the required process synchronization. In 
particular, the synchronization consists of several rounds 
of collective operations during the interleaved phases of 
data exchange and file I/O. These collective operations 
are needed for the coordination among processes, so that 
a long stream of I/O requests can be exchanged in a 



 

 

staged fashion without overflowing the intermediate 
system buffer. To gain insights into these processing 
tasks, we profiled these processing tasks at run-time. 
When a file is closed, a summary is reported. 

Figure 2 shows the time breakdown of collective I/O 
in MPI-Tile-IO [19]) The profile of MPI-Tile-IO was 
taken with a tile size of 1024*768. As shown in the 
figure, the processing time spent in synchronization 
grows much faster compared to the time spent on point-
to-point communication and file I/O. With 512 processes, 
the time spent in synchronization starts to dominate over 
the other portions. As mentioned in Section 1, we refer to 
this as the problem of collective wall because Amdahl’s 
law tells that this increasing dominance of collective 
communication is likely to present a wall on the I/O 
performance. 

2.3 Improving Collective I/O on the Cray XT 

One needs to take into account various system issues 
on the Cray XT when considering different collective I/O 
strategies. The lack of support for application threads on 
Cray XT imposes limitations on the utilization of other 
collective I/O techniques, such as split-phase collective 
I/O [13] and client-side file caching [16]. A new 
operating system with threading support (called Compute 
Node Linux) is in progress to replace the original 
catamount operating system on the Cray XT. However, 
even when threading becomes available to help the 
overlap of I/O and data exchange, the I/O cost can only be 
hidden within other costs, to the ideal extreme. It does not 
do away with the need of synchronization and the bound 
scalability problem in collective I/O. Instead, the relative 
dominance of synchronization cost could become even 
more pronounced with the diminishing I/O time. While 
future features on Cray XT are still evolving, in this 
paper, we focus on the Cray XT with the catamount 
operating system in our investigation of collective I/O. 

The collective wall problem is essentially caused by 
the inherent need of global synchronization in the 
extended two-phase (ext2ph) collective I/O protocol. 
Without addressing the need of synchronization, this 
problem cannot be solved through the simple replacement 
of collective operations with point-to-point operations. 
There are two alternative strategies for solving this 
problem. One way to do that is to completely re-design 
the collective I/O protocol so that it no longer involves 
interleaved phases of data exchange and I/O, therefore no 
more phases of global synchronization between them. The 
other way is to take an evolutionary approach and 
alleviate the scalability problem caused by global 
synchronization across big groups. In this paper, we take 
on the second approach. We have designed a new 
collective I/O protocol called Partitioned Collective I/O 
(ParColl). ParColl integrates the original two-phase 
protocol as a built-in component for I/O aggregation. Our 

results have confirmed that ParColl can significantly 
reduce the synchronization cost for thousands of 
processes. It is possible that the same scalability problem 
can happen again at even larger scale, e.g. more than 
100,000 processes. We consider a redesign of ext2ph 
maybe needed at that point. As ext2ph is essentially the 
core of an MPI-IO implementation, redesigning ext2ph 
would imply drastic instrumentation to the existing code 
and also the MPI-IO implementation itself. We plan to 
examine the needs of a new design and its trade-off with 
ParColl in our future study. 

3 Related Work 

The performance of parallel I/O has been an active 
topic for many previous studies. ROMIO [6] provides the 
most popular implementation of the parallel I/O interface, 
MPI-IO. It implements a variety of techniques including 
extended two-phase I/O [15, 23], split-phase collective 
I/O [13] and disk-directed I/O [11]. The two-phase 
protocol aggregates small, often non-contiguous I/O 
requests into large contiguous requests for effective 
collective-IO. Split-phase collective I/O [13] optimizes 
collective I/O by utilizing additional threads to achieve 
overlapped communication with I/O. Disk-directed I/O 
[11] aggregates all I/O requests to a few I/O servers. In 
doing so, it tries to exploit the servers’ proximity to disks 
and organize the requests in a way suitable for better disk 
performance.  

