THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS & SCIENCES

CC-MPI: A COMPILED COMMUNICATION CAPABLE MPI
PROTOTYPE FOR ETHERNET SWITCHED CLUSTERS

By

AMIT V. KARWANDE

A thesis submitted to the
Department of Computer Science
in partial fulfillment of the
requirements for the degree of
Master of Science

Degree Awarded:
Spring Semester, 2003

The members of the Committee approve the thesis of Amit V. Karwande defended
on April 4, 2003.

Xin Yuan
Professor Directing Thesis

Kyle A. Gallivan
Committee Member

Robert Engelen
Committee Member

Approved:

Sudhir Aggarwal, Chair
Department of Computer Science

The Office of Graduate Studies has verified and approved the above named committee
members.

To Mom, Dad, & my dear sister Gouri. ..

il

ACKNOWLEDGEMENTS

Acknowledgement: I would like to take this opportunity to thank all those who
made this research possible. First of all I would like to thank Dr. Yuan for giving
me an opportunity to work with him in this exciting field. This work would not have
been possible without his guidance. It was a great privilege to work with him. Dr.
Gallivan and Dr.Englen provided useful insights during the course of my work.

I would also like to thank the members of the systems group for their co-operation

and support in setting up the MCH128 lab.

v

TABLE OF CONTENTS

List of Tables vi
List of Figures e vii
1. INTRODUCTION e 1
2. BACKGROUND. e e 4
2.1 MPI collective communication routines 4
2.2 Switched Ethernet 6
3. CC-MPI ... 8
3.1 One-to—all and One-to-many Communications. 9
3.2 All-to—all and Many-to—many communications.................. 14
4. PERFORMANCE e 23
4.1 Performance of individual MPI routine 24
4.2 Performance of benchmark programs.......................... 30
4.3 Applying CC-MPI to software DSMs. 32
5. RELATED WORK e 34
6. CONCLUSION e e e e e 36
REFERENCES 37
BIOGRAPHICAL SKETCH i, 40

4.1

4.2
4.3
4.4

4.5

4.6

LIST OF TABLES

Communication time of MPI_Allgather on 16 nodes (times in millisec-
ONAS). + v et

Performance of different implementations of MPI_Alltoallv.
Performance of MPI_Alltoallv for a random pattern on 16 nodes.

Execution time for IS with different MPI libraries, different number of
nodes and different problem sizes.,

Execution time for F'T with different MPI libraries, different number of
nodes and different problem sizes.

Experiments with our prototype SDSM that uses CC-MPI for commu-
NICALION. . . . ot e

vi

27
28
29

30

32

33

2.1
3.1
3.2
3.3

3.4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

LIST OF FIGURES

Realizing communications s; — dy, ss — do, and s3 — d3.. 6
An example of compiler—assisted group management. 12
All-to-all phases for 6 nodes. 15
Scheduling messages: (0 — 1,1MB), (1 — 3,1MB), (0 — 2,10KB),

(2 —3,100B), (1 = 5,100B), (2 — 1,100B). 17
All-to—all based scheduling. 19
Performance evaluation environment. 23
Code segment for measuring the performance of individual MPI routine. 24

Performance of MPI_Bcast (size = 1B). i ... 24
Performance of MPI_Bcast (size=10KB). 25
Performance of MPI Scatter on 29 nodes. 25
Performance of one-to—five communication using MPI _Scatterv. 26
Performance of MPI_Alltoallon 4 nodes. 27
Performance of MPI_Alltoallon 16 nodes. 28

vii

CHAPTER 1

INTRODUCTION

As microprocessors become more and more powerful, clusters of workstations have
become one of the most common high performance computing environments. Many
institutions have Ethernet—switched clusters of workstations that can be used to
perform high performance computing. One of the key building blocks for such systems
is a message passing library. Standard message passing libraries, including MPI [1]
and PVM [2], have been implemented for such systems. Current implementations,
such as MPICH[3] and LAM/MPI[4], focus on moving data across processors and
addressing portability issues. Studies have shown that current implementations of
message passing libraries are not tailored to achieve high communication performance
over clusters of workstations[5].

Compiled communication has recently been proposed to improve communication
performance for clusters of workstations[6, 7]. In compiled communication, the
compiler determines the communication requirement of a program. The compiler
then uses its knowledge of the application’s communications, together with the
information about the underlying network architecture, to directly manage network
resources, schedule communications, and exploit optimization opportunities. Com-
piled communication can perform optimizations across communication patterns at
the software level, the protocol level, and the hardware level, and is more aggressive
than traditional communication optimization techniques, which are either performed
in the library [8, 9, 10, 11] or in the compiler [12, 13, 14, 15, 16, 17]. Compiled

communication offers many advantages over the traditional communication methods.

