
Parallel Processing Letters
c© World Scientific Publishing Company

DEMAND–DRIVEN DATA FLOW ANALYSIS FOR

COMMUNICATION OPTIMIZATION∗

Xin Yuan

Department of Computer Science, The University of Pittsburgh

Pittsburgh, PA 15260, USA

Rajiv Gupta

Department of Computer Science, The University of Pittsburgh

Pittsburgh, PA 15260, USA

Rami Melhem

Department of Computer Science, The University of Pittsburgh

Pittsburgh, PA 15260, USA

Received (received date)
Revised (revised date)
Communicated by (Name of Editor)

ABSTRACT

Exhaustive global array data flow analysis for communication optimization
is expensive and considered to be impractical for large programs. This paper
proposes a demand-driven analysis approach that reduces the analysis cost
by computing only the data flow information related to optimizations. In
addition, the analysis cost of our scheme can be effectively managed by trading
space for time or compromising precision for time.

Keywords: Demand–driven data flow analysis, Global communication opti-
mization

1 Introduction

Compilers for distributed memory machines translate shared memory programs into

SPMD programs with explicit message passing [1,8]. An important task for such

compilers is to reduce communication costs through optimizations such as message

vectorization and redundant communication elimination. Program analysis must

be performed to obtain information required for the optimizations. Two different

analysis approaches, one based on data dependence analysis [10] and the other using

array data flow analysis [7,6], have been proposed. While the data dependence

approach is more efficient in terms of the analysis cost, the array data flow analysis

approach has the advantage of better precision. Array data flow analysis propagates

some form of array section descriptor [6,7]. Due to the complexity of the array

∗This research is supported in part by NSF award CCR-9157371 and by AFOSR award F49620-

93-1-0023DEF.

1

section descriptor, the propagation of data flow information can be expensive both in

time and space. Furthermore, in traditional data flow analysis techniques, obtaining

data flow information at one point requires the computation of data flow information

at all program points. Computing such exhaustive solutions results in over-analysis

of a program and decreases the efficiency and precision of the analysis.

These problems in array data flow analysis for communication optimization can

be alleviated by using a demand driven data flow analysis technique which com-

putes data flow information only when it is needed. One other advantage of the

demand driven approach is that the analysis cost can be managed. Intermediate

results may be recomputed every time they are requested or by maintaining a re-

sult cache, repeated computations may be avoided, therefore, allowing a trade-off

between space and time. Demand-driven analysis proceeds by considering the part

of a program that is close to the point where the data flow information is needed,

yielding better approximations when the analysis is terminated prematurely. Thus,

demand-driven analysis also allow trading precision for time.

This paper presents a demand driven array data flow analysis scheme for global

communication optimization. Section 2 describes the program representation and

introduces the section communication descriptor (SCD) which is used to represent

communications. Section 3 presents general rules to propagate SCDs in a demand

driven manner. Applications of the general rules are discussed in Section 4.

2 Program Representation and Section Communication Descriptor

We consider structured programs that contain conditionals and nested loops. A loop

is controlled by a basic induction variable whose value ranges from one to an upper

bound with an increment of 1. Array references are restricted to references whose

subscripts are affine functions of loop induction variables, that is, references are of

the form X(f1(~i), f2(~i), ..., fs(~i)), where ~i is a vector representing loop induction

variables and fk(~i), 1 ≤ k ≤ s, are affine functions of ~i.

Our algorithm performs interval analysis on each subroutine in a demand driven

manner. It uses a variant of Tarjan’s intervals [11]. A subroutine is represented by

an interval flow graph, G = (N, E) with nodes N and edges E. ROOT is a special

node in N which is viewed as a header node for a subroutine. For n ∈ N , LEVEL(n)

is the loop nesting level of n. The outermost level is level 0 (i.e., LEVEL(ROOT)

= 0) and the innermost loop has the highest level number. The analysis requires

that there are no critical edges which connect a node with multiple outgoing edges

to a node with multiple incoming edges. Critical edges can be removed by edge

splitting transformation [7]. Fig. 1 shows an example interval flow graph. Node 9

in the example is an additional node inserted by the edge splitting transformation.

