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Abstract

Global communication optimization greatly reduces
commaunication costs in programs compiled for a dis-
tributed memory system. However, traditional exhaus-
twe global array data-flow analysis for communication
optimizations is expensive and considered to be im-
practical for large programs. This paper tackles the
efficiency problem by proposing a demand-driven anal-
ysis approach. In comparison to traditional data flow
analysis, demand driven approaches reduce the analy-
sis cost by computing only the data flow information
related to the optimizations. Furthermore, the cost
of demand driven analysis can be managed by trad-
ing space for time or compromising precision for time
complezity. A new form of section communication de-
scriptor is introduced to represent communication re-
quirements concisely and to perform set operations ef-
ficiently. By globally propagating descriptors, many
commaunication optimization opportunities can be dis-
covered. A general demand driven algorithm to glob-
ally propagate the section communication descriptor
1s described, and applications of the general algorithm
for communication optimization are presented.

1 Introduction

Although distributed memory systems provide scal-
ability for parallel applications, writing programs with
explicit message passing is tedious and error prone.
This has motivated considerable research towards de-
veloping compilers that relieve programmers from the
burden of generating communications [12, 2, 3, 10, 16,
18]. Such compilers take sequential or shared mem-
ory parallel programs and generate SPMD programs
with explicit message passing. One important task
for the compilers is to reduce communication costs.
Many communication optimizations, such as, mes-
sage vectorization, redundant communication elimina-
tion, message merging, and overlapping communica-
tion with computation have been proposed.

It has been demonstrated that global communica-
tion optimizations can greatly reduce communication
costs[5, 14]. Two different approaches, one based on
data dependence analysis [14] and the other using data
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flow analysis[11, 8], have been proposed. While the
data dependence approach is more efficient in terms
of its analysis cost, data flow analysis technique has
the advantage of better precision. However, the data-
flow frameworks [11, 8] typically propagate informa-
tion represented in some form of array section descrip-
tor. Due to the complexity of the array section de-
scriptors, the propagation of data flow information can
be expensive both in time and space. Furthermore, in
traditional data flow approaches, obtaining data flow
information at one point requires the computation of
data flow information at all program points. Comput-
ing such exhaustive solutions results in over-analysis
in that not all the data flow solutions at all points are
useful. Over—analysis may not only decrease the effi-
ciency, but also effect the precision in the context of
communication optimization because of the approxi-
mations in array data flow analysis.

These problems in data flow analysis for commu-
nication optimization can be alleviated by using de-
mand driven data flow analysis technique. Demand-
driven data flow analysis computes the data flow in-
formation only when necessary. Thus, it reduces the
analysis cost by preventing the over-analysis of a pro-
gram that occurs when part of the analysis effort is
spent on collecting superfluous information. Another
advantage is that the analysis cost can be managed.
Intermediate results may be recomputed every time
they are requested (without saving them) to trade
time for space. On the other hand, maintaining a
result cache can avoid repeated computations of in-
termediate solutions, which trades space for time. In
addition, demand-driven analysis considers the part
of program that is textually close to the point where
the data flow information is needed. This enables
the demand-driven analysis to give reasonable approx-
imation when the analysis is terminated prematurely.
Thus, demand-driven analysis can also trade precision
for time. Efficient demand driven analysis techniques
for scalars can be found in [7].

This paper presents demand driven algorithms for
global communication optimizations. A new form of
section communication descriptor(SCD) is introduced
to represent the communication requirements. This
descriptor enables the compiler to represent commu-
nications concisely and to perform the section opera-



tions efficiently. The SCD information is propagated
in a demand driven manner through the control flow
graph to uncover the opportunities for communication
optimizations. General rules and an algorithm that
implements these rules for SCD propagations are pre-
sented. Applications of the general algorithm to spe-
cific communication optimizations, including message
vectorization and redundant communication elimina-
tion, are discussed.

The rest of the paper is organized as follows. Sec-
tion 2 describes the program representation. Section
3 introduces SCD and its operations. Section 4 details
the demand-driven algorithms for propagating SCDs.
Section 5 describes the communication optimization
algorithms. Section 6 concludes the paper.

2 Program representation

We consider structured programs that contain con-
ditionals and nested loops, but no arbitrary goto state-
ments. A loop is controlled by a basic induction vari-
able and no statement in the loop contains an assign-
ment to this variable. Furthermore, we assume that
all loops are normalized, i.e. the induction variable
ranges from 1 to an upper bound with an increment
of one. The array references nested in loops are re-
stricted to references whose subscripts are affine func-
tions of loop induction Variables, that is, references

are of the form X (f1 (i ) 2(1 ), o Is(d )) where 7 is the

vector representing the loop mductron variables and

T (i ), k = 1..s, are affine functions of i.