First, by managing network resources at compile time, some runtime communication
overheads such as group management can be eliminated. Second, compiled commu-
nication can use long—lived connections for communications and amortize the startup
overhead over a number of messages. Third, compiled communication can improve
network resource utilization by using off-line resource management algorithms. Last
but not the least, compiled communication can optimize arbitrary communication
patterns as long as the communication information can be determined at compile
time.

The limitation of compiled communication is that it can only apply to static
communications, that is, communications whose information can be determined at
compile time. It has been found that a large percent of communications in scientific
programs and in particular MPI programs are static [18, 19]. Thus, compiled
communication can be effective in improving overall communication performance
by optimizing common cases.

To facilitate compiled communication, mechanisms must be incorporated in the
communication library to expose network resources to the users. Existing messaging
libraries, including MPICH|[3] and LAM/MPI[4], hide the network details from the
user and do not support compiled communication. In this paper, we introduce
an MPI prototype, CC-MPI, that supports compiled communication on Ethernet
switched clusters. Since the targeted users of C'C-MPI are compilers and advanced
programmers who know system details, we will use words user, compiler, and
advanced programmer interchangeably in this paper.

CC-MPI optimizes one-to-all, one-to-many, all-to-all, and many-to-many
collective communication routines. To support compiled communication, CC-MPI
extends the MPI standard and uses separate routines for network control and data
transmission. Network resources are exposed to the user through the network control
routines, and various optimizations can be performed by manipulating (moving,

merging, eliminating) the network control routines. Based on the availability of

2

application communication information, CC-MPI allows the user to use different
combinations of network control routines and data transmission routines for the
communication to achieve optimal performance.

In this paper, we will describe the techniques used in CC-MPI and report our
performance study of CC-MPI. The results of our study indicate that the com-
munication performance of Ethernet switched clusters can be improved substantially
through compiled communication. For example, on 16 nodes, CC-MPIspeeds up the
IS benchmark (class A), a program from the NAS suite[20], by 54% over LAM /MPI
and 286% over MPICH.

The rest of the paper is organized as follows. In Section 2, we describe MPI
collective communication routines and discuss features in switched Ethernet that
affect the method for efficient communication. In Section 3, we present the techniques
used in CC-MPI. In Section 4, we report the results of the performance study. The

related work is presented in Section 5. Finally, Section 6 concludes the paper.

CHAPTER 2

BACKGROUND

CC-MPI optimizes one—to—all, one-to—many, many—to—many, and all-to—all com-
munication routines for Ethernet switched clusters by exploiting special features
in switched Ethernet. In this section, we will briefly introduce MPI collective
communication routines and discuss the features in switched Ethernet that affect

communication efficiency.

2.1 MPI collective communication routines

MPI is a library specification for message-passing, proposed as a standard by
a broad-based committee of vendors, implementors and users. A set of standard
collective communication routines are defined in MPI. Each collective communication
routine has a parameter called a communicator, which identifies the group of
participating processes. We will briefly summarize the MPT collective communication

routines. Details about these routines can be found in the MPI specification [1].

e Barrier. The routine MPI_Barrier blocks the callers until all members in the

communicator call the routine.

e Broadcast. The routine MPI_Bcast broadcasts a message from a process called

the root to all processes in the communicator.

e Gather. The routines MPI_Gather and MPI_Gatherv allow each process in the

communicator to send data to one process.

e Scatter. The routine MPI_Scatter allows one process to send a different message
to different processes. The message size is the same for all processes when this
routine is used. A more general form of scatter, where messages can be of
different sizes, is realized by the routine MPI Scatterv; this routine can also
perform one-to-many communications within the communicator by carefully

selecting the input parameters.

e Gather-to—all. The routine MPI_Allgather gathers information from all
processes and broadcasts the results to all processes. Another routine,

MPI_Allgatherv, allows the data sizes for different processes to be different.

e All-to-all. The routine MPI_Alltoall is a generalization of gather-to-all in
that different messages can be sent to different processes. The most general
form of all-to—all communication is the MPI_Alltoallv, which allows general
many-to-many or one-to-many communications to be performed by carefully

selecting the input arguments.

e Global reduction. The routine MPI_Reduce performs global reduction opera-
tions (such as sum, max, logical AND, etc.) across all the members of the

communicator.

e Reduce-scatter. The routine MPI_Reduce_scatter performs a global reduction

and broadcasts the results to all the processes.

e Scan. The routine MPI_Scan is similar to the reduce function, but performs a

prefix reduction on data distributed across the members of the communicator.

CC-MPI implements a subset of MPI routines, including all the routines required
to execute the NAS parallel benchmarks [20]. CC-MPI optimizes the collective
communication routines that contain one-to-all, one-to-many, all-to—all and many-

to-many communication patterns. More specifically, MPI_Bcast and MPI_Scatter
5

contain the one-to-all pattern, MPI _Scatterv contains the one-to-all or one-to—
many pattern, MPI Allgather and MPI_Alltoall contain the all-to—all pattern, and
MPI_Alltoallv contains the all-to—all or many—to—many pattern. The one—to—all,
one-to-many, all-to—all and many-to-many communication patterns are also part

of the communications in MPI_Barrier and MPI_Reduce_Scatter.

