
Compiler Analysis to Support Compiled Communication for HPF–like programs

Xin Yuan �

Dept. Of Computer Science
Florida State University
Tallahassee, FL 32306

Rajiv Gupta and Rami Melhem
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, PA 15213

Abstract

By managing network resources at compile time, the
compiled communication technique greatly improves the
communication performance for communication patterns
that are known at compile time. In order to support com-
piled communication, the compiler must estimate the run-
time physical connection requirement (physical communi-
cation) of a program and partition the program into phases
such that the underlying network can support the commu-
nications within each phase. Traditional communication
analysis techniques represent the communication require-
ment in logical forms (logical communication) and are in-
sufficient for compiled communication. In this paper, we de-
scribe the compiler algorithms that derive physical commu-
nications from logical communications and present a com-
munication phase analysis algorithm that partitions a pro-
gram into phases. These algorithms are implemented and
evaluated in our E–SUIF compiler.

1 Introduction

Recently, researchers have shown that the communica-
tion performance of dense matrix computation applications
can be greatly improved by allowing network resources to
be managed by the compiler and using the compiled com-
munication technique [2, 5, 7]. In compiled communica-
tion, the compiler determines the communication require-
ment of a program and manages network resources stati-
cally to support efficient communications for the program.
A number of compiler issues must be addressed in order
to apply the compiled communication technique. First, tra-
ditional communication analysis techniques [4, 6, 8] rep-
resent the communications in logical forms (logical com-
munications), such as Available Section Descriptor (ASD)
[4], Section Communication Descriptor (SCD) [8] and a lin-
ear algebra framework [6]. While these descriptors con-

�

This work was performed when the author was at the Department of
Computer Science, University of Pittsburgh.

Communication phase analysis

Communication analysis

a HPF-like program

program + logical communications

program + physical communications

program + physical communications
+ phases + scheduling

logical to physical processor mapping

scheduling
algorithms

resource

Figure 1. The E–SUIF compiler

tain sufficient information for the compiler to perform a
number of high–level communication optimizations, they
are insufficient for compiled communication which utilizes
the knowledge of runtime physical connection requirement
(physical communication) of a program. Deriving physi-
cal communications from logical communications is a non–
trivial task and usually requires approximations due to the
variables whose values are unknown at the compile time.
Second, due to the limited network resources, the compiler
must partition a program into phases such that each phase
contains fixed, pre-determined communication patterns that
the underlying network can support. Since the network
must reconfigure at phase boundaries, to obtain high perfor-
mance, the compiler must incorporate as many communi-
cations as possible without exceeding the network capacity
in each phase to reduce the number of reconfigurations at
runtime.

We have addressed these issues in the E–SUIF compiler,
an extension of the Stanford SUIF compiler [1]. E–SUIF
supports compiled communication for HPF–like programs
on optical Time–Division–Multiplexing (TDM) networks.
While E–SUIF targets optical TDM networks, most of the

techniques for supporting compiled communication can be
applied to other types of networks. Figure 1 shows the ma-
jor components in E–SUIF. The first phase in E–SUIF is a
traditional communication analyzer that analyzes the logi-
cal communication requirement of a program and performs
a number of high–level communication optimizations. The
second phase, logical to physical processor mapping, de-
rives physical communications from logical communica-
tions. The component resource scheduling in E–SUIF de-
termines whether a set of physical communications can
be supported by the underlying network, and if the com-
munications can be supported, how the network resources
are scheduled to support the communications. The third
phase, communication phase analysis, utilizes the resource
scheduling algorithms to partition the program into phases
such that communications in each phase can be supported
by the underlying network and that there is minimal num-
ber of phases at runtime. The E–SUIF compiler outputs a
program with physical communications, phases and the re-
source scheduling for each phase. In this paper, we will
discuss the techniques used in E–SUIF.

The rest of the paper is organized as follows. Section
2 briefly introduces the background. Section 3 describes
algorithms to derive physical communications from SCDs.
Section 4 presents the communication phase analysis algo-
rithm. Section 5 evaluates the performance of the algo-
rithms and Section 6 concludes the paper.