A general data flow analysis algorithm that con-
siders loop nesting hierarchies is interval analysis[17].
Our algorithm performs the interval analysis in a
demand driven manner. A variant of Tarjan’s
intervals[17] is used. The analysis is done on one inter-
val flow graph G = (N, E), with nodes N and edges E.
ROOT € N is the unique root of G, which is viewed
as a header node for the entire program. For n € N|
LEVEL(n) is the loop nesting level of n. The outer-
most level is level 0 (i.e., LEVEL(ROOT) = 0) and

the innermost level has the highest level.

\®\ = \ L

Figure 1: Edge splitting transformation

Let T(n) be the interval whose header is n. For
a node m, we define header(m) to be the header of
the interval that immediately encloses m. Two spe-
cial nodes, the header and tail, for each interval are
inserted into the control flow graph if necessary, that
is, to make the interval single entry and single exit.
The analysis requires that there are no critical edges,
which connect a node with multiple outgoing edges
to a node with multiple incoming edges. This can be
achieved by edge splitting transformation[11] to the

control flow graph as shown in Fig. 1. Fig. 2 shows
an example code and its corresponding interval flow
graph. Node 9 in the example is an additional node
inserted by the edge splitting transformation.

3 Section Communication Descrip-

tor(SCD)

The processor space is considered as an unbounded
grid of virtual processors. The abstract processor
space is similar to a template in High Performance
Fortran (HPF) [13], which is a grid over which differ-
ent arrays are aligned. In the rest of the paper, when
we refer to communication, we mean communication
on the virtual processor grid.

The Section Communication Descriptor(SCD) is
an extension form of an array section descriptor. It
describes both an array region and the communi-
cation involving the region. A SCD is defined as
< N,D,M >, where N is an array name, D is the
source region of the communication, and M is the de-
scriptor of source-destination mapping. Hence a SCD
describes a communication pattern by describing the
sources of the communication and the mapping rela-
tion of the source and destination.

The bounded regular section descriptor (BRSD)[4]
is used to describe the source region of communica-
tions. As discussed in [4], set operations can be effi-
ciently performed over BRSDs. The source region S is
a vector of subscript values such that each of its ele-
ments is either (1) an expression of the form a i+ 3,
where 1 is a loop index variable and « and 3 are in-
variants, (2) a triple [ : u : s, where [, u and s are
invariants, or (3) L, indicating no information about
the subscript value.

The source-destination mapping M is denoted as a
pair < source, destination >. The source is a vector
whose elements are of format « *i + 3, where i is a
loop index variable and « and ( are invariants. The
Destination is a vector whose elements are of format
Z?:r aj *1; + (B, where 4;’s are loop index variables
and «a;’s and 3;’s are invariants.

3.1 Ownership

To calculate the communication requirements of an
assignment statement, the compiler must first know
the ownership of the arrays, that is, which processor
contains which elements. We assume that the arrays
are all aligned to a single virtual space by a simple
affine function. The alignments allowed are scaling,
axis alignment and offset alignment. The mapping

from a point d in data space to the corresponding
point ¥ in virtual processor grid can be specified by
an alignment matrix M and an alignment offset vec-

tor &. Thus ¥ = Md+ &. For example, consider the
alignments of array w and a in the example program
in Fig. 2, the alignment matrices and offset vectors for
array w and a are the following:

0

1

oe(23)



Level O Level 1 Level 2 Level 3

4 Ai+2) =

5 b()=ai+l)..

ALIGN (i, j) with VPROCS(, j) = x, , 2
ALIGN (i, j) with VPROCS(2%], i41) & w
ALIGN (i) with VPROCS(i, 1) :: a, b

sl) doi=1, 100

——

| 7 (i) =wij)

12 X(i+j-1, 2+1+2j-3) = w(, ) |

(13 yGi,i)=wi,)) \

| 19 z(i,j) =x(+1,]) * w(i. })

3.2 SCD calculation

Let 7 be the vector of loop indices. When the sub-
script expressions are affine functions of the loop in-

dices, the array references can be expressed as N(Gi+
§), where N is the array name, G is a matrix and § is
a vector. We call G the data access matriz and § the
access offset vector. The data access matrix, GG, and
the data access matrix, ¢, describe a mapping from
each point in the iteration space to the corresponding

point in the data space.