Some recent studies have been done to improve 
parallel I/O via optimizations at the MPI-IO layer. For 
example, Liao et al. [10, 11] have carried out a series of 
studies on improving collective I/O by caching 
application data at the user level. This strategy has also 
been shown as beneficial without putting significant 
pressure on memory requirements. Others have attempted 
to improve parallel I/O by introducing file system specific 
optimizations. For example, MPI-IO/GPFS [13] and MPI-
IO/BlueGene [31] have introduced MPI-IO optimizations 
that are specifically designed to take advantage of the 
specific features of General Parallel File System (GPFS) 
and BlueGene [6]. Tatebe et al. [22] have exploited the 
concepts of local file view to maximize the use of local 
I/O bandwidth in the design of a distributed file system 
for the Grid environment. 

Recent efforts on BlueGene/L have reported to 
achieve high performance parallel I/O [31] through an 
architecture-specific design. In [31], the two-phase 
collective I/O protocol has been significantly customized 
to adapt to the organization of processing set (pset), in 
which the compute nodes aggregate the data and the I/O 
node does file I/O. In addition, many of the design 
choices are based on the underlying file system - GPFS 
and the availability of fast collective network over 
BlueGene. Thus, this solution is not generally applicable 



 

 

to other large-scale machines because of its tight 
integration with BlueGene-specific system architecture.  

Little research has been done on optimizing the 
performance of collective I/O for the Cray XT platforms. 
Brightwell et al. have recently introduced NIC-based 
optimizations for MPI message passing on Cray SeaStar 
interconnect [8]. This NIC-based MPI communication is 
conducive to the performance improvement of collective 
I/O because it benefits both the point-to-point 
communication and collective communications, which are 
two of processing components for collective I/O. In this 
work, we investigate the performance issue of collective 
I/O over the massively parallel Cray XT platform, Jaguar. 
We have designed partitioned collective I/O to cope with 
the scalability problem imposed by the internal global 
synchronization in the original protocol. Our design is 
able to significantly alleviate this key bottleneck. 

4 Partitioned Collective I/O 

 
Figure 3 The Architecture of Partitioned Collective I/O 

The main theme of ParColl is to reduce the side-
effects of global synchronization inside collective I/O. 
Figure 3 shows the architecture of ParColl. Parallel 
processes are divided into several groups, each 
performing its I/O in a smaller, yet collective fashion. The 
original ext2ph protocol is still retained as a part of 
ParColl, providing the basic data aggregation and file I/O 
for all subgroups of processes. There are two main issues 
related to the associated resources for collective I/O in 
order to achieve appropriate partitioning. These include: 
(a) how to partition the file among the process groups; 
and (b) how to distribute I/O aggregators amongst all 
process groups. To address these issues, ParColl extends 
the original two-phase collective I/O protocol with new 
mechanisms for file area partitioning, I/O aggregator 
distribution and intermediate file views. There is a 
tradeoff between synchronization cost and the I/O 
aggregation when choosing an optimal group size for 
ParColl. Provided that the size of subgroups is not too 
small, ParColl retains the benefits of I/O aggregation 
while achieving more scalable I/O without the detrimental 
effects of global synchronization. In this paper, we 
empirically evaluate the impact of the group size to the 
effectiveness of ParColl, leaving the examination of an 
optimal group size to a future study as it is closely 
correlated with the I/O pattern of a particular application. 
Note that ParColl instruments the internal implementation 
of Collective I/O. It does not alter the semantics of MPI-

IO. The file consistency is still maintained through the 
use of intermediate file views as needed.  

4.1 File Area Partitioning 

Because ParColl divides processes into separate 
subgroups, the entire file is also partitioned among these 
groups. In the original ext2ph protocol, a file is 
partitioned into file domains amongst the I/O aggregators. 
With processes grouped into subsets in ParColl, a file 
needs to be first divided among the subgroups. We refer 
to the file region that one subgroup needs to read/write as 
its File Area (FA). In fact, the partitioning of a file into 
FAs is the premier issue for ParColl because it affects 
both the I/O consistency and the performance of resulting 
collective I/O operations. On one hand, a file should be 
evenly (or close to) divided into FAs for balanced I/O 
load among subgroups. On the other hand, there should be 
non-overlapping FAs. Otherwise, the consistency of file 
accesses cannot be ensured when multiple un-coordinated 
subgroups perform their own collective I/O to the 
overlapped FAs.  

