An Array Data Flow Analysis based
Communication Optimizer*

Xin Yuan, Rajiv Gupta, and Rami Melhem

Dept. of Computer Science, Univ. of Pittsburgh, Pittsburgh, PA 15260

Abstract. We present an efficient array data flow analysis based global
communication optimizer which manages the analysis cost by partition-
ing the data flow problems into subproblems and solving the subproblems
one at a time in a demand driven manner. In comparison to traditional
array data flow based techniques, our scheme greatly reduces the memory
requirement and manages the analysis time more effectively. The opti-
mizer performs message vectorization, global redundant communication
elimination and global communication scheduling. Our experience with
the optimizer suggests that array data flow analysis for communication
optimization is efficient and effective.

1 Introduction

Communication optimization is crucial for obtaining good performance for pro-
grams compiled to execute on distributed memory systems. Traditionally, data
dependence analysis has been used to perform communication optimizations
within a single loop nest [2, 10, 14]. Recently, data flow analysis techniques have
been developed to obtain information for global communication optimizations
[4,7,9, 12, 13].

One approach, which will be referred to as the array dependence approach,
refines data flow analysis for scalar with data dependence analysis [4, 12, 13].
Another approach, which we will refer to as the array dataflow approach, per-
forms global array data flow analysis [7, 9]. The array dataflow approach can
obtain more accurate data flow information at a higher analysis cost than the ar-
ray dependence approach. The high analysis cost in the array dataflow approach
results from the complexity of the data flow descriptor [7, 9] and that operations
on the descriptors often result in lists of descriptors. In traditional data flow
analysis, to obtain data flow information at one point, data flow solutions at all
points must be computed. This requires large memory space and does not allow
control over the analysis time. Thus, only a very simplified version of the array
dataflow approach has been previously implemented [9] and it was uncertain
whether the array dataflow approach is practical for large programs.

In this paper, we present an array data flow analysis based communication
optimizer. The optimizer performs message vectorization, redundant communi-
cation elimination and global message scheduling [4]. To address the analysis cost

* Partially supported by NSF Presidential Young Investigator Award CCR-9157371

problem, the data flow analysis for the optimizations is partitioned into phases.
Within each phase, the data flow problems are partitioned into subproblems and
the subproblems are solved one at a time using a demand driven algorithm [16].
Each subproblem contains the data flow effect of a single communication.

Our scheme offers many advantages over traditional data flow analysis tech-
niques for communication optimizations. First, since subproblems are solved one
at a time, same memory space can be reused repeatedly. Second, the analysis
time can be easily managed. Given a limited time, partitioning allows our opti-
mizer to obtain partial data flow results and perform optimizations based upon
these results. Third, our scheme improves analysis time by reducing the time for
data flow set operations performed when a set changes during propagation. Tra-
ditional methods simultaneously operate on all communications in a program,
thus, a new data flow set must be recomputed when any element in the set is
changed. Partitioning data flow problems reduces data flow set size and thus
decreases the likelihood of recomputing a data flow set. Fourth, our optimizer
performs optimization and analysis in an interleaved fashion. This allows the
optimizer to discard intermediate data flow solutions. Although partitioning of
data flow problems requires multiple traversals of the program graph, it does
not significantly affect the analysis cost since the set operations dominate the
analysis time.

Our optimizer is implemented on top of the Stanford SUIF compiler [1].
Experiments were conducted to evaluate the performance of the optimizer. To
our knowledge, this is the first implementation of a full scale array data flow
analysis based communication optimizer. The rest of the paper is organized as
follows. Section 2 describes the program representation. Section 3 introduces
the section communication descriptor (SCD), which is used in the optimizer to
represent communications, and its operations. Section 4 presents the optimizer.
Section 5 reports our experience with the optimizer. Section 6 concludes the

paper.

2 Program Representation

We consider structured programs that contain conditionals and nested loops, but
no arbitrary goto statements. A loop is controlled by a basic induction variable
and no statement in the loop contains an assignment to this variable. To simplify
the presentation we assume that loops are normalized. However, our implemen-
tation also handles loops that are not normalized. Array references in nested
loops are restricted to references whose subscripts are affine functions of loop
induction variables, that is, references are of the form X (f1(i), f2(i), ..., f5(1)),
where 1 is the vector representing the loop induction variables and fi (i), £ = 1..s,
are affine functions of i.