2 Background

We have previously developed a traditional communica-
tion analyzer based on a demand driven dataflow analysis
technique [8]. The work in this paper is built on top of the
analyzer. In this section, we will describe the programming
model and the data flow communication descriptor, Section
Communication Descriptor (SCD), used in the analyzer.

2.1 Programming model

We consider structured HPF–like programs, which con-
tain conditionals and nested loops, but no arbitrary goto
statements. The array subscripts are assumed to be of the
form ��������� , where � and � are invariants and � is a loop
index variable. The programmer explicitly specifies the data
alignments and distributions. To simplify the discussion,
we assume in this paper that all arrays are aligned to a sin-
gle virtual processor grid template, and the data distribution
is specified through the distribution of the template. How-
ever, our compiler handles multiple virtual processor grids.
Arrays are aligned to the virtual processor grid by simple
affine functions. The alignments allowed are scaling, axis
alignment and offset alignment. The mapping from a point	

in data space to the corresponding point
	� on the virtual

ALIGN (i,j) with VPROCS(2*j, i+2, 1) : x
ALIGN (i) with VPROCS(1, i+1, 2) : y

(1)DO 100 i = 1, 5
(2) DO 100 j = 1, 5����������������������! "�#��$% "�'&(�*)+�,&

�.- �!��$/&0�1 1���3254��'254
(3) x(i, j) = y(i)...

Figure 2. Representing logical communica-
tions using SCDs

processor grid is specified by an alignment matrix 6 and
an alignment offset vector

	� , that is,
	�87 6 	
 � 	� . The dis-

tribution of the virtual processor grid can be cyclic, block
or block–cyclic. Assuming that there are 9 processors in a
dimension, and the block size of that dimension is : , the vir-
tual processor � is in physical processor �<;%=
?> 9 � :(@�AB: . For
cyclic distribution, : 7DC . For block distribution, : 7FE AG9 ,
where N is the size of the dimension. We will use notation
block–cyclic(b, p) to denote the block–cyclic distribution
with block size of : over 9 processors for a specific dimen-
sion of a distributed array.

2.2 Section Communication Descriptor

A Section Communication Descriptor (SCD) describes
a logical communication by specifying the source array re-
gion involved in the communication and the communication
pattern for each element in the array region. A H�IKJ 7ML
EON J N I?6 N�PRQ consists of four components. The first
component is the array name E and the second compo-
nent is the array region descriptor J . The third compo-
nent is the communication mapping descriptor I?6 of the
form LTSVUXW%Y
 S[Z"N�\^]*_a`?Q , which describes the source–
destination relationship of the communication. Finally the
fourth component is a qualifier descriptor P , which speci-
fies the iterations within a loop when the communication is
performed. Detail about SCD can be found in [8]. Figure 2
is a simple example showing how SCDs can represent logi-
cal communications. Assuming the owner computes rule,
communication Icb represents the logical communication
required by the statement in line (3), that is, moving array
element d > � @ from the logical processor that owns d > � @ to
the logical processor that owns e > �GN#f @ . This communica-
tion can be vectorized and placed out of the loop. The vec-
torized communication can be represented as L d N > C�gihOgC @ N[L > C�N1�j�kC�N�l @ Y > lm�nfoN1�j�plqN[C @ N�fr7sCKgoh8gtC?Q?NGuMQ .

3 Logical to physical processor mapping

The SCD descriptor represents the communication in a
logical form and does not provide sufficient information to

2

perform compiled communication that requires the knowl-
edge of the detailed connection requirement of a program.
This section describes algorithms to compute physical com-
munications from SCDs. We assume that the physical pro-
cessor grid has the same number of dimensions as the log-
ical processor grid and use processor grid to denote both
physical and logical processor grids.