 

Figure 4 File Area Partitioning 

Figure 4 shows the diagram of three different file 
access patterns for collective I/O. Figure 4(a) represents 
the simplest pattern in which the file segments for all six 
processes are serially distributed and there are no 
intersections among processes. A simple offset 
calculation would partition the file into non-overlapping 
FAs, each of which is owned by the corresponding 
subgroup. In Figure 4 (b), each process reads (or writes) a 
tile of the file with a two-dimensional global array. The 
beginning and ending offsets of some tiles are intersecting 
each other. Such pattern is very common with 
visualization applications. For such patterns, the tiles 
from some processes (8 in this case) can be grouped 
together and form distinct, non-intersecting FAs, which 
again can be owned by its corresponding subgroup.  

Intermediate File Views -- Figure 4 (c) shows the 
third, more complicated pattern. In this pattern, each 
process, e.g. P0, reads or writes to 4 tiles of the file. 
However, the tiles from any process spread widely across 
the entire file. Any direct file partitioning is improbable to 
cover the tiles of a single process. Such pattern is 



 

 

exhibited by scientific applications with complex 
structured datatypes, such as BT-IO [30]. In MPI-IO, such 
file patterns are established by setting up a layout for the 
file, called file view [5], before the actual collective I/O. 
We have designed a file view switching mechanism that 
detects such pattern at the file view initiation time, and 
then converts the original file view into an intermediate 
file view as shown in Figure 6(c). The intermediate file 
view can be viewed as logical file representation in which 
different I/O segments for any individual process are 
consecutively joined together in a virtual manner, before 
reading/writing the file. With the new file view, file 
partitioning is then a special case of pattern (b). The 
original file view is still needed to provide the physical 
layout and distribution of I/O segments. The 
correspondence between the intermediate file view and 
the original file view makes it convenient in partitioning 
processes and file areas. Data are read or written correctly 
using the same representation via an intermediate file 
view to the original file view. In our prototype, the 
switching of the file views is enabled dynamically by 
detecting intersections among partitioned FAs. 

4.2 I/O Aggregator Distribution 

 
Figure 5 Distribution of I/O Aggregators 

As discussed in the previous section, file partitioning 
determines how the processes should be grouped together 
to form balanced and non-overlapping FAs. However, 
only a selected number of processes perform file I/O as 
I/O aggregators. Applications can also provide one of two 
different hints: (a) the number of I/O aggregators to use 
from the default list; or (b) a list of physical nodes to use 
as I/O aggregators. These choices are enabled as user-
manageable hints in MPI-IO. While ParColl does not 
require changes on the existing specification and the 
usage of such hints, it does introduce more complexities 
to the selection of I/O aggregators. For example, the I/O 
aggregators selected by default may fall into the first one 
(or few) I/O subgroups; multiple processes from the same 
physical node can be partitioned into different subgroups. 
To be compatible with the provided list of I/O 
aggregators, it is necessary to ensure that ParColl meets 
these requirements: (a) each subgroup of processes shall 
have at least one I/O aggregators; (b) no processes from 
the same physical node can be I/O aggregators for 

different subgroups; (c) I/O aggregators are as evenly 
distributed as permitted by the groups of processes. 

To make ParColl compatible with the original 
semantics of I/O aggregator specification, we have 
implemented a distribution algorithm to meet these 
requirements. It traverses all processes in a subgroup to 
choose an I/O aggregator from the list of available 
aggregators. The partitioning is done in a round-robin 
manner for each subgroup until all I/O aggregators are 
assigned. Figure 5 shows some sample distributions of 
I/O aggregators under the common block- and cyclic-
based process mapping schemes. For the block mapping 
case, four I/O aggregators are properly distributed to two 
subgroups; for the cyclic case with three I/O aggregators, 
each group first gets one I/O aggregator, the third one is 
then left to Subgroup 1.  

5 Performance Evaluation 
We have conducted our experiments on the Jaguar 

supercomputer [17] at Oak Ridge National Laboratory. 
There are three different Lustre file systems on this 
platform with different number of storage targets [14, 33]. 
We used one file system with 72 Lustre object storage 
targets (OSTs), each with a 4Gbps Fibre Channel 
interface. The files for our tests are all striped across 64 
targets with a stripe size of 4MB. All our tests are also 
conducted using both cores on the compute PEs. We have 
evaluated with the performance of ParColl using both 
micro-benchmarks such as IOR, and the I/O kernel of 
scientific applications such as BT-IO and Flash I/O. Our 
experiment results were collected with repeated 
measurements to eliminate any significant interference 
from other loads. 