The optimizer performs optimizations on each subroutine. A subroutine is
represented as an interval flow graph G = (N, E), with nodes N and edges E. Our
analysis is based upon a variant of Tarjan’s intervals [15]. The analysis requires
that there are no critical edges which are edges that connect a node with multiple

outgoing edges to a node with multiple incoming edges. The critical edges can
be eliminated by edge splitting transformation[9]. Fig. 1 shows an example code
and its corresponding interval flow graph.

ALIGN (i, j) with VPROCS(], j) :: x, ¥, z
ALIGN (i, j) with VPROCS(2%], i4+1) == w
(s1) doi=1, 100

(s2) doj=1, 100
(3) x)=
(s4) enddo
(s5) enddo
(s6) doi=1,100
(s7) doj=1, 100
69 y(Li)=wi)

(s9) enddo

(s10) enddo

(s11) doi =1, 100

(s12) doj=1, 100

(13) (i, §) = x(+1, §)* wli,)
(19) ol §) = 20,)% ¥li+1,)
(s15) end do

(s16) w(i+1, 100) = ...

(s17) end do

Level O Level 1 Level 2 Level 3

1D0i |0
2 DOj = %
3 x(i,j) =...
4 DOi | L]
[00] J=—
6 y(i,j)=w(i
[7 poi]

7777777777777 [8 Doj|

9 z(i,j) =x(+1,)) * w(i, j)

8 Doj
Fig.1. An example program and its interval flow graph

3 Section Communication Descriptor (SCD)

In this section, we introduce the Section Communication Descriptor (SCD),
which is used in the optimizer to represent communications. This descriptor
augments the descriptor we designed previously [16] in two ways: (1) it has the
ability of describing communications that occur specifically in certain iterations
of a loop, and (2) it is more powerful in describing communication relations.
The augmentation slightly increases the complexity of the descriptor and its
operations and gives the optimizer more power in communication optimizations.

3.1 The SCD Descriptor

The processor space is considered as an unbounded grid of virtual processors. The
abstract processor space is similar to a template in High Performance Fortran
(HPF) [11], which is a grid over which different arrays are aligned. In the rest
of the paper, when we refer to communication, we mean communication on the
virtual processor grid.

A Section Communication Descriptor (SCD), denoted as < N, D, M,Q >,
is composed of three parts. First, an array name, N, and a region descriptor,
D, form an array region descriptor which describes the array elements that are
involved in the communication. Second, a communication mapping descriptor,
M, describes the source—destination relationship of the communication on the
virtual processor grid. Third, a qualifier descriptor, (), describes the iterations
during which the communication is performed.

The bounded regular section descriptor (BRSD) is used as the region descrip-
tor. The region D is a vector of subscript values. Each element in the vector is
either (1) an expression of the form « * 7+ /4, where « and § are invariants and
i is a loop index variable, or (2) a triple { : u : s, where {, u and s are invariants.
The triple, [: u : s, defines a set of values, {l, [+ s, [4+ 2s, ..., u}, as in HPF.

The source-destination mapping M is denoted as < src,dst, qual >. The
source, srec, is a vector whose elements are of the form axi+ 3, where « and 3 are
invariants and 7 is a loop index variable. The destination, dst, is a vector whose
elements are of the form Z?ﬂ aj *t; + 5, where oj’s and (;’s are invariants
and ¢;’s are loop index variables. The mapping qualifier list, qual, is a range
descriptor list. Each range descriptor is of the form i = ! : u : s, where [, u
and s are invariants and 7 is a loop induction variable. Notation qual =1 or
qual = nil denotes that no mapping qualifier is needed. In this case, the source—
destination relation is determined solely from src and dst. The mapping qualifier
is used to describe the broadcast effect, which may be needed during message
vectorization. Notation M = T denotes all mapping relations.

The qualifier descriptor @) is a range descriptor of the form i =1 : u : s.
Notation @ =L or @ = nil is used to indicate that the communication is to
be performed in every iteration.) will be referred to as the communication
qualifier. The communication qualifier, @, is included in a SCD to describe com-
munications that are performed during certain iterations of a loop. This is needed
for partial message vectorization where communications in some iterations of a
loop are vectorized and hoisted out of the loop while communications in other
iterations remain inside the loop.

3.2 Operations on SCD

Operations, such as intersection, difference and union, on SCD descriptors are
defined next. Since in many cases, operations do not have sufficient informa-
tion to yield exact results, subset and superset versions of these operations are
implemented. The optimizer uses a proper version to obtain conservative ap-
proximations. These operations are extensions of the operations on BRSD.