The processor space is considered as an unbounded grid of virtual processors

which is similar to a template in High Performance Fortran (HPF) [9]. All arrays

are aligned to the virtual processor grid. In this paper when we refer to communica-

tion, we mean communication on the virtual processor grid. Communications in a

program are represented by Section Communication Descriptors (SCD). The SCD is

an extension of array section descriptor. It describes an array region and the source–

2

destination relation in the communication. A SCD is defined as < N, D, M >, where

N is an array name, D is a region descriptor and M is a descriptor describing the

source-destination relation.

ALIGN (i, j) with VPROCS(i, j) :: x, y, z
ALIGN (i, j) with VPROCS(2*j, i+1) :: w
ALIGN (i) with VPROCS(i, 1) :: a, b

0 ROOT

Level 1

1 START

Level 2

3 b(i-1) = a(i)..

4 a(i+2) = ...

5 b(i) = a(i+1) ...

Level 3

if(..)

6

7 x(i, j) = w(i, j)

8

9

11

x(i+j-1, 2*i+2*j-3) = w(i, j)12

13 y(i, j) = w(i, j)

15 y(i, 15) = x(i+1, 15)

17

19 z(i, j) = x(i+1, j) * w(i, j)
20

21 STOP

w(i+1, 200) = ...

b(i) = ...

Level 0

DO j = 1, 100

2 DO i = 1, 100

DO j=50,100

10 DO i=1, 100

DO i=1,10014

16 DO i=1,100

DO j=1,20018

Fig. 1: An example of an interval flow graph.

The bounded regular section descriptor (BRSD) [2] is used to describe the array

region. As discussed in [2], set operations can be efficiently performed on BRSDs.

The region D is a vector of subscript values. Each element in the vector is either

(1) an expression of the form α ∗ i + β, where α and β are invariants and i is a loop

index variable, or (2) a triple l : u : s, where l, u and s are invariants. The triple

l : u : s defines a set of values {l, l + s, l + 2s, ..., u} as used in HPF.

The source-destination mapping M is denoted as a pair < src, dst >. The source,

src, is a vector whose elements are of the form α∗i+β, where α and β are invariants

3

and i is a loop index variable. The destination, dst, is a vector whose elements are

of the form
∑n

j=1 αj ∗ ij + βj , where αj ’s and βj ’s are invariants and ij ’s are loop

index variables. Notation M = > denotes arbitrary mappings.

Demand driven array data flow analysis obtains information by propagating

SCDs. The propagation starts with SCDs that represent communications in an

assignment statement. Next, we will discuss how to calculate SCDs for assignment

statements. To calculate the communication requirement of an assignment state-

ment, the compiler must first know the owner of each array element. We assume

that all arrays are aligned to the virtual processor grid using scaling, axis alignment

and offset alignment. The mapping from a point ~d in data space to the correspond-

ing point ~v on the virtual processor grid can be specified by an alignment matrix

A and an alignment offset vector ~α. That is, the virtual processor ~v that owns the

array element ~d satisfies the equation ~v = A~d + ~α. Consider array w in Fig. 1, the

alignment matrix and the offset vector are as follows:

Aw =

(

0
1

2
0

)

, ~αw =

(

0
1

)

Once the ownership information is given, SCDs for a statement can be computed

from the program structure. We assume that the owner computes rule is used.

The owner computes rule requires each array element on the rhs of an assignment

statement to be sent to the processor that owns the lhs. Let us consider each

component in a SCD =< N, D, M > for an assignment statement. Since subscript

expressions in array references are affine functions of loop indices, array references

can be expressed as N(G~i + ~g), where N is the array name, G is a matrix and ~g is

a vector. We call G the data access matrix and ~g the access offset vector. Let the

array reference in lhs to be x(Gl
~i+ ~gl), the array reference in rhs to be y(Gr

~i+ ~gr).