2.2 Switched Ethernet

CC-MPI is designed for Ethernet switched homogeneous clusters. We assume
that TCP/IP protocols are running on the end hosts and IP multicast can be used
through the UDP interface. To achieve optimal performance, CC-MPI exploits the

following features in switched Ethernet.

k /gl
S, d
s S
d
& O

Figure 2.1. Realizing communications s; — dy, so — do, and s3 — d3.

e Switched Ethernet supports broadcast at the hardware level. Therefore using
multicast primitives to realize broadcast type of routines, (including MPI Bcast,
MPI _Scatter, and MPI_Scatterv), will likely result in better communication

performance.

e Ethernet switches support unicast traffic effectively when there is no network
contention in the system. Consider the example in Figure 2.1. Assume that
six nodes, si, S9, S3, d1, dy , and d3, are connected to an Ethernet switch and
that the communication to be performed consists of three messages, s; — d,
$o — do, and s3 — ds3. The notation src — dst denotes that node src

6

sends a message to node dst. We will use this notation throughout the paper.
Ethernet switches can switch all three messages simultaneously at maximum
speed and thus, this communication can be performed efficiently. Consider
another example where the communication consists of messages, s; — di,
sy — dy, and s3 — d;. In this case, the communication performance will
degrade significantly because all three flows are competing for the output port
connected for node d;. Moreover, when this situation happens, the throughput
for each of the flows is less than one-third of the maximum network speed
because Ethernet does not have a good mechanism for multiplexing to share the
bandwidth. Hence, to achieve good performance, the communication library

should avoid this scenario.

Multicast traffic in switched Ethernet negatively affects unicast traffic. So

multicast should be used with great caution in Ethernet switched clusters.

CHAPTER 3

CC-MP1

CC-MPI supports compiled communication by separating network control from
data transmission. For each communication routine, zero, one or more network con-
trol routines and one or more data transmission routines are supported in the library.
This way, different combinations of network control and data transmission can be
used for a communication to achieve optimal performance. This allows the user
to directly manage network resources, amortize the network control overhead over a
number of communications, and use more efficient methods for static communications
when more information about the communication is known. A number of factors
allow CC-MPI to achieve high communication performance. First, CC-MPI uses
different methods for each type of communication. Each method does not have to be
effective for all situations. It only needs to be effective in some cases, which the user
can select. This gives CC-MPI more flexibility in using customized communication
methods. Second, some communication routines in CC-MPI make more assumptions
about the communications to be performed than the general-case routines. With
these assumptions, more effective communication routines are developed. Although
such routines are not general, they provide high performance when applicable.

CC-MPI focuses on optimizing one-to-all, one-to-many, all-to-all, and many—
to-many communications. To present the techniques used in CC-MPI, we will
use one representative routine for each communication pattern. More specifically,
we will use MPI_Bcast to illustrate how we implement one-to—all communication,

MPI_Scatter for one-to-all personalized communication, MPI_Scatterv for one-to—

many personalized communication, MPI_Alltoall for all-to-all communication, and
MPI _Alltoallv for many—to—many communication. This section first describes tech-
niques used in one-to—all and one-to—-many communications, including issues related
to multicast. Then, we discuss all-to—all and many-to-many communications,

including our use of phased communication [21] to avoid network contention.

3.1 Omne-to—all and One-to—many Communications

MPI_Bcast, MPI_Scatter, and MPI_Scatterv realize one-to—all and one-to—many
communications. These routines are traditionally implemented using unicast primi-
tives with a logical tree structure [3, 4]. In addition to unicast based implementations,
CC-MPI also provides implementations using multicast. Multicast based implemen-
tations can potentially achieve higher communication performance than a unicast
based implementation because multicast reduces both the message traffic over the
network and the CPU processing at the end hosts and because Ethernet supports
broadcast at the hardware level. However, due to the complexity of reliable multicast
protocols and other related issues, a multicast based implementation does not always
perform better than a unicast based implementation.

There are two issues to be addressed when using multicast: reliability and
group management. The current TCP/IP protocol suite only supports unreliable
IP multicast through the UDP interface. MPI, however, requires 100% reliability.
CC-MPI uses an ACK-based reliable multicast protocol [22] to reliably deliver
multicast messages. We adopt this protocol for its simplicity. Group management
is another issue to be addressed in a multicast-based implementation. Basically,
a multicast group must be created before any multicast message can be sent to
that group. A group management scheme determines when to create/destroy a
multicast group. Given a set of N processes, the number of potential groups is

2N, Thus, it is impractical to establish all potential groups for a program, and group

management must be performed as the program executes. In fact, most network
interface cards limit the number of multicast groups; as an example, Ethernet cards
allow only 20 such groups simultaneously. Because the group management operations
require the coordination of all members in the group and are expensive, the ability to
manage multicast groups effectively is crucial for a multicast-based implementation.
CC-MPI supports three group management schemes: the static group management
scheme, the dynamic group management scheme, and the compiler—assisted group
management scheme.