Subset Mapping testing. Testing whether a mapping is a subset of another
mapping is one of the most commonly used operations in the optimizer. Testing
that a mapping relation My (=< s1,d1,¢q1 >) is a subset of another mapping
relation My (=< sa,ds,¢2 >) is done by checking for a solution of equations
s1 = s and d; = ds, where variables in M are treated as constants and variables
in M5 as variables, and subrange testing ¢; C g2. Note that since the elements
in s; and s; are of the form « * ¢ 4+ 3, the equations can generally be solved
efficiently. Two mappings, M; and Ms are related if M1 C My or My C M.
Otherwise, they are unrelated.

Subset SCD testing. Let S; =< Ny, D1, M1,Q1 >, So =< N2, Dy, My, Qs >,
SC D, QSCDQ < Ny =Ny AND1 C Dy ANM; gMZAQl ng
Intersection Operation. The intersection of two SCDs represents the elements
constituting the common part of their array sections that have the same mapping
relation. The following algorithm describes the subset version of the intersection
operation. Note that the operation requires the qualifier @1 to be equal to Qs
to obtain a non ¢ result. This approximation will not hurt the performance
significantly since most SCDs have @ =_L.

< N1, D1, My, Q1 >N < Na, Dy, My, Q2 >

= ¢,if N1 # Ny or My and M» have no relation or ()1 # Q2

=< Ni,DiNDy, M,Q1 >,if Ny = Ny and My C M and @1 = @2
=< Ny, DiN Dy, My, Q1 >,if Ny = Ny and My D My and Q1 = @2

Difference Operation. The difference operation causes a part of the array
region associated with the first operand to be invalidated at all the processors
where it was available. In our analysis, the difference operation is only used to
subtract elements killed (by a statement, or by a region), which means that the
SCD to be subtracted always has M = T and @ =.L.

<Ny, D1, Mi,Q1>— < No, Do, T, 1>
= <N1aD1aM1aQ1 >: lle #NZ
= < Ny, D1 — Do, My,Q1 >, if Ny = N».

Union operation. The union of two SCDs represents the elements that can be
in either part of their array section. This operation is given by:

< N1, Dy, M1,Q1 > U < Ny, Dy, M2, Q2 >
:<N1,D1UD2,M1,Q1 >,ifN1:N2 and M, = M, andQ1:Q2
= list(< N1, D1, M1, Q1 >, < Na, D2, M3, Q3 >), otherwise.

4 The Optimizer

The optimizer performs message vectorization, redundant communication elimi-
nation and communication scheduling using algorithms based upon the demand
driven analysis in [16]. The optimization steps include:

1. Initial SCD calculation. Here the optimizer calculates the communication
requirement for each statement that contains remote memory references.
Communications required by each statement are called initial SCDs for the
statement and are placed preceding the statement.

2. Message vectorization and available communication summary calculation.
The optimizer propagates initial SCDs to the outermost loops in which they
can be placed. In addition to message vectorization optimization, this step
also calculates the summary of communications that are available after each
loop. This information is used in the next step for redundant communication
elimination.

3. Redundant communication elimination. The optimizer performs redundant
communication elimination using demand driven version of availability com-
munication analysis [8], which computes communications that are available
before each statement. A communication in a statement is redundant if it can
be subsumed by available communications at the statement. Our optimizer
also eliminates partially redundant communication.

4. Message scheduling. The optimizer schedules messages within each interval
by placing messages with same communication patterns together and com-
bining the messages to reduce the number of messages.

4.1 Initial SCD Calculation

We assume owner computes rule which requires each remote item referenced on
the rhs of an assignment statement to be sent to the processor that owns the
lhs. Initial SCDs for each statement represent this data movement. Since the
ownership of array elements determines communication patterns, we describe
the ownership of array elements before presenting the initial SCD calculation.

Ownership. All arrays are aligned to a single virtual processor grid by simple
affine functions. The alignments allowed are scaling, axis alignment and offset
alignment. The mapping from a point d in data space to a corresponding point v
on the virtual processor grid (the owner of d) can be specified by an alignment
matrix M and an alignment offset vector a such that v. = Md + «. Using
the alignment matrix and the offset vector, the owner of a data element can
be determined. Consider the array w in the example program in Fig. 1, the
alignment matrix and the offset vector are given below.

02 0
e ()= (1)

Initial SCD Calculation. Using the ownership information, the initial SCDs
are calculated as follows. Let us consider each component in an initial SCD =<
N,D,M,Q >. N is the array to be communicated. The region D contains
a single index given by the array subscript expression. The qualifier @ =L
since initial communications must be performed in every iteration. Let M =<

sre, dst, qual >. Since initially communication does not perform broadcast,
qual =1 . Hence, the calculation of src and dst, which we will discuss in the
following text, is the only non-trivial computation in the calculation of initial
SCDs.