5.1 IOR 

IOR [2] is a benchmark that measures the 
performance of various parallel I/O patterns. IOR also can 
test the performance of parallel I/O through different I/O 
interfaces, including POSIX read/write, MPI-IO 
independent or collective read/write, as well as higher 
level libraries such as HDF5 [27]. 

IOR Collective I/O with ParColl – We have tested 
IOR collective I/O with a varying number of processes. In 
our IOR experiments, all processes are collectively 
writing a contiguous buffer of 512MB, in units of 4MB, 
into a shared file. While this type of contiguous I/O would 
not benefit with the aggregation from collective I/O, it 
typically leads to a significant low I/O throughput on 
Cray XT. Note that we carried out this test to see how 
ParColl can benefit IOR in such scenarios, not to 
recommend the use of collective I/O for this type of 
contiguous I/O patterns. Figure 6 shows the performance 
of IOR with 128- and 512- processes, with a least group 
size of 8. ParColl-N denotes that a run of Flash I/O using 
ParColl with N subgroups.  Compared to the Cray 



 

 

implementation, ParColl improves the aggregated 
bandwidth up to 5,301MB/sec. This leads to a 
performance improvement of 12.8 times, compared to the 
original 380MB/sec across 512 processes. It demonstrates 
that ParColl is very beneficial to collective I/O in IOR by 
breaking processes into groups and reducing the 
synchronization amongst processes. 

0

1000

2000

3000

4000

5000

6000

B
an

dw
id

th
 (M

B
/s

ec
)

128 512
No. of Processes

IOR Collective IO

Cray
ParColl-1
ParColl-2
ParColl-4
ParColl-8
ParColl-16
ParColl-32
ParColl-64

 
Figure 6 Benefits of ParColl to IOR collective I/O 

5.2 MPI-Tile-IO 

MPI-Tile-IO [19] is an MPI-IO benchmark testing 
the performance of tiled data accesses. In this application, 
data I/O is non-contiguous and issued in a single step 
using collective I/O. It tests the performance of tiled 
access to a two-dimensional dense dataset, simulating the 
type of workload that exists in some visualization and 
scientific applications. In our experiments, each process 
renders a 1x1 tile with 1024x768 pixels. The size of each 
element is 64 bytes, leading to a file size of 48*N MB, 
where N is the number of processes. 

MPI-Tile-IO Bandwidth

0

2000

4000

6000

8000

10000

12000

Cray 1 2 4 8 16 32 64 12
8

25
6

No. of Groups

Ba
nd

w
id

th
 (M

B/
se

c)

-50
0
50
100
150
200
250
300
350

P
er

ce
nt

ag
e

Write Read Improvement(W) Improvement(R)

 
Figure 7 Performance of MPI-Tile-IO 

To measure the benefits of ParColl with different 
number of groups, we have divided the file into a varying 
number of FAs, i.e. the processes being divided into in the 
same number of subgroups. Figure 7 shows the 
performance of MPI-Tile-IO with a varying number of 
subgroups. Compared to the Cray implementation, 
ParColl provides comparable performance with one and 
two subgroups. As shown in Figure 10, the best 
performance is achieved with 64 subgroups for MPI-Tile-
IO. The performance is improved by 210% and 180% for 
writes and reads, respectively. While ParColl is 
partitioning processes into even more subgroups, the 
aggregated I/O performance drops significantly. This 

represents a balance point between the size of I/O 
aggregation and the synchronization cost. 

Synchronization Cost Reduction -- As discussed in 
Section 2, the extended two-phase protocol requires 
frequent synchronization. We have also evaluated the 
benefits of ParColl in reducing synchronization cost. 
Figure 8 shows that the synchronization cost is 
significantly reduced by both absolute value and relative 
ratio. These results suggest that ParColl is effective in 
breaking the collective wall imposed by synchronization, 
unless a group is over partitioned into an extreme number 
of subgroups, in which case, fine-grained I/O relinquishes 
the benefits of aggregation in collective I/O. 