3.1 One–Dimensional arrays and one–
dimensional processor grids

Let us consider the case where the distributed array and
the processor grid are one-dimensional. Given a H�IKJ 7ML
E 7��rN J N I?6 7MLRSVUXW Y
 SVZ"N1\^]j_a` Q?NGP Q , letS[UXW 7 � �?���F� where ���7�� ,
 SVZ 7�� �?����� where�	�7
� , and \^]*_a`c7?u . The cases where � 7
� , � 7�� or\^]*_a`��7?u will be considered later when multi-dimensional
arrays and processor grids are discussed. Let the alignment
matrix and the offset vector for array � be 6� and � and
the distribution of the virtual processor template be block–
cyclic(: , 9). It can be easily shown that the communication
of element ��� ��� requires the connection from physical pro-
cessor

> 6 ����� � @ ;�=
8> 9 � :(@�AB: to physical processor> �8� > 6 ����� � �� � @1A �%��� @ ;%=
/> 9 � :(@�AB: . The phys-
ical communication pattern for the SCD can be obtained
by considering all elements in J . However, computing the
physical communication of a SCD using this brute–force
method is both inefficient and, sometimes, infeasible when
J cannot be determined at the compile time.

Next we will show that given the block–cyclic(: , 9) dis-
tribution of the template, examining at most 9��V:�� elements
in J is sufficient to determine the physical communication
pattern. To illustrate this fact, let us examine the commu-
nications in some detail. We will use notation S Y

to
represent a communication from S to

. Let J 7s`5gq] g�S .

The source processors of the logical communication can be
obtained by mapping J to the virtual processor grid. Since
the mapping function is linear, the set of source proces-
sors can be represented as a triple �aS��Ogm�qS��Dg �aS� , that
is, ! �aS"� , �qS"�n� �qS� , �aS"���sl/�?�qS� , ..., �aS��$# . The corre-
sponding destination can be computed by solving the equa-
tions �qS"� � � �m�aS� �7 I?6�% SVUXW , where �?7&�tN[C�NGlqN %'%(% , and
replacing the solution in I?6�%
 SVZ 7)���M�<�	� . Hence,
the destination processors on the virtual processor grid can
also be represented as a triple �
 � g/�
 � g/�
 , where�
 � 7*�?� > > �qS � � � @1A � @ �+� , �
 � 7,�K� >1> �qS � � � @1A � @ �-�
and �
 7,�r���qS A � . Thus, communications on the virtual
processor grid can be represented as �qS � Y �
 � g �aS � Y
�
 � g��qS Y �
 , that is, by the set
! �qS � Y �
 � N �qS � � �aS Y �
 � � �
 N %'%(% N1�aS � Y �
 � # .

Communications on physical processors are obtained by
mapping virtual processors onto physical processors. Let
the data distribution of the template to be block–cyclic(: ,

9). Let a point . in the virtual processor grid correspond to> 9o9 N1= @ , where 9�9 7 . ;�=
 > 9 � :(@1A�: is the physical pro-
cessor that contains . , and = 7 . ;%=
 : is the offset of .
within a block in the processor. Let

> 9�9�/ N1= /B@ correspond to`t�10?�<S , where 0/72�.NVC�N %'%(% . It can be easily shown that
9o943 7 9�965�7 = 3 7 = 598 9o943(: b 7 9�965;: b 7 = 3': b 7k= 5;: b

In the
> 9o9 N�= @ space, there are 9 choices for 9�9 and : choices

for = . Thus, there exists a 0 , 0=< 9 � : , such that 9�9 / 7 9$>
and = / 7 = > , which is a repetition point.

To map logical communication ! �aS � Y �
 � N1�aS � �r�aS Y
�
 � � �
 N %'%(% N �qS � Y �
 � # to physical communication, let> S 9�9?3 NGSV= 3�@ correspond to �qS � � ��� �aS and

>'
 9o943 N
 = 3#@ to�
 � � �n� �
 . Following previous discussion, there are 9
choices for S 9�9 and

 9o9 , and : choices for S0= and

 = . There

exists 0 , 0@< 9 � : � , such that both source and destination
processors, and thus the communication pattern, will repeat
themselves at the 0 th element in the data region where all
four components in