The SCD for each assignment statement can be cal-
culated from the program structure when the commu-
nication can be determined statically. In this section,
we discuss how the SCD can be calculated from the
program when the owner computes rule is used. The
owner computes rule requires each item referenced on
the rhs of an assignment statement to be sent to the
processor that owns the [lhs.

Let Gy, i, My, d; be the data access matrix, access
offset vector, alignment matrix and alignment vector
for the left hand side array, and G,, g,, M,, &, be the
corresponding quantities for the right hand side array.
The communication required by this statement can be
specified by the following relation:

Map =< My (Gyri + §r) + @, Mi(Gri + §) + & >

(
(s2) b(i-1) = a(i)...
(s3) a(i.—|—2) =
(s4) b(i) = a(i+1)
(s5) doj=1, 100
() x,5) = ()
(s7) end do
(s8) end do
(s9) if (...) then
(s10) doi=1, 100
(s11)  doj= 50,100
| (s12) x(ii-1, 2542%-3) = w (i, §)
(13) 3G = w i)
(s14) end do
(s15) enddo
(s16) doi=1,100
(s17)  y(i, 150) = x(i+1, 150)
(s18) end do
(s19) endif
(s20) doi= 1,100
(s21)  b(i) = ...
(s22) doj =1, 200
(s23) z(i, j) = x(i4+1, j)* w(i, Jj)
(s24) enddo
(s25)  w(i+1, 200) = ...
(s26) end do

Consider the communication in statement s12 for
Fig. 2. The compiler can obtain from the program
the following the data access matrices, access offset
vectors, alignment matrices and alignment vectors.

1 0 - 0
(4 2).5-(2)

Thus, source-destination mapping for the state-
ment is < (24,4 +1),(i+j—1,2%i4+2%j—3) >.

The SCD descriptor representation can capture the
communication pattern of the array assignment state-
ment with the following restrictions:

e Each subscript expression of the right hand side
array is of the form a x ¢+ 3, where o and (3 are
invariants and 7 is a loop index variable.



e Each subscript expression of the left hand side
array is a linear combination of the loop index
variables.

With these restrictions, the source region can be
expressed using BRSD in SCD descriptors and the
source in the mapping relation will be a vector whose
elements are of the form a x ¢ + 3, where a and 3 are
constants and 7 is a loop index variable.

3.3 Operations on SCD

Operations, such as intersection, difference and
union, on the SCD descriptors are needed in our anal-
ysis. In most cases the operations involve SCDs with
the same mapping relation or with the mapping re-
lation in one SCD being a subset of another SCD.
Operations on SCDs with unrelated mappings results
in conservative approximation or list representation.
We define two mapping relations M; and M, to be
unrelated if and only if: (1) My does not include M;
and (2) M3 does not include M;. Next we describe
how to test whether a mapping is a subset of another
mapping before we describe the operations.
Subset testing. Testing whether a mapping relation
is a subset of another mapping relation is an impor-
tant operation since most of other operations rely on
this operation. For example, the equivalence testing
can be broken down into two subset testings. Test-
ing that a relation M; (=< s1,d; >) is a subset of
another relation My (=< s3,d2 >) is done by check-
ing if the equations s; = ss and d; = ds have a
valid solution with variables in AM; treated as con-
stants and variables in M treated as variables. Note
that since the elements in s; and ss are of the form
a *x 1+ 3, to determine whether the equations have
a valid solution generally takes constant amount of
time. For example, to determine whether the map-
ping relation M; =< (1,4),(1,i4+ 1) > is a subset of
My =< (4,7),(1,7 + 1) >. The system will solve the
following equations assuming the variable ¢ in M is
renamed to k.

i=1,5=ki=1j4+1=k+1

Since there is a solution (i = 1,5 = k), M; is a subset
of M2 .
Intersection Operation. The intersection of two
SCDs represents the elements constituting the com-
mon part of their array sections that have the same
mapping relation. This operation is given by

< N1, D1, M1 >0 < Ng, Dy, My >

¢, if Ny # Ny or M; and M5 have no relation
< Nl,Dl mDQ,Ml >, if Ny = Ny and M, - M,
< N1, D10\ Dy, Mg >, if Ny = Ny and M, D Ms

Difference Operation. The difference operation
causes a part of the array region associated with the
first operand to be invalidated. We only consider the
case when the mapping relation for the second operand
is T, which means arbitrary mapping. In our analysis,
difference operation only occurs when elements in the
descriptor are killed by some definitions. The kill sets
are always represented as descriptors with T mapping
function. Hence, this special case is sufficient for our
analysis.