0

2000

4000

6000

8000

1 2 4 8 16 32 64 128 256

No. of Groups

Ti
m

e 
(M

ill
is

ec
on

ds
)

0

50

100

150

200

250

300

350

P
er

ce
nt

ag
e

Sync IO Sync/IO

 
Figure 8 Reduction of Synchronization Cost 

0

2000

4000

6000

8000

10000

12000

16 32 64 128 256 512 1024

No. of Processes

Ba
nd

w
id

th
 (M

B
/s

)

0

100

200

300

400

500

P
er

ce
nt

ag
e

Cray ParColl Improvement

 
Figure 9 The Improved Scalability of MPI-Tile-IO 

Scalability -- Figure 9 shows the best performance of 
MPI-Tile-IO collective write using ParColl with a varying 
number of processes. As shown in the figure, compared to 
the Cray implementation, ParColl provides much better 
scalability with an increasing number of processes. This 
improvement is nearly proportional to the number of 
processes. With 1024 processes, ParColl can significantly 
improve the performance of MPI-Tile-IO up to 
11.4GB/sec, which is 416% of the reachable bandwidth 
2.7GB/sec using the Cray implementation. A similar trend 
has been observed for collective read. These results 
indicate that ParColl is beneficial to the scalability of 
collective I/O operations for the very large scale of Cray 
XT platforms such as Jaguar. 

5.3 NAS BT-IO  

NAS BT-IO [30] is an I/O benchmark that tests the 
output capability of NAS BT (Block-Tridiagonal) parallel 
benchmark. It is developed at NASA Ames Research 
Center. Data sets in BT-IO undergo diagonal multi-



 

 

partitioning and then distributed among MPI-processes. 
The data structures are represented as structured MPI 
datatypes and written to a file periodically. There are 
several different BT-IO implementations, which vary on 
the way the file I/O is performed. In our experiments, we 
used an implementation that performs I/O using MPI-IO 
collective I/O routines, so called full mode BT-IO. 

Figure 10 shows the performance of BT-IO, Class C 
with different number of processes. Compared to the Cray 
MPI-IO implementation, ParColl significantly improves 
the performance of collective I/O. For the class C 
program of BT-IO, the best I/O performance is achieved 
with 576 processes, which represents a good point of 
tradeoff between the number of processes and the 
granularity of the I/O requests. These results suggest that 
ParColl is beneficial to the scientific I/O pattern as 
exhibited by BT-IO, for any number of processes. Note 
that BT-IO represents the type of complicated I/O 
patterns that require the use of intermediate file views in 
ParColl. So our BT-IO experiments suggest that ParColl 
brings significant benefits to such patterns as shown in 
Figure 4 (c). 

BT-IO Bandwidth

0

2000

4000

6000

8000

10000

12000

64 256 576 784 1024

No. of Processes

Ba
nd

w
id

th
 (M

B/
se

c)

0
20
40
60
80
100
120
140

Pe
rc

en
ta

ge

Cray ParColl Improvement

 
Figure 10 The Performance of BT-IO with ParColl 

5.4 Flash 

Flash is an application that simulates astrophysical 
thermonuclear flashes. It is developed in part at the 
University of Chicago by the DOE-supported ASC 
Alliance Center for Astrophysical Thermonuclear. Flash 
I/O [1] benchmark is the I/O kernel of the Flash program 
and measures the performance of its parallel HDF5 [27] 
output. MPI-IO is used internally in the HDF5 library. 
Three different output files are produced in Flash IO: a 
checkpoint file, a plotfile with centered data, and a 
plotfile with corner data. The checkpoint file is written 
through in the HDF5 [27] data format. It consumes the 
bulk of the I/O time. We evaluated Flash I/O with its 
memory structure being a 3D array of size 32x32x32. 
This results in a checkpoint file of 60.8GB for 128 
processes, and 486GB for 1024 processes. 

Figure 11 shows the I/O Bandwidth in writing its 
checkpoint file from a 1024-process Flash I/O program 
over Jaguar. The series denoted with default shows the 
performance of flash I/O under the default selection of 
I/O processes. Compared to the Cray implementation, 

ParColl with 64 subgroups can improve the I/O 
bandwidth by 38.5% for the default selection of I/O 
aggregators. The performance benefits of ParColl for 
Flash I/O is relatively smaller compared to MPI-Tile-IO 
and BT-IO. This is because the I/O requests in Flash I/O 
are of larger sizes, fewer segments compared to those in 
the other two programs. Thus the cost of synchronization 
in Flash I/O has relatively less impact. On Cray XT, there 
have been studies suggesting I/O for very large scale 
applications needs to be carried out with fewer I/O 
aggregators [33]. We have measured the performance of 
ParColl with only 64 I/O processes selected as I/O 
aggregators. Figure 11 shows that ParColl can also 
improve Flash I/O with a different number of I/O 
aggregators.  