Let 1 be the vector of loop induction variables. When subscript expressions
are affine functions, an array reference can be expressed as N(Gi+g), where N
is the array name, G is a matrix and g is a vector. We call G the data access
matriz and g the access offset vector. The data access matrix, G, and the access
offset vector, g, describe a mapping from a point in the iteration space to a
point in the data space. Let Gi, g1, M;, a; be the data access matrix, the access
offset vector, the alignment matrix and the alignment vector for the lhs array
reference, and G,, g, M,, a, be the corresponding quantities for the rhs array
reference. The source processor srec and destination processor dst are given by:

sre = My (Gei+gr) + ay, dst = Mi(Gii+ g1+ o«

Consider the communication of w(4, j) in statement s13 in Fig. 1. The op-
timizer can obtain from the program the data access matrices, access offset
vectors, alignment matrices and alignment vectors and from them the SCD for
the communication given below. As an indication of the complexity of a SCD,
the structure for this communication required 524 bytes to store.

= (3) o= (3) = (35) 2= (5)
=(3) =) e= (5) == (5)

<N=wD=(i,j),M =< (2xj,i+1),(i,j),L>Q=L>

G

4.2 General SCD Propagation Rules

In [16], we designed a set of general rules to propagate SCDs in an interval
flow graph. These rules form a demand driven version of the interval analysis
in [8]. These rules propagate each communication to its earliest (latest) possible
points in backward (forward) propagation, that is, the earliest (latest) points in
the program that the communication can be placed(alive). Each optimization
performed by the optimizer computes the required data flow information using
a subset of these rules.

The propagation starts by propagating initial SCDs which carry the com-
munication requirement information for statements. When a SCD reaches an
interval boundary, the SCD is ezpanded to represent all communications inside
the loop. If there are no data dependencies that prevent the communications
from being propagated out of the interval, all communications represented by
the expanded SCD are propagated into the outer interval. This type of prop-
agation is called UP propagation. The UP propagation propagates SCDs from
an inner interval to an outer interval, expanding SCDs when crossing interval
boundaries. If there are data dependencies inside the interval that prevent the

communications from being propagated out of the interval, part of the expanded
SCD must be propagated back into the interval to determine the exact places
where the communications are killed. This type of propagation is called DOWN
propagation. The DOWN propagation propagates SCDs, which carry summary
information, from outer intervals into inner intervals. When a DOWN propaga-
tion reaches the loop header of the interval in which it originates, its propagation
will terminate as opposed to UP propagations where SCDs are expanded when
a loop header is reached. The UP and DOWN propagations correspond to the
two phases of the interval analysis in [8].

(SK,, UPIDOWN) (expand(S)-expand(defs) , UP)

(S.Ns - kill,, UPIDOWN)

T

(S,, UPIDOWN)
(S, UPDOWN) (summary(S () K,), DOWN) (Summary(expand(S) () expand(defs)), DOWN)

@ (b) ©

Fig. 2. General propagation rules

Fig. 2 depicts the rules for propagating SCDs backward. Rules to propagate
SCDs forward are similar. In the figure, (S, UP|DOWN) denotes the UP or
DOWN propagation of communication S. Fig. 2(a) shows the case when SCDs
are propagated through a regular node. If a node has more than one successor,
SCDs from all successors are intersected before subtracting the elements killed in
the node. The result is then propagated to all of its predecessors. Fig. 2(b) shows
the case when a SCD propagates past a loop header node in the same interval,
in addition to the SCD that passes the loop header, a DOWN propagation will
be generated to propagate a SCD that contains all elements that are killed into
the loop body to determine the exact places where they are killed. Here, K, is
the set of array elements killed inside the loop and the summary(S) function
computes communications in S that are not killed at iteration ¢, where ¢ is
the induction variable. When an UP propagation reaches its loop header, it
will be expanded into a summary of all communications inside the loop. The
summary can be propagated into the outer interval if none of the elements in
the summary are killed inside the loop. If part of the summary is killed inside
the loop, only the part that is not killed will be propagated into the outer
interval, while the part that is killed inside must be propagated back into the
loop body to determine the exact places that kill the communications. Fig. 2(c)
shows this case. The expand(S) function in the figure computes the SCD that
represents all communications (represented by S) inside the interval. When a
DOWN propagation reaches its loop header, the propagation terminates.