We have N = y and D = (Gr
~i + ~gr). To obtain the mapping M =< src, dst >, we

must consider the alignment of arrays x and y. Let Ax, and ~αx be the alignment

matrix and the alignment offset vector for array x, Ay and ~αy be the alignment

matrix and the alignment offset vector for array y. The source processor src, which

represents processors owning the rhs, and the destination processor dst, which

represents processors owning the lhs, are given by following equations.

src = Ay(Gr
~i + ~gr) + ~αy, dst = Ax(Gl

~i + ~gl) + ~αx

Consider the communication for the statement in node 12 in Fig. 1. The com-

piler determines the following data access matrices, access offset vectors, alignment

matrices, alignment vectors, and the SCD describing the communication.

Ax =

(

1
0

0
1

)

, ~αx =

(

0
0

)

, Aw =

(

0
1

2
0

)

, ~αw =

(

0
1

)

,

Gl =

(

1
2

1
2

)

, ~gl =

(

−1
−3

)

, Gr =

(

1
0

0
1

)

, ~gr =

(

0
0

)

,

SCD =< w, (i, j), < (2 ∗ j, i + 1), (i + j − 1, 2 ∗ i + 2 ∗ j − 3) >>.

4

Set operations on SCDs are needed in our analysis. In most cases operations

involve SCDs with the same mapping relation or with the mapping relation in one

SCD being a subset of another SCD. Operations on SCDs with unrelated mappings

results in conservative approximations or list representation. We define two map-

ping relations M1 and M2 to be unrelated if and only if M1 does not include M2

and M2 does not include M1. Next we describe the operations.

Mapping Subset Testing. Testing whether a mapping M1 =< s1, d1 > is a subset

of another mapping M2 =< s2, d2 > is an important operation. It is done by check-

ing if equations s1 = s2 and d1 = d2 have a valid solution. Here, variables in M2 are

treated as variables in the equation system while variables in M1 are treated as con-

stants. For example, to determine whether M1 =< (1, i), (1, i + 1) > is a subset of

M2 =< (i, j), (i, j +1) >, the system of equations (i = 1, j = k, i = 1, j +1 = k +1)

is solved, where the variable i in M1 is renamed to k. Since there is a solution

(i = 1, j = k), M1 is a subset of M2.

Intersection Operation. The intersection of two SCDs represents the elements

common to the array sections that have the same mapping relation.

< N1, D1, M1 > ∩ < N2, D2, M2 >

= φ, if N1 6= N2 or M1 and M2 have no relation

= < N1, D1 ∩ D2, M1 >, if N1 = N2 and M1 ⊆ M2

= < N1, D1 ∩ D2, M2 >, if N1 = N2 and M1 ⊇ M2

Difference Operation. The difference operation causes a part of the array region

associated with the first operand to be invalidated. We only consider the case when

the mapping relation for the second operand is >, which means arbitrary mapping.

This is because in our analysis the difference operation is used only when elements

in the descriptor are killed by some definitions.

< N1, D1, M1 > − < N2, D2,> >

= < N1, D1, M1 >, if N1 6= N2

= < N1, D1 − D2, M1 >, if N1 = N2.

Union Operation. The union of two SCDs represents the elements that can be in

either part of the array sections. This operation is given by:

< N1, D1, M1 > ∪ < N2, D2, M2 >

= < N1, D1 ∪ D2, M1 >, if N1 = N2 and M1 = M2

= list(< N1, D1, M1 >, < N2, D2, M2 >), otherwise.

3 Demand-Driven SCD Propagation

Communication optimization opportunities can be uncovered by propagating SCDs

globally. Backward propagation of SCDs can find the earliest points where the

communication can be placed, while forward propagation can find the latest points

5

where the communications are alive. In this section, we present general rules to

propagate SCDs in a demand driven manner through an interval flow graph. These

rules propagate SCDs to their earliest or latest points. In practice, however, a com-

piler may choose to terminate SCD propagations prematurely to save analysis time.

Since forward and backward propagation are similar, we will focus on backward

propagation of SCDs.

The demand-driven analysis propagates SCDs in a direction that is the reverse

of the direction in traditional exhaustive interval analysis. During the propagation,

a SCD may be expanded when it is propagated out of a loop. When a set of

elements in a SCD is killed inside a loop, the set is propagated into the loop to

determine the exact points where the elements are killed. Thus, there are two types

of propagations. During upward propagation SCDs are propagated from higher to

lower levels and may need to be expanded. During downward propagation SCDs

are propagated from lower to higher levels and may need to be shrunk.