> S 9�9 N�S0= @ Y >'
 9o9 N
 = @ repeat. The fol-
lowing lemma summarizes this conclusion.
Lemma: Let the template be distributed using block–
cyclic(: , 9) and H�IKJ 7MLA�rN J 7 ` g<] gcS�N I?6 7ML
SVU^WmY
 SVZ"N�\^]*_a` Q?N�P+Q . Assuming that] is infinite, there
exists a 0 , 0B< 9 � : � , such that the communication for all;DC20 , �E� `j� ; � SF� has the same connection requirement
as the communication for ��� `t� > ; � 0 @ �<SF� .
Proof: Follows from above discussions. G

The implication of the lemma is that the algorithm to
determine the communication pattern for a SCD can stop
when the repetition point occurs. Figure 3 shows the al-
gorithm. The algorithm first checks whether the SCD can
be processed. If the SCD does not contain sufficient in-
formation, the physical communication is approximated by
the All–to–All communication. Otherwise, the algorithm
will consider each element in D until the repetition point
is found or all elements in D are considered. The algo-
rithm has a time complexity of H > 9 � : � @ and can be easily
extended to handle the case when the source array has dif-
ferent distribution from the destination array.

3.2 Multi–dimensional arrays and multi–
dimensional processor grids

The algorithm to compute physical communications for
multi–dimensional arrays and multi–dimensional processor
grids is given in Figure 4. In an n–dimensional processor
grid, a processor is represented by an � –dimensional coor-
dinate

> 9 b N 9 � N %'%(% N 94I.@ . The algorithm determines all pairs of
source and destination processors that require connections.

The algorithm first checks whether the mapping relation
can be processed. If one loop induction variable occurs in
two or more dimensions in I?6�% SVU^W or I?6�%
 SVZ , the al-
gorithm cannot find the correlation between dimensions in
source and destination processors, and the communication

3

Compute 1D pattern(� , ����� ���	� , �����
���)
Let ����� �	�K���
Let ����� ��	� ��� �

��$�� . �����
��� ��� �
��$��

if (� , � , � , � or � contain variables) then
return all–to–all connections

end if
if (� contains variables) then

� �
��� ��� ��"! ��#
for each element � in � do��� ��� ��"! � ��� ��� �$�"! $%��&(')'*�(&"+,� � �$'-�$!.�o�

if (communication repeated) then
return ��� ��� ��"!

end if
end for

Figure 3. Algorithm for 1-dimensional arrays
and 1-dimensional processor grids

pattern for the SCD is approximated by all–to–all connec-
tions. If the algorithm can determine the correlation, it com-
putes the communication patterns for all the correlated di-
mensions using the algorithm to compute communication
patterns for 1–dimensional arrays. Other dimensions in the
source processor grid are mapped either to a constant pro-
cessor or to a range of processors that can be determined by
the array elements involved, while other dimensions in the
destination processor grid are mapped either to a constant
processor or to a range of processors that can be determined
by the mapping qualifier, I?6�% \^]*_a` . The algorithm con-
siders all these cases and cross–products all the patterns in
different dimensions to obtain the final communication pat-
tern.

Consider the physical communication for the vectorized
communication, L d N > C g h g C @ N[L SVUXW 7 > C�N1�K�
C�N�l @ N
 SVZn7 > l � foN �*� lqNVC @ N�\^]*_a` 7 ! fM7sC?goh8g.C #?Q?N"uMQ
in the example in Figure 2. Let us assume that the virtual
processor grid, /*021 H?I?H , is distributed as (block–
cyclic(2,2), block–cyclic(2,2), block–cyclic(1,1)). From
the array alignment, the algorithm determines that dimen-
sion 1 in the processor grid corresponds to this dimension
in the data space. Checking

 SVZ in I?6 , the algorithm finds
that dimension 1 in destination corresponds to dimension
1 in source processors. Applying the 1-Dimensional
mapping algorithm, an 1–dimensional communication
pattern ! ��YRCoN[C Y �.N ��Y �tN[C YRC # with S
 7 C and
o
 7 C is obtained. Thus the communication list becomes
! > �qN[CoNG� @ Y > �aN;�tNG� @ N > �aN �.NG� @ Y > �aNVC�N"� @ N > �qN[C�N"� @ Y> �aNVC�N"� @ N > �qN;�.N"� @ Y > �aN �.N"� @ # after taking the cross
product with the 1–dimensional pattern. Next, the other
dimensions in source processors, including dimension 0
that is always mapped to processor 0 and dimension 2 that
is always mapped to processor 1 are considered. After