Our optimizer partitions the communication optimization, and thus the SCD
propagation process, into three phases. First, the optimizer determines the in-
terval to place each communication by propagating the communication into its
outermost interval. This is the message vectorization and available communi-
cation summary calculation step. Second, communications are propagated for-
ward within each interval to perform availability communication analysis and
redundant communication elimination. This is the redundant communication
elimination step. Notice that propagating SCDs within their intervals is much
more efficient than propagating SCDs through the whole program as in [8].
Third, the optimizer performs communication scheduling. In this phase, SCDs
are propagated backward to find their earliest points that can be used to place
the communications. In the subsequent sections we will discuss these phases in
detail.

4.3 Message Vectorization and Available Communication Summary

In this phase, the optimizer calculates backward exposed communications, which
are SCDs that can be hoisted out of a loop, and forward ezposed communications,
which are SCDs that are available after the loop. Backward exposed communi-
cations represent actual communications vectorized from inside the loop. When
a SCD is vectorized, the initial SCD at the assignment statement are replaced
by SCDs for backward exposed communications at loop headers. Forward ex-
posed communications represent the communications that are performed inside
a loop and are still alive after the loop. Hence they can be used to subsume com-
munications appearing after the loop. By using data dependence information,
backward and forward exposed communications are calculated by propagating
SCDs from inner loop bodies to loop headers using a simplified version of the
rule in Fig. 2 (c).

Algorithms for forward and backward exposed communication calculation
are described in Fig 3 (a) and (b). Since only UP propagation is needed, we
use Request(S,n) to denote placing a propagation of S after node n. In the
algorithms, S is a SCD occurring inside the interval whose header is node n and
whose induction variable is i with lower bound 1 and upper bound h, anti_def is
the set of definitions in the interval that have anti—-dependence relation with the
original array reference that causes the communication S, flow_def is the set of
definitions in the interval that have flow—dependence relation with the original
array reference that causes the communication S. For a SCD, S, expand(S,i,1 :
h) first determines which portion of the S =< N, D, M, Q > to be expanded. If
D is to be expanded, that is, ¢ occurs in D, the function will replace all single
data item references a x i+ [used in D by the triplea + B :axh+ 8 :a. If D
cannot be expanded, that is, after expansion D is not in the allowed form, then
the communications will stay inside the loop. If M =< sre, dst, qual > is to be
expanded, that is, ¢ occurs in dst but not in src and D, the function will add
t=1:h:1 into the mapping qualifier list qual.

The algorithms essentially determine the part of communications, Qutside,
that can be hoisted out of a loop and the part, Inside that cannot be hoisted out

of the loop. In forward exposed communication calculation, the optimizer makes
Outside as the forward exposed communication and ignores the Inside part. In
backward exposed communication calculation, the optimizer makes Qutside as
backward exposed communication. In addition, the optimizer must also change
the original SCD according to contents of Inside. In the case when the SCD can
be fully vectorized, the SCD in the original statement is removed. In the case
when the SCD cannot be fully vectorized, part of the communication represented
by Outside is hoisted out of the loop, while other part represented by Inside
stays at the original statement. Thus, the SCD in original statement must be
modified by a communication qualifier to indicate that the SCD only remains in
iterations that generate communications in Inside.

request(S, n) : request(S, n) :
Outside = ezpand(S,i,1: h)— Outside = ezpand(S,i,1: h)—
Uanti_defezpand(anti_def,1,1 : h) Uftow_defezpand(flow_def,i,1: h)
if (Outside # ¢) then Inside = expand(S,1,1: h)N
record Qutside as Uftow_defezpand(flow_def,i,1 : h)
forward exposed in node n if (Outside # ¢) then
Let m be the header of the convert Inside in terms of S
interval including node n with qualifier, denoted as D
request(Outside, m); if (conversion not successful) then
stop /* fail */
else

change the S into D

record Outstde as backward
exposed comm. at node n.

Let m be the header of the
interval including node n

request(Outside, m);

(a) Forward exposed communication (b) Backward exposed communication

Fig. 3. Algorithms for the forward and backward exposed communication

Consider communications in the loop in Fig. 4. Assume that arrays a, b and d
are identically aligned to the virtual processor grid, initial SCDs, C'l and C?2, are
shown in Fig. 4. C'3, C'4 and C) are the communications after backward exposed
communication calculation. Calculating backward exposed communication for
C1 results in communication C'3 in the loop header and the removal of the
communication C'1 from its original statement. Calculating backward exposed
communication for C'2 puts C4 in the loop header and changes C2 into C5.
Note that, there is a flow—dependence relation from b(i) to b(i-1). In calculating
the backward exposed communication for SCD C2, Inside =< b,(1:99 : 1), <
(i—1,1),(s,1), L>, L >. Converting Inside back in terms of C2 results in C5.