The form of a propagation request is < S, n, [UP |DOWN], level, cnum >, where

S is a SCD, n is a node in a flow graph, constants UP and DOWN indicate whether

the request is an upward propagation or a downward propagation, level indicates

at which level the request is and the value cnum indicates which child node of n has

triggered the request. A special value −1 for cnum is used to indicate the beginning

of a propagation. Hence, a compiler can start a propagation by placing an upward

request with cnum = −1. A downward propagation is triggered automatically when

a loop header node is encountered.

For efficiency reasons a node is processed only when all of its successors have

been processed. This guarantees that each node will be processed once for each

propagation since each interval is an acyclic flow graph. When all successors of a

node n place propagation requests, an action on node n is triggered and a SCD is

propagated from node n to all of its predecessors.

RULE 0: Upward propagation at initial node. As we mentioned earlier,

the compiler starts an upward propagation from node s by placing the request,

< S, s, UP, level, cnum >, with cnum = −1. Here, S is the SCD descriptor to be

propagated. This request is processed by propagating S to all the predecessors of

node s as shown in the following code. In the code, the function pred(s) returns

the set of all predecessors of node s.

REQUEST(< SCD, s, UP, level, cnum >):

if (cnum = −1) then

forall m ∈ pred(s), where s is m’s jth child do

REQUEST(< SCD, m, UP, level, j >)

RULE 1: Upward propagation at a regular node. Regular nodes include

all nodes other than loop header nodes. Requests on a regular node trigger an

action based on SCDs and the local information. In the following code, functions

action and local depend on the type of optimization being performed.

6

REQUEST(< S1, n, UP, level, 1 >) ∧ ... ∧ REQUEST(< Sk, n, UP, level, k >) :

S = S1 ∩ ... ∩ Sk

action(S, local(n))

if (S − killn 6= φ) then

forall m ∈ pred(n), where n is m’s jth child do

REQUEST(< S − killn, m, UP, level, j >)

A response to requests in a node n occurs only when all of its successors have been

processed. This guarantees that in an acyclic flow graph each node will only be

processed once. A more aggressive scheme can propagate a request through a node

without checking whether all its successors are processed. In that scheme, however,

nodes may need to be processed multiple times to obtain final solutions.

RULE 2: Upward propagation at a same level loop header node. Here

we consider a request < S, n, UP, level, cnum > such that n is a loop header and

Level(n) = level. Processing the node requires calculating the summary informa-

tion, Kn, for the interval, performing an action based on S and Kn, propagating a

SCD past the loop and triggering a downward propagation into the loop body.

The summary function can be calculated either before hand or in a demand

driven manner. Later in this section we will describe an algorithm to calculate the

summary. Kn is the summary information of the loop representing all variables

killed in the interval. Note that a loop header can only have one successor besides

the entry edge into the loop body. The cnum in the downward request is set to −1

to indicate that it is the start of a downward propagation.

REQUEST(< S, n, UP, level, cnum >):

if ((n is a header) and (LEVEL(n) = level)) then

calculate summary Kn

action(S, Kn)

if (S − Kn 6= φ) then

forall m ∈ pred(n), where n is m’s jth child do

REQUEST(< S − Kn, m, UP, level, j >)

if (S ∩ Kn 6= φ) then

REQUEST(< S ∩ Kn, n, DOWN, level,−1 >)

RULE 3: Upward propagation at a lower level loop header node. Here

we consider a request < S, n, UP, level, cnum > such that n is a loop header and

Level(n) < level. Once a request reaches the loop header. The request is expanded

before propagated into the lower level. At the same time, this request triggers a

downward propagation for communications that must stay inside the loop. In the

code, we assume that the loop index variable is i with bounds low and high.