In the static group management scheme, a multicast group is associated with
each communicator. The group is created/destroyed when the communicator is cre-
ated/destroyed. Because a communicator is usually used by multiple communications
in a program, the static group management scheme amortizes the group management
overheads and makes the group management overhead negligible. This scheme is
ideal for one-to-all communications, such as MPI Bcast. Using the static group
management scheme, MPI Bcast can be implemented by having the root (sender)
send a reliable broadcast message to the group.

A multicast based MPI Scatter is a little more complicated. In the scatter
operation, different messages are sent to different receivers. To utilize the multicast
mechanism, the messages for different receivers must be aggregated to send to all
receivers. For example, if messages m1, m2 and m3 are to be sent to processes pl,
p2 and p3, the aggregate message containing m1, m2 and m3 will be sent to all three
processes as one multicast message. Once a process receives the aggregated multicast
message, it can identify its portion of the message (because the message sizes to all
receivers are the same and are known at all nodes assuming a correct MPI program)
and copy the portion to user space. In comparison to the unicast based MPI_Scatter,
where the sender loops through the receivers sending a unicast message to each of
the receivers, the multicast based implementation increases the CPU processing in

each receiver because each receiver must now process a larger aggregated message,

10

but decreases the CPU processing in the root (sender), as fewer system calls are
needed. Because the bottleneck of the unicast implementation of MPI Scatter is at
the sender side, it is expected that the multicast based implementation offers better
performance when the aggregated message size is not very large. When the size of the
aggregated message is very large, the multicast based implementation may perform
worse than the unicast based implementation because it slows down the receivers.

Functionally MPI _Scatterv is similar to MPI_Scatter, with some complications.
In MPI Scatterv, different receivers can receive different sized messages and each
receiver only knows its own message size. While the sender can still aggregate
all unicast messages into one large multicast message, the receivers do not have
enough information to determine the layout and the size of the aggregated message.
CC-MPI resolves this problem by using two broadcasts in this function. The first
broadcast tells all processes in the communicator the amount of data that each
process will receive. Based on this information, each process can compute the memory
layout and the size of the aggregated message. The second broadcast sends the
aggregate message. MPI_Scatterv can realize one-to-many communication by having
some receivers not receive any data. Using the static group management scheme,
the one-to—many communication is converted into a one—-to—all communication
because all processes in the communicator must receive the aggregated message.
This is undesirable because it keeps the processes that are not interested in the
communication busy. In addition, this implementation sends a reliable multicast
message to a group that is larger than needed, which can affect the performance of
the reliable multicast communication. The dynamic group management scheme and
the compiler—assisted group management scheme overcome this problem.

The dynamic group management scheme creates a multicast group when it
is needed. This group management scheme is built on top of the static group
management scheme in an attempt to improve the performance for one-to—many

communications. To effectively realize one-to-many communication, the dynamic

11

group management scheme dynamically creates a multicast group, performs the
communication with only the intended participants, and destroys the group. In
MPI Scatterv, only the sender (root) has the information about the group of receivers
(each receiver only knows whether it is in the group, but not whether other nodes
are in the group). To dynamically create the group, a broadcast is performed using
the static group associated with the communicator. This informs all members in the
communicator of the nodes that should be in the new group. After this broadcast, a
new group can be formed and the uninterested processes that are not in the new group
can move on. After the communication is performed within the new group, the group
is destroyed. With the dynamic group management scheme, MPI Scatterv performs
three tasks, new group creation (all nodes must be involved), data transmission (only
members in the new group are involved), and group destruction (only members
in the new group are involved). Dynamic group management introduces group
management overheads for each communication and may not be efficient for sending

small messages.

(1) DOi= 1, 1000
(2) MPI Scatterv(....)

(a) An example program

(1) MPI_Scatterv_open_group...)

(2) DO = 1, 1000

(3) MPI _Scatterv_data_movementy....)
(4) MPI_Scatterv_close_group(...)

(b) The compiler—assisted group management scheme

Figure 3.1. An example of compiler—assisted group management.

The compiler—assisted group management scheme allows the user to perform
group management. In this scheme, we extend the MPI interface to provide routines

to allow users to directly manage the multicast groups. For MPI_Scatterv, CC-MPI
12

provides three functions: MPI_Scatterv_open_group, MPI_Scatterv_data_movement,
and MPI_Scatterv_close_group. MPI_Scatterv_open_group creates a new group for the
participating processes in a one-to—-many communication and initializes related data
structures. MPI _Scatterv_close_group destroys the group created.