C3: <a, (1), <(1), (i), i=1:100:1>, nil>
C4: <b, (0), <(i-1), i, nil>, nil>

Do izl@?fira (), <(2), (i), nil>, nil>
d(i) =a(1

C2: <b, (i-1), <(i-1), (i), nil>, nil>

C5: <b, (i-1), < (i-1), (i), nil>, i=2:100:1>

biii:bii—li
]

Fig. 4. Calculating backward exposed communications

4.4 Redundant Communication Elimination

This phase calculates available communications before each statement, and elim-
inates a communication at the statement if the communication is available. This
optimization is done by propagating SCDs forward until all elements are killed.
During the propagation, if another SCD that can be subsumed is encountered,
that SCD is redundant and can be eliminated.

request(Sy,n, UP) A ... request(S, n, U P):

Arequest(Sk,n, UP) : calculate the summary of loop n
S=5N..NS Inside= ezpand(S,i,1:i—1)N
if (SCDs in n is a subset of S) then (Ugerezpand(def,i,1:1— 1))

remove the SCDs if (inside # ¢) then
if (S — kill, # ¢) then Let ! be the first node.
for all m € succ(n) request(Inside,l, DOW N)

request(S — kill,,, m, U P)
(a) Actions on nodes within an interval (b) Actions on a loop header

Fig. 5. Actions in forward propagation

Using the interval analysis technique [8], two passes are needed to obtain
the data flow solutions in an interval. Initially, UP propagations are performed.
Once the UP propagations reach interval headers, summaries of the SCDs are
calculated and DOWN propagations of the summaries are triggered. Note that
since the data flow effect of propagating SCDs between intervals is captured
in the message vectorization phase of our optimizer, both the UP and DOWN
propagations are performed within an interval in this phase.

Assuming that node n has k predecessors. When propagating SCDs within an
interval in forward propagation, actions in a node will be triggered only when
all its predecessors place requests. The nodes calculate the SCD available by

performing intersection on all SCDs that reach it, check whether communica-
tions within the node can be subsumed, and propagate the live communications
forward. Fig. 5 (a) describes actions on the nodes inside the interval in an UP
forward propagation. When the UP propagation reaches an interval boundary,
the summary information is calculated by obtaining all the elements that are
available in iteration i, and a DOWN propagation is triggered. Note that in for-
ward propagation, communications can be safely assumed to be performed in
every iteration (@ =.1), since the effect of the communication must guarantee
that the valid values are at the proper processors for the computation. Fig. 5 (b)
shows actions at interval boundaries. The propagation of a DOWN request is
similar to that of an UP request except that a DOWN propagation stops at
interval boundaries.

4.5 Global Message Scheduling

After redundant communication elimination, our optimizer further reduces the
number of messages using a global message scheduling algorithm proposed by
Chakrabarti et al. in [4]. The idea of this optimization is to combine messages
that are of the same communication pattern into a single message to reduce
number of messages in a program. In order to perform message scheduling, the
optimizer first determines the earliest and latest points for each communication.
Placing the communication in any point between the earliest and the latest
points that dominates the latest point always yields correct programs. Thus, the
optimizer can schedule the placement of messages such that messages of same
communication patterns are placed together and are combined to reduce the
number of messages.

The latest point for a communication is the place of the SCD after redundant
communication elimination. Note that after message vectorization, SCDs are
placed in the outermost loops that can perform the communications. The earliest
point for a SCD can be found by propagating the SCD backward. As in [4], we
assume that communication for a SCD is performed at a single point. Hence, the
backward propagation will stop after an assignment statement, a loop header or
a branch statement where part of the SCD is killed. Since the propagation of
SCDs stops at a loop header node, only the UP propagation is needed. Once
the earliest and latest points for each communication are known, the greedy
algorithm in [4] is used to do the communication scheduling.

5 Experimental Results

Our optimizer is implemented on top of the Stanford SUIF compiler. To eval-
uate its performance, we developed a communication emulation system, which
takes SCDs as input, emulates the communications described by the SCDs and
collects the statistics, such as total number of elements communicated and total
number of messages, about the required communications. The emulation system
provides an interface with C program as a library call whose arguments include

all information in a SCD. Our compiler backend automatically generates the
library call for each SCD remaining in the program. In this way, the communi-
cation performance of a program can be evaluated in the emulation system by
running programs generated by our compiler backend.