REQUEST(< S, n, UP, level, cnum >):

7

if ((n is a header) and (LEV EL(n) < level)) then

calculate the summary, Kn, of loop n

outside = expand(S, i, low : high) − ∪defexpand(def, i, low : high)

inside = expand(S, i, low : high) ∩ ∪defexpand(def, i, low : high)

if (outside 6= φ) then

forall m ∈ pred(n), where n is m’s jth child do

REQUEST(< outside, m, UP, level − 1, j >)

if (inside 6= φ) then

REQUEST(< inside, n, DOWN, level − 1,−1 >)

The variable outside represents elements that are propagated out of the loop,

while inside represents the elements that are killed within the loop. The expansion

function has similar definition as in [7]. For a SCD descriptor S, expand(S, i, low :

high) is a function which replaces all single data item references α ∗ i + β used in

any array section descriptor D in S by a triple α∗ low +β : α∗high+β : α. The set

def includes all definitions that are sources of flow-dependences to the array region

propagated.

RULE 4: Downward propagation at initial node. A downward propaga-

tion starts from a loop header node with cnum = −1 and ends at the same node

with cnum 6= −1. In the downward propagation, the loop’s index variable i is

treated as a constant. Hence, SCDs that are propagated into the loop body must

be changed to be the available SCDs for iteration i, that is, we must subtract the

elements killed in iterations i + 1 to high in backward propagation. This propaga-

tion prepares the downward propagation into the loop body by shrinking SCDs.

REQUEST(< S, n, DOWN, level, cnum >):

if (cnum = −1) then

calculate the summary of loop n;

ite = S − ∪defexpand(def, i, i + 1 : high)

REQUEST(< ite, l, DOWN, level + 1, 1 >);

RULE 5: Downward propagation at a regular node. For regular node,

the downward propagation is similar to the upward propagation.

REQUEST(< S1, n, DOWN, level, 1 >) ∧ ...

... ∧ REQUEST(< Sk, n, DOWN, level, k >):

S = S1 ∩ ... ∩ Sk

action(S, local(n))

if (S − killn 6= φ) then

forall m ∈ pred(n), where n is m’s jth child do

REQUEST(< S − killn, m, DOWN, level, j >)

RULE 6: Downward propagation at a same level loop header node.

8

When a downward propagation reaches a loop header, if the loop header is in lower

level, then the propagation stops; otherwise, the loop header is in the same level as

the request, and we must propagate an appropriate SCD past the loop header and

generate a downward propagation into the nested loop.

REQUEST(< S, n, DOWN, level, cnum >):

if (LEV EL(n) < level) then STOP

if (n is a header) and (LEVEL(n) = level) then

calculate summary, Kn, for loop T(n)

action(S, Kn);

if (S − Kn 6= φ) then

forall m ∈ pred(n), where n is m’s jth child do

REQUEST(< S − Kn, m, DOWN, level, j >)

if (S ∩ Kn 6= φ) then

REQUEST(< S ∩ Kn, n, DOWN, level,−1 >);

Let us consider propagating the communication for array w in node 19 in Fig. 1.

The positions and values of SCDs during the propagation are shown in Fig. 2 (a).

The sequence of SCDs and rules used to generate the SCDs are shown in Fig. 2 (b).

During SCD propagations, summary information of an interval is needed when

a loop header is encountered. Next we describe the computation of summary in-

formation. This algorithm can be invoked when the need for summary information

arises. We use the calculation of kill set of the interval Kn as an example. Let

kill(i) be the variables killed in node i, Kin and Kout be the variables killed before

and after the node respectively. The algorithm in Fig. 3 propagates data flow in-

formation from the tail node to the header node in an interval using the following

data flow equations:

Kout(n) = ∪s∈succ(n)Kin(s),

Kin(n) = kill(n) ∪ Kout(n).

When an inner loop header is encountered, a recursive call is issued to get the

summary information for the inner interval. Once the loop header is reached, the

kill set is expanded to be used by the outer loop.

4 Demand-Driven Optimization

The general SCD propagation rules presented in the preceding section can be eas-

ily adapted for specific communication optimizations. Two applications, message

vectorization and redundant communication elimination, are discussed next.

Message vectorization tries to hoist communications out of a loop body so that

instead of sending large number of small messages inside the loop body, a smaller

number of large messages are communicated outside the loop. This optimization can

be done by propagating SCDs for an assignment statement in backward direction

in the flow graph. Since in message vectorization, communications are hoisted out

of a loop, only upward propagation is needed.