< Ny, D1, My >— < Na,Dy, T >
=< Ny, Dy, My >, if Ny ;é Ns

=< Ni,Dy— Dy, My >, if Ny = N».

Union operation. The union of two SCDs represents
the elements that can be in either part of their array
section. This operation is given by

< Nl,Dl,Ml > UKL NQ,DQ,MQ >
_<N1,D1UD2 M1> if Ny = Ny and My = M,
= list(< N1, D1, My >, < N3, Dy, M3 >), otherwise

After multiple union operations, the descriptor can
be a large list which will hinder the efficiency of the
analysis. When such situation occurs, the demand
driven algorithm may as well assume the conservative
results and terminate the analysis to trade precision
for time. Note that all array data flow analysis using
BRSD suffer from the same difficulty, since the union
operation is not closed in the BRSD. Demand driven
analysis can give better approximation than the tra-
ditional exhaustive schemes.

4 Demand-driven SCD propagation

Many communication optimization opportunities
can be uncovered by propagating SCDs globally.
Propagating SCDs backward can find the earliest
point to place the communication, while propagating
SCDs forward can find the lastest point where the ef-
fect of the communication is destroyed. Thus both
backward and forward propagation is useful in com-
munication optimization. Since forward and backward
propagation are similar, we will only focus on back-
ward propagation of SCDs.

We present the generic demand driven algorithms
to propagate SCDs through the interval flow graph
representation of a program. In the generic algo-
rithms, the SCDs are propagated until they cannot
be propagated, i.e. all the elements in the SCD are
killed. However, in practice, the compiler may choose
to terminate the propagation prematurely, i.e. when
there are still elements in SCDs, to save analysis time.
In this case, since the analysis starts from the points
that contribute to the optimizations, the points that
are textually close to the starting points, where most
of the optimization opportunities present, have been
considered. This gives the demand driven algorithm
the ability to trade precision for time.

The analysis techniques are the reverse of the
interval-analysis [9]. Specially, by reversing the infor-
mation flow associated with program points, we derive
a system of request propagation rules. In the propa-
gation, only a single interval is under consideration at
a given time. Hence, the propagations are logically
done in an acyclic flow graph. During the propaga-
tion, a SCD may expand when it is propagated out
of a loop. When a set of elements of a SCD is killed
inside a loop, the set is propagated into the loop to de-
termine the exact point where the elements are killed.
There are two types of propagations. During upward
propagation SCDs are propagated from higher to lower
levels and may need to be expanded. During down-
ward propagation SCDs are propagated from lower to
higher levels and may need to be shrunk.



The form of a data flow propagation request is
< S,n,[UP|DOW NJ],level, cnum >, where S is a
SCD, n is a node in the flow graph, constants UP
and DOWN indicate whether the request is an up-
ward propagation or a downward propagation, level
indicates at which level is the request and the value
cenum indicates which child node of n has triggered the
request. A special value —1 for enum is used as the
indication of the beginning of propagation. Hence, a
compiler can start a propagation by placing an upward
request with cnum = —1. Downward propagation are
triggered automatically when loop header nodes are
encountered. As a result, downward propagations al-
ways start from loop header nodes. For efficiency rea-
sons a node is processed only when all of its successors
have been processed. This guarantees that each node
will be processed once for each propagation since each
interval is an acyclic flow graph. When all the succes-
sors of a node n place propagation requests, an action
on node n is triggered and a SCD is propagated from
node n to all of its predecessors. The following subsec-
tion describes the propagation rules. We assume that
node n has k successors.

4.1 Propagation rules

RULE 0: upward propagation, initial node.
As we mentioned earlier, the compiler starts a upward
propagation from node s by placing a upward request,
< S,s,UP, level, cnum >, with ecnum = —1. Here, S
is the SCD descriptor to be propagated. This request
is processed by propagating S to all the predecessors
of node s as shown in the following code. In the code,
the function pred(s) returns the set of all predecessors
of node s.

request(< SCD,s,UP, level, cnum >) :
if (cnum = —1) then
for all m € pred(s)
Let s be m’s jth child
request(< SCD,m,UP, level,j >)