Compute communication pattern(SCD)
Let 3 � ��� ��4 � � �#�����65 4
if (the form of

���
cannot be processed) then

return all-to-all connections
end if��� ��� ��"! �87 � �

�
�
��9�9���

�
�t)+�

�
�

�
��9�9���

�
�;:

for each dimension
�

in array
4

do
Let �$
 be the corresponding dimension in

source processor grids.
Let
�
 be the corresponding dimension in

destination processor grids.
if (dd exists) then

1dpattern = compute 1D pattern(�=< �?> ,����� ��	� < �$
"> , �����
��� <
@
">)
else

1dpattern = compute 1D pattern(�=< �?> ,����� ��	� < �$
"> , 2)
end if
pattern = cross product(pattern, 1dpattern)

end for
pattern = source processor constants(pattern)
for each element � in the mapping qualifier do

Let
�
 be the corresponding destination
processor dimension.

1dpattern = compute 1D pattern(
����� A(� � �B< �C> ,2 , �����
���� <
@
	>)

pattern = cross product(pattern, 1dpattern)
end for
pattern = destination processor constants(pattern)
return pattern

Figure 4. Algorithm for multi–dimensional ar-
rays

filling in the physical processor in these dimensions in
source processors, the communication pattern becomes
! > �.N[CoN[C @ Y > �aN �.NG� @ N > �.N �.NVC @ Y > �qN[C�N"� @ N > �tN;�tN[C @ Y> �qN;�.N"� @ N > �tN[CoN[C @ Y > �aNVC�NG� @ # . Considering the \^]*_a` in
I?6 , the dimension 0 of the destination processor can be
either 0 or 1. The dimension 2 of the destination is always
mapped to processor 0. Thus, the final physical communi-
cation is given by ! > �.N[CoN[C @ Y > �.N �.N;� @ N > �tN[CoN[C @ Y> CoN;�.N � @ N > �tN[C�NVC @ Y > �tN[C�N � @ N > �tN[CoN[C @ Y> CoN[C�N � @ N > �tN;�.NVC @ Y > �tN;�.N � @ N > �tN;�tN[C @ Y> CoN;�.N � @ N > �tN;�.NVC @ Y > �.N[CoN;� @ N > �.N �.N[C @ Y > CoN[C�N � @ # .

4 Communication Phase analysis

The communication phase analysis is carried out in a re-
cursive manner on the high level SUIF representation of a
program [1]. SUIF represents a program in a hierarchical
manner. A SUIF representation of a program contains a list
of nodes, which may in turn contain sub–lists. The nodes
that contain sub–lists are called composite nodes. The com-
munication phase analysis algorithm associates two vari-
ables, 9 _ Z3Z . U�� , which represents the communication pat-

4

tern that is exposed from the sub–lists, and 0a�3`'` 9�� _qS . ,
which indicates whether the sub–lists contain phases, for
each composite node.

Communication Phase Analysis(list)
Input: � � ��� : a list of SUIF nodes
Output: � � ��� �$�(! : comm. pattern exposed out of the list�0� � � ��� � �$� : phases within the list?

Analyze comm. phases for the sub–lists for each node.� � � ��� �$�(! � 25���0� � � ��� � �$� ���
For each node ! in list in backward order do

if (! is annotated with �0� � � ����� �$�) then
Generate a new phase for

� ��� ��� �$�"! after
!