MPI _Scatterv_data_movement performs the data movement assuming that the group
has been created and that the related information about the communication is
known to all participated parties. Notice that MPI Scatterv_data_movement re-
quires less work than MPI _Scatterv with the static group management scheme.
This is because the message size for each process is known to all processes when
MPI_Scatterv_data-movement is called, so only one broadcast (as opposed to two) is
needed in MPI _Scatterv_data_movement for sending the aggregate message.

The MPI_Bcast, MPI _Scatter, and MPI _Scatterv with the static group man-
agement scheme are implemented as data transmission routines in CC-MPL
MPI Scatterv with dynamic group management and MPI Scatterv_data-movement
are also data transmission routines. On the other hand, MPI_Scatterv_open_group and
MPI _Scatterv_close_group are network control routines for MPI_Scatterv. Note that
when compiled communication is applied, network control routines can sometimes
be moved, merged, and eliminated to perform optimizations across communication
patterns. The data transmission routines generally have to be invoked to carry out
the actual communications. Consider the example in Figure 3.1, where MPI_Scatterv
is performed 1000 times within a loop. Let us assume that the MPI_Scatterv sends
to 5 nodes within a communicator that contains 30 nodes. When static group
management is used, all 30 nodes must participate in the communication. When
dynamic group management is used, only the 5 nodes will participate in the commu-
nication, which may improve reliable multicast performance. However, a multicast
group that contains the 5 nodes in the communication must be created/destroyed
1000 times. With compiled communication, if the compiler can determine that the

group used by the MPI_Scatterv is the same for all its invocations, it can perform

13

group management as shown in Figure 3.1 (b). In this case, only 5 nodes are
involved in the communication, and the multicast group is created/destroyed only
once. This example demonstrates that by using separate routines for network control
(group management) and data transmission, CC-MPI allows the user to directly
manage the multicast groups and to amortize network control overheads over multiple
communications. In addition, CC-MPI also allows more efficient data transmission

routines to be used when more information about a communication is known.

3.2 All-to—all and Many—to—many communications

MPI_Alltoall, MPI_Alltoallv, and MPI_Allgather realize one—to—all and one—to—
many communications. There are many variations in the implementation of these
routines. One scheme is to implement these complex all-to-all and many-to-many
communication patterns over simpler one-to-all and one-to-many collective commu-
nication routines. For example, for N nodes, MPI_Allgather can be decomposed into
N MPI_Bcast operations. While multicast can obviously improve communication
performance for one-to—all and one-to-many communications, it may not improve
the performance for the more complex many-to-many communications in Ethernet
switched clusters. Consider realizing a many-to-many communication where s;, sg,
and s3 each sends a message of the same size to d, ds, and ds. This communication
can be realized with three multicast phases:

Phase 1: {s; — di,ds,d3}
Phase 2: {sy — dy,ds,d3}
Phase 3: {s3 — dy,ds,d3}
This communication can also be realized with three unicast phases:
Phase 1: {s; — di, s9 — do, s3 — d3}
Phase 2: {s; — ds, sy — d3, 83 — d1}

Phase 3: {81 — d3, So — dl, S3 — dg}

14

Using an Ethernet switch, the unicast phase and the multicast phase will take
roughly the same amount of time and multicast-based implementations may not be
more effective than unicast based implementations. Our performance study further
confirms this. Thus, while CC-MPI provides multicast based implementations for
some of the all-to—all and many—to—many communication routines, we will focus on
the techniques we use to improve the unicast based implementation.

Traditionally, these complex communications are implemented based on point—
to—point communications [3, 4] without any scheduling. Such implementations will
yield acceptable performance when the message sizes are small. When the message
sizes are large, there will be severe network contention in the Ethernet switch and
the performance of these implementations will be poor. C'C-MPI optimizes the cases
when the message sizes are large using phased communication [21]. The idea of
phased communication is to reduce network contention by decomposing a complex
communication pattern into phases such that the contention within each phase
is minimal. To prevent communications in different phases from interfering with
each other, a barrier is placed between phases. We will now discuss how phased
communication can be used to realize MPI_Alltoall (for all-to—all communications)
and MPI_Alltoallv (for many-to-many communications).

Phase 0: {0 - 1,1 52,25 3,3 54,4—5,5—0}
MPI_Barrier
Phase 1: {0 »2,1—>3,2—54,3>5,4—-0,5—>1}
MPI_Barrier
Phase 2: {0 - 3,1 >54,2—-55,3>50,4—>1,5— 2}
MPI_Barrier
Phase 3: {0 > 4,15 5,2—-0,3—>1,4—2,5— 3}
MPI_Barrier
Phase 4: {0 > 5,15 0,2—-1,3 > 2,4 — 3,5 — 4}

Figure 3.2. All-to-all phases for 6 nodes.