RULE 1: upward propagation, regular node.
Here regular node includes all nodes other than loop
header nodes and the initial node. The requests on a
regular node trigger an action based on SCD sets and
the local information and the propagation of a SCD
further upwards. In the specification of the rule shown
below, functions action and local are dependent on the
type of optimization being performed.

request(< Sy, n, UP, level, 1 >) A ...
...\ request(< S, n, UP, level, k >) :

S=51N..NS

action(S, local(n))

if (S — kill, # ¢) then

for all m € pred(n)

Let n be m’s jth child
request(< S — kill,, m, UP, level, j >)

A response to requests in a node n occurs only when
all of its successors have been processed. This guar-
antees that in an acyclic flow graph each node will
only be processed once. A more aggressive scheme can

propagate a request through a node without check-
ing whether all its successors are processed. In that
scheme, however, nodes may need to be processed mul-
tiple times to obtain the final solution.

RULE 2: upward propagation, same level
loop header node. Here we consider a request
< S,n,UP,level, cnum > such that n is a loop header
and Level(n) = level. Processing the node requires
calculating the summary information, K, , for the in-
terval, performing the action based on S and K,,
propagating some information past above the loop and
triggering a downward propagation to propagate the
information into the loop nest.

request(< S, n, UP, level, cnum >):
if ((n is a header) and (LEVEL(n) = level)) then
calculate summary K,
action(S, K,)
if (S— K, # ¢) then
for all m € pred(n)
Let n be m’s jth child
request(< S — K,,m,UP, level, j >)
if (SN K, # ¢) then
request(< SN K,,n, DOWN, level, —1 >)

The summary function can be calculated either be-
fore hand or in demand driven manner. In section 4.2,
we will describe the algorithm to calculate the sum-
mary. K, is the summary information of the loops
representing the variables killed in the interval. Note
that a loop header can only have one successor besides
the entry edge into the loop body. The cnum of the
downward request is set to -1 to indicate that it is the
start of the downward propagation.

RULE 3: upward propagation, lower level
loop header node. Here we consider a request <
S,n,UP,level, cnum > such that n is a loop header
and Level(n) < level. Once a request reaches the loop
header. The request is expanded before propagation
in to the lower level. At the same time, this request
triggers a downward propagation for the set that must
stay in the loops. Assume that the loop index variable
is ¢ with bounds low and high.

request(< S, n, U P, level, cnum >):
if ((n is a header) and (LEV EL(n) < level)) then
calculate the summary, K,, of loop n
outside = expand(S, i,low : high)—
Ugepexpand(def,i,low : high)
inside = expand(S, i, low : high)N
Ugepexpand(def,i,low : high)
if (outside # ¢) then
for all m € pred(n)
Let n be m’s jth child
request(< outside, m, U P, level — 1,5 >)
if (inside # ¢) then
request(< inside,n, DOWN, level — 1,—1 >)

The variable outside represents elements that are
propagated out of the loop, while inside represents
the elements that are killed within the loop. The ex-
pansion function has the same definition as in [11].



For a SCD descriptor S, expand(S, k, low : high) is a
function which replaces all single data item references
a x k + 3 used in any array section descriptor D in S
by the triple (a*low + § : a * high+ 8 : ). The set
def includes all the definitions that are the sources of
an flow-dependence to the array region propagated.
RULE 4: downward propagation, initial
node. A downward propagation always starts from
a loop header node with a enum = —1 and ends at
the same node with cnum # —1. In the downward
propagation, the loop’s index variable 7 is treated as
a constant. Hence, SCDs that are propagated into
the loop body must be changed to be the initial avail-
able set for iteration i, that is, we must subtract the
elements killed in iterations ¢ + 1 to high. This prop-
agation prepares the downward propagation into the

loop body by shrinking the SCD.

request(< S, n, DOW N, level, cnum >):
if (cnum = —1) then
calculate the summary of loop n;
ite = S — Ugepexpand(def, k, i+ 1 : high)
request(< ite,{, DOW N, level + 1,1 >);

RULE 5: downward propagation: regular
node. For regular node, the downward propagation
is the similar to the upward propagation rule.

request(< Sy, n, DOWN, level, 1 >) A ...
... Arequest(< Si,n, DOWN,level k >) :
S=5nN..NS
action(S, local(n))
if (S — kill, # 6) then
for all m € pred(n)
Let n be m’s jth child
request(< S — kill,, m, DOW N, level,j >)