.� ��� ��� ��"! � 25���0� � � ����� �� �
end if
if (! is annotated with communication pattern �) then! �
	 ��� ��� �$�"! � � ��� ��� ��"!c$ �

if (the network can support
! ��	 � � ��� �$�(!) then� � � ��� �$�(! = new pattern

else
Generate a new phase for � ��� ��� ��"! after ! .� � � ��� �$�(! � � ���V� �C� ����� �$� �

end if
end if

end for
return

� ��� ��� ��"! and �V� �C� ����� ��

Figure 5. Communication phase analysis al-
gorithm

The algorithm to analyze communication phases in a
program (a list of SUIF nodes) is shown in Figure 5. The
algorithm takes advantage of the assumption that the pro-
gram is a structured program and computes the data flow
information through bottom–up traversal of program struc-
tures. Thus, it first recursively examines the sub–lists of
all nodes and annotates the composite nodes with 9 _oZ3Z . U��
and 0q��`'` 9�� _qS . , then considers the phases in the list. This
bottom–up traversal of the SUIF program accumulates the
communications in the innermost loops first, and thus cap-
tures the communication locality. After all sub–lists are
analyzed, the program becomes a straight line program,
whose nodes are annotated with physical communications,
9 _ Z3Z . U�� and 0a�3`'` 9�� _aS . . The algorithm examines all these
annotations in each node from back to front accumulating
communications. When the accumulated communications
exceed network capacity, a phase will be generated. An-
other case to create a phase is when a 0q��`'` 9�� _qS . annota-
tion is encountered, which indicates there are phases in the
sub–lists.

Figure 6 shows an example of the communication phase
analysis. The program in the example contains six com-
munications, I � , I C , I l , I� , I�� , and I h , an IF struc-
ture and a DO structure. The communication phase analy-
sis algorithm first analyzes the sub–lists in the IF and DO

C5

C4

C0

Kill_phase

Phase for
C0

Phase for
C4 & C5

C5

C4

C2

C1 C3

C0

DO

IFphase for
C1 & C2 C3

Phase for

Phase for C0

C4 & C5
Phase for

(c) final result

C5

C4

C2

C1 C3

C0

DO

IFphase for
C1 & C2 C3

Phase for

(a) analyze sub-lists (b) analyze the main list

Figure 6. An example

structures. Assuming the combination of I C and I l can
be supported by the underlying network, while combining
communications I C , I l and I� exceeds the network ca-
pacity, which results in the two phases in the IF branches
and the 0a�3`!` 9�� _qS . is set for the IF header node. Assum-
ing that all communications of I h within the DO loop can
be supported by the underlying network, Figure 6 (a) shows
the result after the sub–lists are analyzed. The algorithm
analyzes the list by considering each node and combines
communications I�� and I h . Since the IF header node is
annotated with 0a�3`'` 9�� _qS . . A new phase is generated for
communications I�� and I h after the IF structure. The al-
gorithm then proceeds to create a phase for communication
I � . Figure 6 (c) shows the final result of the communica-
tion phase analysis for this example.

5 Performance evaluation

This section evaluates the performance of the compiler
algorithms. In the evaluation, we assume that the underly-
ing network is a ����� torus with a maximum multiplexing
degree of 10. That is, each link in the network can support
up to 10 channels.

Programs from the HPF benchmark suite at Syracuse
University [3] are used to evaluate the algorithms. The
benchmarks and their descriptions are listed in Table 1. Ta-
ble 2 breaks down the compiler analysis time (in the unit
of seconds). The table shows the overall compile time, the
time for logical communication analysis and the time for
physical communication analysis and phase analysis. The
overall compile time includes the time to load and store the
program in addition to the analysis time. The time for physi-
cal communication analysis and phase analysis accounts for
a significant portion of the overall compile time for all the

5

Prog. Description
0013 2-D Potts Model Simulation using Metropolis Heatbath
0014 2-D Binary Phase Quenching of Cahn Hilliard Cook Equation
0022 Gaussian Elimination - NPAC Benchmark
0025 N-Body Force Calculation - NPAC Benchmark
0039 Segmented Bitonic Sort
0041 Wavelet Image Processing
0053 Hopfield Neural Network

Table 1. Benchmarks and their descriptions

prog. size all logical physical & phase
(lines) (sec) (sec) (sec)

0013 688 23.08 1.07 17.30
0014 428 15.58 1.03 11.38
0022 496 22.57 0.77 18.35
0025 295 5.77 0.78 3.35
0039 465 16.08 0.38 13.13
0041 579 9.93 0.28 6.62
0053 474 7.39 0.35 4.33

Table 2. Communication phase analysis time

programs. However, for small size programs as the bench-
marks used, the analysis time is not significant.

