Achieving Database Security Through Data Replication: The SINTRA Prototype

Myong H. Kang, Judith N. Froscher, John McDermott, Oliver Costich, Rodney Peyton
Information Technology Division
Naval Research Laboratory

Preview

- Multilevel Secure (MLS) Database Systems
- Secure INformation Through Replicated Architecture (SINTRA)
 - Architecture
 - Security Model
Multilevel Secure (MLS) Database Systems (DBS)

- Contain data that has multiple levels of security
- Provides a form of access control that is an advantage over traditional DBSs
 - Mandatory Access Controls (MACs) vs. Discretionary Access Controls (DACs)
- Security attributes are used to label DB objects based on the sensitivity of the data being stored in that object
- Each user is given a range of labels (group of objects) to which they will be allowed access

Approaches recommended by The Multilevel Data Management Security Summer Study [Air83]:

- Integrity lock
 - Uses a trusted front end, single untrusted back end DBS, and encryption techniques to protect data
 - Vulnerable to Trojan Horse attacks
- Kernelized
 - Uses a trusted OS to enforce separation of data at different security levels
 - Uses several untrusted back end DBSs, one for each security level; untrusted back ends DBSs are controlled by security kernel that enforces a MAC policy
 - Security of this approach is as strong as the security of the trusted operating system
Multilevel Secure (MLS) Database Systems (DBS)

- Approaches recommended by The Multilevel Data Management Security Summer Study [Air83], continued:
 - Distributed
 - Non-replicated
 - Each DBS has data belonging to a single security level
 - Uses a trusted front end and several untrusted back end DBSs
 - Replicated…
 - Used by SINTRA

SINTRA

- Multilevel Trusted Database System based on a replicated data approach
 - Physical separation of classified data
 - Achievement of High Performance
 - All information that a user can rightfully access is stored in one location
 - Untrusted Backend DBS (UBD)
 - Contains information at a given class/level
 - Contains replicated information from all lower UBDs
 - Trusted Front End (TFE)
 - Controls user access to separate Untrusted Backend DBSs (UBD)
 - Role includes authenticating users, directing user queries to proper UDB, and maintaining data consistency among UDBs
SINTRA

- Uses many commercial DBSs
 - Advantages:
 - Easy testing and evaluation
 - Easy to connect
 - Easy to upgrade
 - Minimal development and maintenance costs
 - All in all – little new work is required to construct the MLS system known as SINTRA

SINTRA

- Architecture
 - TFE - Honeywell XTS-200 system
 - A high assurance trusted OS
 - B3 rated system
 - UBD – Oracle 7
 - Untrusted database system
 - Network Interface - TFE and UDBs are connected through dedicated Ethernet connections
 - Custom processes
 - Query preprocessor
 - Global scheduler
SINTRA

- Query Preprocessor
 - Modifies user queries, if necessary
 - Assists in the maintenance of data consistency among UBDs and data integrity
 - Ex. If a high-level user is allowed to modify low-level data located at the high-level UBD, then inconsistencies appear between high-level UBD and low-level UBD
 - Ex. Users might have read-only access to some data that is only modified by the system

Global and Local Schedulers

- Local – manages transactions and update projections at the UBD
- Global - Enforces data consistency among different security levels
 - Guarantees that the serialization order introduced by the local scheduler at the user's session level is maintained at the higher-level UBD
SINTRA

- Security Model
 - Based on Bell-LaPadula Model
 - Subjects
 - Transactions or processes that request access to objects
 - Assigned a clearance
 - Objects
 - Files, relations, tuples, or fields in a tuple
 - Assigned a sensitivity classification

Figure 1: The SINTRA Architecture.
SINTRA

✓ Security Model, continued

✓ Simple Security Property (ss-property)
 ✓ Allows a transaction to read data if the security level of the
 transaction dominates the security level of the data

✓ Restricted ★ - Property
 ✓ Allows a transaction to write data if the security level of a
 transaction is the same as that of the data

Review

✓ Multilevel Secure (MLS) Database Systems (DBS)
✓ Secure Information Through Replicated Architecture
 (SINTRA)
 ✓ Architecture
 ✓ Trusted Front End (TFE)
 ✓ Untrusted Backend DBSs (UBD)
 ✓ Network Interface
 ✓ Query Preprocessor
 ✓ Global and Local Schedulers
✓ Security Model
?? Questions ??