0

4000

8000

12000

16000

20000

Cray
 w

/o 
Coll

Cray
 C

oll

ParC
oll

-1

ParC
oll

-2

ParC
oll

-4

ParC
oll

-8

ParC
oll

-16

ParC
oll

-32

ParC
oll

-64

B
an

dw
id

th
 (M

B
/s

ec
)

-10

0

10

20

30

40

50

Pe
rc

en
ta

ge

64-IOproc Default Improvement-64 Improvement

 
Figure 11 The Performance of Flash IO 

Note that we have also measured the bandwidth of 
writing Flash I/O checkpoint file without enabling 
collective I/O, which is denoted in the figure as “Cray w/o 
Coll”. The resulting bandwidth of Flash I/O is only 
around 60MB/sec. This suggests that it is very important 
to use collective I/O for writing the Flash I/O checkpoint 
file. 

6 Conclusions 

In this paper, we take on the challenge of optimizing 
collective I/O on Cray XT. We have examined the 
processing costs of collective I/O, and uncovered the 
collective wall that is caused by the required 
synchronization in the extended two-phase protocol of 
MPI-IO. We have introduced a novel technique called 
partitioned collective I/O (ParColl) to augment and 
optimize the original two-phase collective I/O protocol. 
Accordingly, we have introduced new mechanisms for 
file area partitioning, I/O aggregator distribution and 
intermediate file views. Our experimental results indicate 
that ParColl significantly improves the I/O performance 
and scalability of various benchmarks and scientific 
applications, such as BT-IO and Flash I/O [1].  

In the future, we plan to carry out a comprehensive 
study on the collective wall problem over other massively 
parallel platforms with different underlying file systems, 
such as GPFS [21] and PVFS [3]. We also plan to study 
how to better adapt collective I/O for the new era of 
multi- or many-core processing. For example, we will 



 

 

study how to consolidate I/O requests from different cores 
to maximize the utilization of in-core bandwidth for 
collective I/O, and how to adaptive choosing the best 
group size for ParColl. 

Acknowledgments 

This research is sponsored by the Office of Advanced 
Scientific Computing Research; U.S. Department of 
Energy. The work was performed at the Oak Ridge 
National Laboratory, which is managed by UT-Battelle, 
LLC under Contract No. DE-AC05-00OR22725. We are 
also very thankful to the anonymous reviewers for their 
detailed constructive comments. 

References 
[1] FLASH I/O Benchmark Routine -- Parallel HDF 5,  
[2] IOR Benchmark,  

http://www.llnl.gov/asci/purple/benchmarks/limited/ior. 
[3] The Parallel Virtual File System, Version 2,  

http://www.pvfs.org/pvfs2. 
[4] TOP 500 Supercomputers,  http://www.top500.org/. 
[5] MPI-2: Extensions to the Message-Passing Interface, 1997. 
[6] Argonne National Laboratory, ROMIO: A High-

Performance, Portable MPI-IO Implementation,  
[7] R. Brightwell, W. Camp, B. Cole, E. DeBenedictis, R. 

Leland, J. Tomkins, and A. B. MacCabe, Architectural 
specification for massively parallel computers: an experience 
and measurement-based approach: Research Articles, 
Concurr. Comput. : Pract. Exper., vol. 17, 2005. 

[8] R. Brightwell, K. T. Pedretti, K. D. Underwood, and T. 
Hudson, SeaStar Interconnect: Balanced Bandwidth for 
Scalable Performance, IEEE Micro, vol. 26, pp. 41-57, 2006. 

[9] Bull Direct, French Atomic Energy Authority (CEA) takes 
delivery of Tera-10, 
http://www.bull.com/bulldirect/0601/hot.html 

[10] Cluster File System, Lustre: A Scalable, High Performance 
File System,  

[11] K. David, Disk-directed I/O for MIMD multiprocessors, 
ACM Trans. Comput. Syst., vol. 15, pp. 41-74, 1997. 

[12] DDN, Products: S2A9550,  
[13] P. M. Dickens and R. Thakur, Improving Collective I/O 

Performance Using Threads, in Proceedings of the 13th 
International Symposium on Parallel Processing and the 10th 
Symposium on Parallel and Distributed Processing: IEEE 
Computer Society, 1999. 