E–SUIF estimates the set of physical connections in each
phase and uses a resource scheduling algorithm to deter-
mine the multiplexing degree needed in the network to sup-
port all connections in the phase simultaneously. Table 3
shows the precision of the analysis. It compares the av-
erage number of connections and the average multiplexing
degree in each phase obtained from the compiler with those
in actual executions. The number of connections and the
multiplexing degree in each phase during execution are ob-
tained by accumulating the connections within each phase
at runtime. For most programs, the analysis results match
the actual program executions. For the programs where ap-
proximations occur, the approximation for the multiplex-
ing degree is more precise than the approximation for the
number of connections as shown in benchmark 0022. Since
the multiplexing degree determines the communication per-
formance for a communication pattern, the approximation
for the multiplexing degree is more important for compiled
communication on optical TDM networks.

6 Conclusion

In this paper, we have presented the compiler analysis
technique used in the E–SUIF compiler to support compiled
communication. Specifically, we described algorithms that
computes physical communications from the Section Com-
munication Descriptors (SCDs), which represent logical

prog. ave. conn. per phase ave. degree
act. comp. percent act. comp. percent

0013 67.3 67.3 100% 3.1 3.1 100%
0014 126.4 126.4 100% 4.0 4.0 100%
0022 13.1 413.2 3% 4.6 8.9 52.7%
0025 80.0 80.0 100% 3.0 3.0 100%
0039 125.7 125.8 99.9% 8.8 8.8 99.9%
0041 556.1 556.1 100% 8.8 8.8 100%
0053 149.2 575.2 25.9% 9.0 9.1 98.9

Table 3. Analysis precision

communications, presented a communication phase analy-
sis algorithm that partitions a program into phases so that
the communications in each phase can be supported by the
underlying network, and evaluated these algorithms. Our
results show that the compiled communication technique
can be efficiently implemented.

References

[1] S. P. Amarasinghe, J. M. Anderson, M. S. Lam and C. W.
Tseng “The SUIF Compiler for Scalable Parallel Machines.”
Proceeding of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing, February, 1995.

[2] F. Cappelllo and C. Germain “Toward high communication
performance through compiled communications on a circuit
switched interconnection network,” in Proceedings of the
Int’l Symp. on High Performance Computer Architecture,
pages 44-53, Jan. 1995.

[3] “High Performance Fortran Applications (HPFA)” available
at “http://www.npac.syr.edu/hpfa/”.

[4] M. Gupta, E. Schonberg and H. Srinivasan “A Unified
Framework for Optimizing Communication in Data-parallel
Programs.” In IEEE Trans. on Parallel and Distributed Sys-
tems, Vol. 7, No. 7, pages 689-704, July 1996.

[5] S. Hinrichs “Compiler Directed Architecture–Dependent
Communication Optimization,” Ph.D dissertation, School
of Computer Science, Carnegie Mellon University, 1995.

[6] M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam and
N. Shenoy “A Global Communication Optimization Tech-
nique Based on Data–Flow Analysis and Linear Algebra.”
In the First Merged Symposium IPPS/SPDP, Orlando, Fl,
April 1998.

[7] X. Yuan “Dynamic and Compiled Communication in Op-
tical Time-Division-Multiplexed Point-to-point Networks.”
Ph.D dissertation, Dept. of Computer Science, University
of Pittsburgh, 1998.

[8] X. Yuan, R. Gupta, and R. Melhem “An Array Data Flow
Analysis based Communication Optimizer,” Tenth Annual
Workshop on Languages and Compilers for Parallel Com-
puting (LCPC’97), LNCS 1366, Minneapolis, Minnesota,
August 1997.

6