We used six programs in our experiment. The first benchmark, L18, is the
explicit hydrodynamics kernel in livermore loops (loop 18). The second bench-
mark, ARTDIF, is a kernel routine obtained from HYDRO2D program, which
is an astrophysical program for the computation of galactical jets using hydro-
dynamical Navier Stokes equations. The third benchmark, TOMCATYV, does
the mesh generation with Thompson’s solver. The fourth program, SWIM, is
the SHALLOW weather prediction program. The Fifth program, MGRID, is
the simple multigrid solver for computing a three dimensional potential field.
This sixth program, ERHS, is part of the APPLU program, which is the solver
for five coupled parabolic/elliptic partial differential equations. The programs,
HYDRO2D, TOMCATYV, SWIM, MGRID and APPLU, originally come from
SPEC95 benchmark suite.

Table 1 shows the analysis cost of our optimizer. We ran the optimizer, which
applies the algorithms on all SCDs in the programs, on SPARC 5 with 32MB
memory. Row 2 and Row 3 shows the program sizes. Row 4 shows the cumulative
memory requirement, which is the sum of number of SCDs passing through
each node. This number is approximately equal to the memory requirement of
traditional data flow analysis. The value in bracket is the maximum number of
cumulative SCDs in a node, which is the extra memory needed by our optimizer.
In our optimizer the size of a SCD ranges from 0.6 to about 2 kbytes. Our results
show that traditional analysis method will require large amount of memory when
a program is large, while our optimizer uses little extra memory. Row 5 gives
the raw analysis times and row 6 shows the rate at which our optimizer operates
in units of lines/sec. On an average our optimizer compiles 172 lines per second
for the six programs. Row 9 shows the total time, which includes analysis time
and the time to load and store the SUIF structure, for reference. In most cases,
the analysis time is only a fraction of the load and store time.

Program L18 [ARTDIF|TOMCATV|SWIM|MGRID| ERHS
size(lines) 83 101 190 429 486 1104
of initial SCDs | 35 12 108 76 125 403
accu. memory req.|348(1)| 175(1) 5078(3) |767(1)|1166(1) |6029(5)
analysis time(sec)| 0.62 0.32 3.47 1.87 1.92 | 20.92
lines / sec 133 316 54 229 253 52
total time(sec) 2.00 1.75 6.95 6.65 12.52 35.42

Table 1. Analysis time

Table. 2 and Table. 3 show the effectiveness of our optimizer. Table. 2 shows
the reduction of total number of elements to be communicated and Table. 3
shows the reduction of total number of messages. We evaluate the performace
with both cyclic and block distributions on 16 PE systems. This experiment is

conducted using the test input size provided by the SPEC95 benchmark for pro-
gram TOMCATV, SWIM, MGRID ERHS. The outermost iteration number in
MGRID is reduced to 1 (from 40). Problem sizes of 6 x 100 for L18 and 402 x 160
for ARTDIF are used. We compare the number of elements and number of mes-
sages communicated after all optimizations to those after message vectorization
optimization. From Table 2, we can see that for cyclic distribution, an average
of 31.5% of the total communication elements are reduced. The block distribu-
tion greatly reduces the number of elements to be communicated and affects
optimization performance of the optimizer. For block distribution, the average
reduction is 23.1%. From Table 3, we can see that our optimizer reduces total
message number by 36.7% for cyclic distribution and by 35.1% for block distri-
bution. These results indicate that global communication optimization results
in large performance gain and our optimizer is effective in finding optimization
opportunities.

Dist. | Opt. | L18 J[ARTDIF[TOMCATV|[SWIM|MGRID|ERHS
x10%| x10° x108 x107 | x107 | x10°

Vector.| 1.38 | 7.01 1.38 6.38 | 5.69 | 3.62
cyclic| Final | 0.96 | 5.73 0.34 458 | 5.69 | 2.29
69.6%| 81.7% 24.6% |71.8%]| 100% |63.3%

x10° | x10* x10° x10% | x10% | x10°

Vector.| 3.26 | 7.17 5.74 3.38 | 8.49 | 3.11
block| Final | 2.57 | 6.97 5.12 1.08 | 849 | 1.65
78.8%]| 97.2% 89.1% |32.0%]| 100% [53.1%