For the compiler to perform message vectorization for a statement at node n in

9

C0 = (< w, (i, j), < (2 ∗ j, i + 1), (i, j) >>, 19, UP, 3,−1)
C1 = (< w, (i, j), < (2 ∗ j, i + 1), (i, j) >>, 18, UP, 3, 1)
C2 = (< w, (i, 1 : 200 : 1), < (2 ∗ j, i + 1), (i, j) >>, 17, UP, 2, 1)
C3 = (< w, (i, 1 : 200 : 1), < (2 ∗ j, i + 1), (i, j) >>, 16, UP, 2, 1)
C4 = (< w, {(1 : 100 : 1, 1 : 199 : 1), (1, 200)}, < (2 ∗ j, i + 1), (i, j) >>, 9, UP, 1, 1)
C5 = (< w, {(1 : 100 : 1, 1 : 199 : 1), (1, 200)}, < (2 ∗ j, i + 1), (i, j) >>, 14, UP, 1, 1)
C6 = (< w, (2 : 100 : 1, 200), < (2 ∗ j, i + 1), (i, j) >>, 16, DOWN, 1,−1)
C7 = (< w, (2 : i + 1 : 1, 200), < (2 ∗ j, i + 1), (i, j) >>, 20, DOWN, 2, 1)
C8 = (< w, (2 : i : 1, 200), < (2 ∗ j, i + 1), (i, j) >>, 18, DOWN, 2, 1)

0 ROOT

Level 1

1 START

Level 2

3 b(i-1) = a(i)..

4 a(i+2) = ...

5 b(i) = a(i+1) ...

Level 3

if(..)

6

7 x(i, j) = w(i, j)

8

9

11

x(i+j-1, 2*i+2*j-3) = w(i, j)12

13 y(i, j) = w(i, j)

15 y(i, 15) = x(i+1, 15)

17

19 z(i, j) = x(i+1, j) * w(i, j)
20

21 STOP

w(i+1, 200) = ...

b(i) = ...

Level 0

DO j = 1, 100

2 DO i = 1, 100

DO j=50,100

10 DO i=1, 100

DO i=1,10014

16 DO i=1,100

DO j=1,20018
C1

C2

C0

C4

C3

C5

C6

C7

C8

: Upward propagation

: Downward propagation

C0
0

C1
3

C2
1

C3
3

C4

C5

C6 C7 C8

(a)

5

(b)

4

Fig. 2: Propagating SCDs

10

Summary kill(n)
Kout(tail) = φ

forall m ∈ T (n) and in backward order do

if m is a loop header then

Kout(m) = ∪s∈succ(m)Kin(s)
Kin(m) = summary kill(m) ∪Kout(m)

else

Kout(m) = ∪s∈succ(m)Kin(s)
Kin(m) = kill(m) ∪ Kout(m)

return(expand(Kin(header), i, low:high))

Fig. 3: Summary kill calculation.

an interval flow graph, the compiler will calculate the SCD, S, for the statement,

and initiate a propagation with REQUEST (S, n, UP, LEV EL(n),−1). Rules are

modified so that the downward propagation is not triggered. The parts of SCDs

that can be propagated out of the loop (not killed within loop body) represent the

communications that can be vectorized. The communications of these parts will be

placed immediately preceding the loop by a local action. The communication of

elements that are killed inside loops stay at the point preceding the reference.

As an example, consider vectorizing the communication of array w in node 19 in

Fig. 2. For communications described by SCD C0, communication < w, {(1 : 100, 1 :

199), (1, 200)}, < (2∗j, i+1), (i, j) >> can be propagated out of the outermost loop

(node 16) while communication < w, (2 : 100, 200), < (2 ∗ j, i + 1), (i, j) >> can

be propagated out of the inner loop (node 18). Hence, the communication for

array w in statement node 19 can be vectorized by placing the communication

< w, {(1 : 100, 1 : 199), (1, 200)}, < (2 ∗ j, i + 1), (i, j) >> before node 16 and

communication < w, (2 : 100, 200), < (2 ∗ j, i + 1), (i, j) >> before node 18.