RULE 6: downward propagation: same level
loop header node. When downward propagation
reaches a loop header, if the loop header is in lower
level, than the propagatlon stops; otherwise, the loop
header is in the same level as the request, and we must
propagate appropriate SCD through the loop header
and generate further downward propagation request
into nested loops.

request(< S, n, DOW N, level, ecnum >):
if (LEVEL(n) < level) then STOP
if (n is a header) and (LEVEL(n) = level) then
calculate summary, K, , for loop T(n)
action(S, Ky );
if (S— K, # ¢) then
for all m € pred(n)
Let n be m’s jth child
request(< S — K, m, DOW N, level, j >);
if (SN K, # ¢) then
request(< SN K,,n, DOWN, level, —1 >);

4.2 Summary calculation

During the request propagation, the summary in-
formation of an interval is needed when a loop header
is encountered. In this section, we describe the com-
putation of summary information. This algorithm can
be invoked when the need for summary information
arises. We use the calculation of kill set of the inter-
val, K,, as an example. Let kill(:) be the variables
killed in node i, K;, and K,,; be the variables killed
before and after the node respectively. The algorithm
in Fig. 3 propagates the data flow information from
the tail node to the header node in the interval using
the following data flow equation:

I(out(n) = UsEsucc(n)I(in(S)
Kin(n) = kill(n) U Koyt (n)

When inner loop header is encountered, a recursive
call is issued to get the summary information for the
inner interval. Once loop header is reached, the kill
set is expanded to be used by the outer loop.

Summary kill(n)
Koyt(tail) = ¢
for all m € T'(n) and in backward order
if m is a loop header then
[{out(m) = UsEsucc(m)I{in(S)
K;n(m) = summary kill(m) UK, (m)
else
I(out(m) = UsEsucc(m)I{in(s)
Kin(m) = kill(m) U Kout(m)
return (expand(K;, (header), i, low:high))

Figure 3: Summary kill calculation.

4.3 Request propagation algorithm

The demand driven algorithms uprequest and down-
request that implement the propagation rules are
shown in Fig. 4 and Fig. 5 respectively. Uprequest
takes as its input a request r and propagates r to
the earliest points that r can reach. The algorithm
first propagates the upward requests and then calls
the downrequest procedure to propagate the request in
the downward direction. A worklist is maintained to
store the pending requests. The worklist is initialized
with the input request r. All the request currently
in the worklist can potentially be propagated further.
In each step a request is removed from the worklist
and translated according to the propagation rule as-
sociated with the node under inspection. The request
resulting from this translation is merged with the pre-
vious requests and added to the worklist. The algo-
rithm terminates when the worklist becomes empty.
Data structures dset is used to maintain the down-
ward requests set that are not being processed. This
algorithm focuses on the propagation of the request
and omits the actions in each node.

4.4 Example
Let us use an example to see how the propagation
works. Consider propagating the communication for
array w in statement s23 in the example program in
Fig. 2. The SCD describing the communication is <
w, (4,7) < (2% 4,0+ 1),(4,5) >>.



uprequest(r)
Let r =< S, s,UP,level, —1 >
for each m € N do request[m] = ¢.
dset = ¢
/* propagate initial request, RULE 0 */
for all m € pred(s) do
Let m be s’s jth successor
request[m] = request[m] +
{< S,m,UP,level, j >}
) worklist = worklist + {m}
) while worklist # ¢ do
) remove a node n from worklist
) if n is a loop header then
) Let request[n] =< S,n,UP, level,1 >
) if LEVEL(n) < level then
) /* rule 3, go to lower level */
) calculate summary K,
) outside = < ezxpand(S, 1, low : high)—
) Uge rexpand(def, i, low : high)
) inside = < expand(S,1,low : high)n
) Uge rexpand(def, i, low : high)
) if (outside # ¢) then
) for all m € pred(n) do
) Let n be m’s sth child
) request[m] = request[m] +
) {< outside, m,UP,level — 1,i >};
) worklist = worklist + {m}
) if (inside # ¢) then
) dset = dset +
) {< inside,n, DOWN,level — 1,—1 >};
) else /* rule 2, same level */
) calculates K, for interval T (n)
) if (S — Kn # ¢) then
) for all m € pred(n)
) Let n be m’s sth child
) request[m] = request[m] +
) {< S - Kn,m,UP,level,1 >}
) worklist = worklist + m
) if (SN Kn # ) then
) dset = dset +
) {< SNKpn,n, DOWN,level, -1 >}
) else /* regular node, rule 1 */
) if all m’s successors place a request then
) Let Sy, ..., S be the SCD in the request
) S=5NS...N Sk
) if (S — kill,, # ¢) then
) for all m € pred(n)
) Let n be m’s sth child
) request[m] = request[m] +
) (< S = killp, m, UP, level, i >}
) worklist = worklist + {m}
) else
) if there is a request that can be propagated
) insert m back into the worklist
) while dset # ¢ do
) /* processing the downward propagation */
) remove r from dset.
) call downrequest(r)