Table 2. Total number of elements to be communicated

Dist. | Opt. | L18 [ARTDIF|TOMCATV|SWIM|MGRID| ERHS
Vector.| 368 400 68555 3892 | 17662 [1.14 x 10°
cyclic| Final | 96 336 41075 1807 | 17662 [0.72 x 10°
26.1%| 84.0% 59.9% 46.4% | 100% 63.1%
Vector.| 330 185 16750 3894 | 14650 [9.20 x 10°
block| Final | 90 161 10915 2209 | 14650 [4.89 x 10°
27.3%] 87% 65.2% 56.7%| 100% 53.2%

Table 3. Total number of messages

6 Conclusion

We presented an array data flow based communication optimizer which obtains
the information by propagating the communications in the program one at a
time. This approach allows control over the analysis time and reduces mem-
ory requirements. Qur experiments show that the optimizer is efficient both in
analysis costs and effective in its optimization results.

References

1.

10.

11.

12.

13.

14.

15.

16.

S. P. Amarasinghe, J. M. Anderson, M. S. Lam and C. W. Tseng, “The SUIF Com-
piler for Scalable Parallel Machines,” Proceedings of the Seventh SIAM Conference
on Parallel Processing for Scientific Computing, Feb. 1995.

. S. P. Amarasinghe and M. S. Lam “Communication Optimization and Code Gener-

ation for Distributed Memory Machine.” In Proceedings ACM SIGPLAN’93 Con-

ference on Programming Languages Design and Implementation, June 1993.

. P. Banerjee, J. A. Chandy, M. Gupta, E. W. Hodges IV, J. G. Holm, A. Lain, D. J.

Palermo, S. Ramaswamy, and E. Su. “The PARADIGM Compiler for Distributed-
Memory Multicomputers.” in IFEFE Computer, Vol. 28, No. 10, pages 37-47, Oc-
tober 1995.

. S. Chakrabarti, M. Gupta and J. Choi “Global Communication Analysis and Op-

timization.” In Programming Language Design and Implementation(PLDI), 1996,
pages 68-78.

. J.F. Collard, d. Barthou and P. Feautrier “Fuzzy Array Dataflow analysis.” In 5th

ACM SIGPLAN Symposium on Principle & Practice of Parallel Programming,
July 1995, Santa Barbara, CA.

. E. Duesterwald, R. Gupta and M. L. Soffa “Demand-driven Computation of Inter-

procedural Data Flow” In Symposium on Principles of Programming Languages,
Jan. 1995, San Francisco, CA.

. C. Gong, R. Gupta and R. Melhem “Compilation Techniques for Optimizing Com-

munication on Distributed-Memory Systems” In International Conference on Par-
allel Processing, Vol 11, pages 39-46, August 1993.

. M. Gupta and E. Schonberg “A Framework for Exploiting Data Availability to Op-

timize Communication.” In 6th International Workshop on Languages and Com-
pilers for Parallel Computing, LNCS 768, pp 216-233, August 1993.

. M. Gupta, E. Schonberg and H. Srinivasan “A Unified Framework for Optimiz-

ing Communication in Data-parallel Programs.” In IEEE Trans. on Parallel and
Distributed Systems, Vol. 7, No. 7, pages 689-704, July 1996.

S. Hiranandani, K. Kennedy and C. Tseng “Compiling Fortran D for MIMD
Distributed-memory Machines.” Comm. of the ACM, 35(8):66-80, August 1992.
High Performance Fortran Forum. “High Performance Fortran Language specifi-
cation.” version 1.0 Technique Report CRPC-TR92225, Rice University, 1993.

K. Kennedy and N. Nedeljkovic “Combining dependence and data-flow analyses
to optimize communication.” In Proceedings of the 9th International Parallel Pro-
cessing Symposium, Santa Barbara, CA, April 1995.

K. Kennedy and A. Sethi, “A Constraint Based Communication Placement Frame-
work.” Technique Report CRPC-TR95515-S, Center for Research on Parallel Com-
putation, Rice University. Feb. 1995.

J. Li and M. Chen, “Compiling communication efficient programs for massively par-
allel machines.” IEEE Transactions on Parallel and Distributed Systems, 2(3):361—
376, July 1991.

R.E. Tarjan “Testing flow graph reducibility.” Journal of Computer and System
Sciences, 9:355-365, 1974.

X. Yuan, R. Gupta and R. Melhem “Demand-driven Data Flow Analysis for Com-
munication Optimization.” Workshop on Challenging in Compiling for Scalable
Parallel Systems, New Orleans, Louisiana, Oct. 1996.

This article was processed using the INTpX macro package with LLNCS style