After message vectorization, communications can be further optimized by re-

dundant communication elimination. Redundant communication elimination can

also be done by propagating SCDs. Two different schemes can be used for this op-

timization. One scheme propagates a SCD to be eliminated to find communications

that can subsume the SCD. The other method propagates a SCD to identify other

communications that can be subsumed. These two schemes use similar propagation

method, we only consider the second scheme in the remainder of this section.

To find communications that can be subsumed by a communication S at node n,

the compiler initiates REQUEST (< S, n, UP, LEV EL(n),−1). During the propa-

gation, when a communication C that is a subset of S is found, the communication

C is marked as redundant. The propagation stops when S is killed or ROOT is

reached. The propagation follows the rules discussed in last section. However,

downward propagation triggered by rule 6 is not needed. The local action at each

node will place the communication for the elements that are killed in the node im-

mediately following the node. Local action at a branch node may also place commu-

nications at its successors when two different SCD sets are propagated to the branch

node. For example, let a branch node n receive REQUEST (< S1, n, UP, level, 1 >)

11

and REQUEST (< S2, n, UP, level, 2 >) from its successors n1 and n2, respectively.

The local action at node n will place communication S1 − S1 ∩ S2 before node n1

and communication S2 − S1 ∩ S2 before node n2. The redundant communication

elimination can be combined with the message vectorization phase.

In summary, we have shown that the demand driven data flow analysis proposed

in this paper can be used to perform communication optimizations. These algo-

rithms have been used in a global communication optimizer and have been shown

to be effective both in terms of analysis cost and communication optimizations [12].

References

1. S. P. Amarasinghe and M. S. Lam, Communication optimization and code generation
for distributed memory machine, in Proc. ACM SIGPLAN Conf. on Programming

Languages Design and Implementation, Albuquerque, NM, 1993, 126–138.

2. D. Callahan and K. Kennedy, Analysis of interprocedural side effects in a parallel
programming environment, J. Parallel and Distributed Comput. 5 (1988) 517–550.

3. S. Chakrabarti, M. Gupta and J. Choi, Global communication analysis and opti-
mization, in Proc. ACM SIGPLAN Conf. on Programming Language Design and

Implementation, Philadelphia, PA, 1996, 68–78.

4. J.F. Collard, d. Barthou and P. Feautrier, Fuzzy array dataflow analysis, in Proc.

5th ACM SIGPLAN Symp. on Principle & Practice of Parallel Programming, Santa
Barbara, CA, 1995, 92–101.

5. E. Duesterwald, R. Gupta and M. L. Soffa, Demand-driven computation of interpro-
cedural data flow, in Proc. Symposium on Principles of Programming Languages,
San Francisco, CA, 1995, 37–48.

6. C. Gong, R. Gupta and R. Melhem, Compilation techniques for optimizing commu-
nication on distributed-memory systems, in Proc. International Conf. on Parallel

Processing, St. Charles, IL, 1993, Vol. II, 39–46.

7. M. Gupta, E. Schonberg and H. Srinivasan, A unified framework for optimizing
communication in data-parallel programs, IEEE Trans. on Parallel and Distributed

Systems 7 (1996) 689–704.

8. S. Hiranandani, K. Kennedy and C. Tseng, Compiling Fortran D for MIMD
distributed–memory machines, Communications of the ACM 35 (1992) 66–80.

9. High Performance Fortran Forum, High performance Fortran language specification,
Version 1.0 Technique Report CRPC-TR92225, Rice University, 1993.

10. K. Kennedy and N. Nedeljkovic, Combining dependence and data-flow analyses to
optimize communication, in Proc. 9th International Parallel Processing Symposium,
Santa Barbara, CA, 1995, 340–346.

11. R.E. Tarjan, Testing flow graph reducibility, J. Comput. System Sci. 9 (1974)
355–365.

12. X. Yuan, R. Gupta and R. Melhem, “An Array Data Flow Analysis Based Commu-
nication Optimizer.” Technical Report, TR-97-06, Department of Computer Science,
University of Pittsburgh, 1997.

12