CC-MPI assumes that network contention only occurs in the link between an
Ethernet switch and a machine. This assumption is true for a cluster connected with

a single Ethernet switch. When multiple switches are involved, this assumption will
15

hold when a higher link speed is supported for the links connecting switches. Under
this assumption, the contention that needs to be resolved is in the links between a
node and a switch. To avoid network contention within a phase, each node receives
at most one message in a phase (receiving two messages potentially results in network
contention). All-to—all communication for N nodes can be realized with N —1 phases
and N — 2 barriers. The ith phase contains communications

{j = (+i) mod N|j=0..N-1}

Figure 3.2 shows the all-to-all phases for 6 nodes. The communication is
composed of 5 communication phases and 4 barriers. As can be seen from the
figure, within each phase, each node only sends and receives one message, and
there is no network contention within each phase. In the following discussion,
we will call the phases that can form all-to—all communications all-to—all phases.
Essentially, scheduling messages in an all-to—all communication according to the
all-to—all phases results in no network contention within each phase. Notice that
each source-destination pair happens exactly once in the all-to—all phases.

Realizing many-to-many communication with phased communication is more
difficult. Using MPI_Alltoallv, a node can send different sized messages to different
nodes. This routine realizes many-to-many communication by specifying the size
of some messages to be 0. The first difficulty to realize MPI_Alltoallv with phased
communication is that the communication pattern information is not known to all
nodes involved in the communication. In MPI_Alltoallv, each node only has the
information about how much data it sends to and receives from other nodes, but
not how other nodes communicate. To perform phased communication, however, all
nodes involved in the communication must coordinate with each other and agree on
what to send and receive within each phase. This requires that all nodes involved
obtain the communication pattern information. CC-MPI provides two methods to
resolve this problem. The first approach uses an MPI_Allgather to distribute the

communication pattern information before the actual many—-to-many communication

16

takes place. The second approach assumes that the global communication pattern
is determined statically for each node and is stored in a local data structure. The
second method can only be used when the user has additional information about the

communication and is clearly more efficient than the first method.

Scheme 1: greedy scheduling
Phase 1: {(0 - 1,1MB), (1 —» 3,1MB)}
MPI _Barrier
Phase 2: {(0 — 2,10KB), (2 — 3,100B), (1 — 5,100B)}
MPI_Barrier
Phase 3: {(2 — 1,100B)}
Scheme 2: all-to-all based scheduling
Phase 1: {(0 — 1,1MB), (2 — 3,100B), (1 — 5,100B)}
MPI_Barrier
Phase 2: {(1 — 3,1MB), (0 — 2,10KB), (2 — 1,100B)}

Figure 3.3. Scheduling messages: (0 — 1,1MB), (1 — 3,1MB), (0 — 2,10K B),
(2 = 3,100B), (1 — 5,100B), (2 — 1,100B).

Once the global communication pattern information is known to all nodes, a
message scheduling algorithm is used to minimize the total communication time for
the many—to—many communication. Figure 3.3 shows an example of how different
message scheduling schemes can result in significant differences in communication
performance. In the example, we use notion (src — dst, size) to denote a message
of size bytes from node src and node dst. Because there is not network contention
within each phase, the time a phase takes depends only on the largest message sent
in the phase; we will refer to a phase with the largest message of X bytes as an X
bytes phase. Figure 3.3 shows two scheduling schemes. Scheme 1 contains one 1MB
phase, one 10KB phase, one 100B phase, and two barriers, and Scheme 2 contains
two 1MB phases and one barrier. As can be seen from this example, to minimize
the total communication time for a phased communication, we must minimize both

the number of phases needed to realize the communication and the amount of time

17

spent within the phases, which can be achieved by having a balanced load within
each phase.

CC-MPI supports two message scheduling schemes for many to many commu-
nications: greedy scheduling and all-to—all based scheduling. The greedy scheduling
algorithm focuses on the load balancing issue. It works in two steps. In the first
step, the algorithm sorts the messages in decreasing order in terms of the message
size. In the second step, the algorithm creates a phase, considers each unscheduled
message (from large size to small size) and puts the message in the phase if possible,
that is, if adding the message into the phase does not create contention. Under our
assumption, network contention occurs when a node sends to two nodes or receives
from two nodes in a single phase. If the sizes of the remaining messages are less than
a threshold value, all messages are put in one phase. The greedy algorithm repeats
the second step if there exists unscheduled messages. The operation to put all small
messages in one phase is a minor optimization to reduce the number of barriers for
realizing a communication pattern. This is useful because when the message sizes
are small, the network contention is light and a barrier operation can be more costly
than the contention. The load in the phases created by the greedy algorithm is likely
to be balanced because messages of similar sizes are considered next to each other.

The all-to-all based scheduling algorithm is shown in Figure 3.4. The main
difference between this algorithm and the greedy algorithm is that messages are
scheduled based on all-to—all phases first before being considered based on their
sizes. This algorithm attempts to minimize the number of phases while putting
messages of similar sizes in the same phase. It can easily be shown that this algorithm
guarantees that the number of phases is no more than N —1. The algorithm produces
optimal scheduling for all-to—all communication and will likely yield good results for
communication patterns that are close to all-to—all communication.