Figure 4: Upward request propagation algorithms

downrequest(r)
Let r =< S,s, DOWN, level, —1 >
for each m € N do request[m] = ¢.
request[s] = r, worklist « {s}
while worklist # ¢ do
remove a node n from worklist
if n is a loop header then
Let request[n] =< S,n, DOWN,level, cnum >
if (cnum = —1) then
) /* RULE 4, initial node */
) calculate summary of interval T(n)
) Let node [ be the tail node of the interval
) inside = S — Ug. pexpand(def,i, i + 1 : high)
) request[l] = {< inside, |, DOWN,level + 1,1 >}
) worklist = worklist + {1}
) else /* RULE 6 */
) if (LEVEL(n) < level) then return
) else
) calculates the summary, K, of interval T(n)
) if (S — Kn # ¢) then
) for all m € pred(n)
) Let n be m’s jth child
) request[m] = request[m] +
) {< S - Kn,mUP,level,j >}
) worklist = worklist + m
) if (SN Ky # ¢) then
) request[n] = request[n] +
) {<SNnKpn,n, DOWN,level, -1 >}
) worklist = worklist + {n}
) else /* regular node, RULE 5 */
) if all m’s successors place a request then
) Let Sy, ..., S; be the SCD in the request
) S=5nNS5..NS;
) if (S — killy # ¢) then
) for all m € pred(n)
) Let n be m’s jth child
) request[m] = request[m] +
) {< S = killn, m, DOWN, level, j >}
) worklist = worklist + {m}
) else
) if there is a request that can be propagated
) insert m back into the worklist

Figure 5: Downward request propagation algorithms

The propagation is initiated by the request
request(<<  w,(%,J),< (2 % j,t + 1),(¢,5) >>
,19,UP,3,—1 >) at node 19. By rule 0, the re-
quest propagates to node 18 as request(<< w, (i, j), <
(2% g,i+1),(d,5) >>,18,UP,3,1 >). Since node
18 is a header node in the lower level than the re-
quest (LEVEL(18) = 2,level = 3), rule 3 is ap-
plied and it generates request(<< w,(i,1 : 200),<
(24,14 1),(¢,5) >>,17,UP,2,1 >) at node 17.
Note that since there is no kill of w in interval {19},
no downward propagation is generated. By apply-
ing rule 1 at node 17, request(<< w,(¢,1 : 200),<
(2% 4,1+ 1),(¢,5) >>,16,UP,2,1 >) will be prop-
agated to node 16. Applying rule 3 at node 16,
SCD outside =< w,{(1 : 100,1 : 199),(1,200)}, <
(2% 4,04+ 1),(d,7) >> will be propagated out of
the loops and SCD inside =< w,(2 : 100,200), <
(24,14 1),(i,5) >> will stay inside the loop. The



requests, R1 = request(< outside,9,UP/ 1,1 >),
R2 = request(< outside,14,UP,1,1 >), and R3 =
request(< inside, 16, DOWN, 1, —1 >) are generated.

Request R1 will pass through node 9 with rule 1.
Request R2 will pass through node 14 and node 15
with rule 2. Finally, request(< outside,0,UP,0,1 >)
will reach the ROOT node and the upward prop-
agation completes. Request R3 triggers a down-
ward propagation from node 16. Rule 4 results in
request(<< w, (2 :i+1,200), < (2%j,i+1),(i,5) >>
,20, DOWN,2,1 >) at node 20. Applying rule 5
in node 20 yields request(<< w,(2 : 1,200),< (2 *
Jyt+ 1),(i,5) >>,18, DOWN,2,1 >). Rule 6 will
be used in node 18 and yields request(<< w,(2 :
,200),< (2% g,i 4+ 1),(i,j) >>,17, DOWN,2,1 >).
Since there are no kills in interval 19 and node 17,
request(<< w,(2 : 4,200),< (2 *j,i 4+ 1),(¢,5) >>
, 16, DOW N, 2,1 >) will reach node 16 and the down-

ward propagation terminates.