[14] M. Fahey, J. Larkin, and J. Adams, I/O Performance on a 
Massively Parallel Cray XT3/XT4, in 22nd IEEE 
International Parallel & Distributed Processing Symposium 
(IPDPS'08), Miami, FL, 2008. 

[15] R. Juan Miguel del, B. Rajesh, and C. Alok, Improved 
parallel I/O via a two-phase run-time access strategy, 
SIGARCH Comput. Archit. News, vol. 21, pp. 31-38, 1993. 

[16] W.-k. Liao, K. Coloma, A. Choudhary, L. Ward, E. 
Russell, and S. Tideman, Collective caching: application-
aware client-side file caching, in High Performance 
Distributed Computing (HPDC-14), 2005. 

[17] National Center for Computational Sciences, 
http://nccs.gov/computing-resouces/jaguar/,  

[18] K. Pedretti, R. Brightwell, and J. Williams, Cplant" 
Runtime System Support for Multi-Processor and 

Heterogeneous Compute Nodes, in Proceedings of the IEEE 
International Conference on Cluster Computing: IEEE 
Computer Society, 2002. 

[19] R. B. Ross, Parallel I/O Benchmarking Consortium,  
[20] Sandia National Laboratories, Scalable IO,  
[21] F. Schmuck and R. Haskin, GPFS: A Shared-Disk File 

System for Large Computing Clusters, in FAST '02, 2002, pp. 
231-244. 

[22] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. 
Sekiguchi, Grid Datafarm Architecture for Petascale Data 
Intensive Computing, in Proceedings of the 2nd IEEE/ACM 
International Symposium on Cluster Computing and the Grid: 
IEEE Computer Society, 2002. 

[23] R. Thakur and A. Choudhary, An Extended Two-Phase 
Method for Accessing Sections of Out-of-Core Arrays, 
Scientific Programming, vol. 5, pp. 301-317, Winter 1996. 

[24] R. Thakur, W. Gropp, and E. Lusk, An Abstract-Device 
Interface for Implementing Portable Parallel-I/O Interfaces, in 
Proceedings of Frontiers '96: The Sixth Symposium on the 
Frontiers of Massively Parallel Computation, 1996. 

[25] R. Thakur, W. Gropp, and E. Lusk, Data Sieving and 
Collective I/O in ROMIO, in Proceedings of the Seventh 
Symposium on the Frontiers of Massively Parallel 
Computation, 1999, pp. 182-189. 

[26] R. Thakur, W. Gropp, and E. Lusk, Optimizing 
noncontiguous accesses in MPI– IO, Parallel Computing, vol. 
28, pp. 83-105, 2002. 

[27] The National Center for SuperComputing, HDF5 Home 
Page,  

[28] G. M. Timothy, S. David, and R. W. Stephen, A TeraFLOP 
Supercomputer in 1996: The ASCI TFLOP System, in 
Proceedings of the 10th International Parallel Processing 
Symposium: IEEE Computer Society, 1996. 

[29] J. S. Vetter, S. R. Alam, T. H. Dunigan, Jr.,, M. R. Fahey, 
P. C. Roth, and P. H. Worley, Early Evaluation of the Cray 
XT3, in IEEE International Parallel & Distributed 
Processing Symposium (IPDPS), Greece, 2006. 

[30] P. Wong and R. F. Van der Wijngaart, NAS Parallel 
Benchmarks I/O Version 2.4, NASA Advanced 
Supercomputing (NAS) Division NAS-03-002, 2002. 

[31] H. Yu, R. K. Sahoo, C. Howson, et al., High performance 
file I/O for the Blue Gene/L supercomputer, in High-
Performance Computer Architecture (HPCA-12), Austin, 
Texas, 2006. 

[32] W. Yu, J. S. Vetter, and R. S. Canon, OPAL: An Open-
Source MPI-IO Library over Cray XT, in International 
Workshop on Storage Network Architecture and Parallel I/O 
(SNAPI'07), San Diego, CA, 2007. 

[33] W. Yu, J. S. Vetter, and H. S. Oral, Performance 
Characterization and Optimization of Parallel I/O on the Cray 
XT, in 22nd IEEE International Parallel and Distributed 
Processing Symposium (IPDPS'08), Miami, FL, 2008. 

 
 