Consider scheduling messages (0 — 1,1MB), (1 — 3,1MB), (0 — 2,10KB),
(2 — 3,100B), (1 — 5,100B), (2 — 1,100B) on 6 nodes. To illustrate the idea,

18

All-to-all based scheduling algorithm:

Input: Communication pattern
Output: Communication phases
(1)Sort messages based on their sizes
2)while (there exist unscheduled messages) do
) if (the largest message size < the threshold) then
) Put all messages in one phase
5) endif
) Let all-to—all Phase i (see Figure 3.2) be the phase
that contains the largest unscheduled message
(7) Create a new empty phase P
(8) Schedule all unscheduled messages that appear in
all-to—all Phase i in P
(9) For each unscheduled message in the sorted list
if no conflict, put the message in P

Figure 3.4. All-to-all based scheduling.

let us assume that the threshold value for the small message size is 0 and that
the messages are sorted in the order as specified. The greedy scheduling works as
follows: messages (0 — 1,1MB), (1 — 3,1MB) will be placed in phase 1 because
they do not cause contention. After that, none of the remaining messages can be
placed in this phase. For example, message (2 — 3,100B) cannot be placed in this
phase because node 3 receives a message from node 1 in message (1 — 3,1MB).
The greedy algorithm then creates phase 2 and places messages (0 — 2,10K B),
(2 — 3,100B), and (1 — 5,100B) in the phase. Message (2 — 1,100B) cannot
be placed in this phase because it conflicts with message (2 — 3,100B), so a third
phase is created for message (2 — 1,100B). The all-to—all based scheduling scheme
schedules the messages as follows. First, the algorithm searches for the all-to-all
phase that contains message (0 — 1), which turns out to be all-to—all phase 0 in
Figure 3.2. The algorithm then creates a phase and puts messages (0 — 1, 1M B) and
(2 — 3,100B) in the phase because these two messages are in all-to—all phase 0. After

that, each unscheduled message is considered. In this case, message (1 — 3,1MB)

19

cannot be placed in this phase because it conflicts with message (2 — 3,100B).
However, message (1 — 5,100B) will be placed in this phase. After this, a second
phase will be created for messages (1 — 3,1MB), (0 — 2,10KB), (2 — 1,100B);
none of these messages conflict. The results of greedy scheduling and all-to—all based
scheduling are shown in Figure 3.3.

Depending on the availability of information about the communication, CC-MPI

provides four different methods for many-to-many communications.

1. Simple communication that realizes many—to—many communication with point—
to—point communication routines. This provides good performance when the

message size is small and network contention is not severe.

2. Phased communication with the global communication pattern information
calculated at runtime. In this case, the global communication information
is distributed with an MPI Allgather routine. After that, a message scheduling
algorithm is executed at each node to determine how each communication
is to be carried out. Finally, the message is transmitted according to the
schedule. This routine is efficient when the user determines that large amounts
of messages are exchanged with the communication; however, the details about
the communication are unknown until runtime. We refer to this scheme
as the Level I compiled communication for MPI_Alltoallv. Notice that this
implementation can handle general dynamic communication. However, for
the cases when the message size is small, the implementation results in
poor performance. Thus, compiler support is needed to determine when this

implementation should be used.

3. Phased communication with the global communication pattern information
stored in a data structure local to each node. In this case, the MPI_Allgather

is unnecessary. The message scheduling algorithm is executed at each node

20

using the stored pattern to determine how each communication is to be carried
out. After that the messages are transmitted according to the results of
message scheduling. This scheme can be used by the compiler when the global
communication information can be determined at runtime. This results in more
efficient communication by eliminating the MPI_Allgather operation. We refer

to this scheme as the Level 2 compiled communication for MPI_Alltoallv.

4. Phased communication with the message scheduling information (phases)
stored in a data structure local to each node. Phased communication is
carried out directly using the phase information. This scheme can be used
by the compiler when global communication information can be determined
statically and scheduling is precomputed. This results in the most efficient
phased communication for many—to—many patterns. We refer to this scheme

as the Level & compiled communication for MPI_Alltoallv.

These different schemes are supported in CC-MPI with two network control
routines and two data transmission routines. The first data transmission routine
supports point—to—point communication based implementation. The second data
transmission routine, MPI_Alltoallv_data_trans2, performs the phased communication
with the assumption that the phases have been computed and the related data
structures are established. The first network control routine, MPI_Alltoallv_controll,
performs the MPI_Allgather operation to obtain the communication pattern and
invokes the message scheduling routine to compute the phases. The second network
control routine, MPI_Alltoallv_control2, assumes that the communication pattern
information is stored in local variables and only invokes the message scheduling
routine to compute the phases. Depending on the availability of the information
about the communication, different combinations of the network control and data
transmission routines can be used to realize the function with different performance.

For example, Level 1 compiled communication can be realized with a combination of

21

MPI_Alltoallv_controll and MPI_Alltoallv_data_trans2, level 2 communication can be
realized with a combination of MPI_Alltoallv_control2 and MPI_Alltoallv_data_trans?2,
and level 3 communication can be realized with a single MPI_Alltoallv_data_trans2.
It must be noted that the system assumptions in CC-MPI simplifies the message
scheduling algorithms. The method to deal with complex all-to-all and many-
to-many communications can be extended for general network topologies, provided
that more sophisticated message scheduling algorithms are developed for the general

network topologies.

22

CHAPTER 4

PERFORMANCE

We have implemented CC-MPI on the Linux operating system. The source
code of this package is available at http://www.cs.fsu.edu/~xyuan/CCMPI. In
this section, we evaluate the routines implemented in CC-MPI and compare the
performance of CC-MPI with that of two MPI implementations in the public
domain, LAM/MPI and MPICH. The experimental environment is an Ethernet
switched cluster with 29 Pentium III-650MHz based PCs. Each machine has 128MB
memory and 100Mbps Ethernet connection via a 3Com 3C905 PCI EtherLink Card.
All machines run RedHat Linux version 6.2, with 2.4.7 kernel. The machines
are connected by two 3Com SuperStack II baseline 10/100 Ethernet switches as
shown in Figure 4.1. We use LAM version 6.5.4 with direct client to client mode

communication and MPICH version 1.2.4 with device ch_p4 for the comparison.

Ethernet
Switch

Figure 4.1. Performance evaluation environment.

This section first measures performance of MPI collective communication rou-
tines. Next, we present the results of two programs from the NAS benchmark suite.
Finally, we present results from an initial prototype of a software distributed shared

memory system that uses CC-MPI for efficient communication.
23

4.1 Performance of individual MPI routine

MPI_Barrier(MPI_COMM_WORLD);
start = MPI_Wtime();
for (count = 0; count < ITER.NUM; count ++) {
MPI Becast(buf, s, MPI.CHAR, 0, MPI. COMM_WORLD);

}

elapsed_time = MPI_Wtime() - start;

Figure 4.2. Code segment for measuring the performance of individual MPI routine.

We use code similar to that shown in Figure 4.2 to measure the performance of
individual MPI routine. For each experiment, we run the test three times and report
the average of all results. For collective communication routines, we use the average

time among all nodes as the performance metric.

0.55 ——

CC-MPI(size =1B) ——
05 1 | AM/MPI(size = 1B) "]
045 | MPICH(size = 1B) -

04
0.35 |
03}
0.25 |
0.2 f
0.15 |
01 e
0.05 -

e

Communication time (ms)

0 5 10 15 20 25 30
Number of Nodes

Figure 4.3. Performance of MPI_Bcast (size = 1B).

Figures 4.3 and 4.4 show the performance of MPI Bcast. As can be seen from
Figure 4.3, multicasting does not guarantee an improvement in communication
performance, even for the broadcast communication. The reason that the LAM/MPI
and MPICH broadcast implementations are more efficient than our multicast-based
implementation when the message size is 1 byte is that LAM/MPI and MPICH use
an efficient logical tree based broadcast implementation when the group is larger

than 4 processes. This distributes the broadcast workload to multiple nodes in the
24

=
N

CC-MPI(size = 10KB) ——/
| LAM/MPI(size = 10KB) = |
MPICH(size = 10KB) =’

=
o

,,,,,,,,,

Communication time (ms)
(2]

0 5 10 15 20 25 30
Number of Nodes

Figure 4.4. Performance of MPI Bcast (size=10KB).

system. In our implementation, the root sends only one multicast packet, but must
process all acknowledgement packets from all receivers. As a result, for small sized
messages, our multicast based implementation performs worse. However, when the
message size is large, the acknowledgement processing overhead is insignificant, and
sending one multicast data packet instead of multiple unicast packets provides a
significant improvement. In this case, our multicast-based implementation is much

more efficient, as shown in Figure 4.4.

" cc-MPl ——

Communication time (ms)

04 L L L L L L L
0 50 100150200 250 300 350 400
Message size

Figure 4.5. Performance of MPI Scatter on 29 nodes.

Figures 4.5 shows the performance of MPI Scatter on 29 nodes. In the scatter
operation, the root sends different data to different receivers. This has two implica-
tions. For unicast implementation, the root must iterate to send a message to each
of the receivers, and the sender is the bottleneck. The tree-based implementation

used in broadcast cannot be utilized. For multicast implementation, the messages

25

must be aggregated so that each receiver must receive more than what it needs,
which decreases performance. Thus, the multicast based implementation can offer
better performance only when the message size is small. As shown in Figu