5 Demand-driven Optimization

In the previous section, we presented a general de-
mand driven algorithm to propagate SCDs through
the interval flow graph. This section presents applica-
tions of the general algorithms for specific communi-
cation optimizations. Two applications, message vec-
torization and redundant communication elimination
are discussed. These optimizations can be achieved
by propagating the SCD through the flow graph.

5.1 Message vectorization

Message vectorization tries to hoist communication
out of a loop body so that instead of sending large
number of small messages inside the loop body, a
smaller number of large messages can be generated
outside the loop body. This optimization can be done
by propagating the SCD for an assignment statement
in backward direction in the flow graph. Since in mes-
sage vectorization, communication is only be hoisted
out of a loop, only upward propagation is necessary.

For the compiler to perform message vectorization
for a statement s, which corresponds to node n in
the interval flow graph, the compiler will calculate
the SCD set, SC'D(n), representing the communica-
tion for the statement, and initiate a propagation with
request(< SCD(n),n,UP,LEVEL(n),—1). Slightly
modified version of rules 0, 1, 2, 3 such that the down-
ward propagation will not be triggered can be used to
propagate the SCD. Besides, the local action on loop
header node will record which communications should
be performed before it. The parts of SCDs that can
be propagated out of the loop (not killed within loop
body) represent the communications that can be vec-
torized. The communications of these parts will be
placed immediately preceding the loop. The commu-
nication of elements that are killed inside loops stay
at the points preceding their references.

As an example, consider vectorizing the commu-
nication of array w in statement s23 in the example
program in Fig. 2. The request request(<< w, (4, j), <
(2% 4,i4+1),(¢,7) >>,19,UP,3,—1>) will be placed
by the compiler.

(s1) doi= 1,100

Ci: (< a,(2),< (5,1),(¢ = 1,1) >>,¢ = 1..100)
(s2) b(i-1) = a(i)...
(s3) a(i4+2) = ...

Cy: (<a,(t4+1),< (¢4 1,1),(:,1) >>,7 = 1..100)
(s4) b(i) = a(i+1) ...
(s5) doj =1, 100

Cs: (K w,(4,7), < (2%5,1+1),(5,5) >>,
i=1.100, j = 1..100)

) x(i,j) = w (i,])
) end do
) end do
) if (...) then
0) doi=1,100
1) do j = 50, 100

Cy : (< wv(ivj)1< (2*]7Z+1)7

(- 1,2%i42%]3) >>,

i =1..100,j = 50..100)
(s12) x(i4j-1, 2*142%-3) = w (1, j)

Cy: (K w,(3,7), < (2%4,i4+1),(5,5) >>,
i =1..100,j = 50..100)

(13) 3 = Wi i)
(s14) end do
(s15) end do
(s16) doi =1, 100
Co : (< z,(i+1,150),< (i +1,150), (i,150) >>,
i =1..100)
(s17) (i, 150) = x(i+1, 150)
(s18) end do
(s19) endif
(s20) doi= 1,100
(s21) b(i) =
(s22) doj =1, 200
Cr: (< (+1,7),< (i4+1,7),(7) >>,
i =1..100,7 = 1..200)
Cs 1 (< w,(4,7), < (2%5,1+1),(5,5) >>,
i =1..100,7 = 1..200)
(s23) z(i, j) = x(i4+1, j)* w(i, ,j)
(s24) end do
(s25)  w(i+1, 200) = ...
(s26) end do

Figure 6: Communication before message vectoriza-
tion

As discussed in the example in section 4.4, com-
munication < w, {(1 : 100,1 : 199),(1,200)}, < (2 *
Jyi+1),(i,4) >> can be propagated out of the outer-
most loop (s20 — $26) while communication < w, (2 :
100,200), < (2 * j, i+ 1), (¢,4) >> can be propagated
out of the inner loop (s22 — s24). Hence, the commu-
nication for array w in statement s23 can be vector-
ized by placing the communication < w, {(1 : 100, 1 :
199),(1,200)}, < (2 * 4,7+ 1), (4,J) >> before state-
ment s20 and communication < w, (2 : 100,200), <
(2% 37,1+ 1),(4,7) >> before statement s22. Consider
vectorizing the communication for array a in state-
ment s4. By applying rule 0 in node 5, rule 1 in
nodes 3 and 4, request(< a, (i+1), < (i+1,1),(¢,1) >
,2,UP,2,1 > can reach node 2. Applying rule 3, com-
munication < a,(2 : 2),< (i 4+ 1,1),(,1) >> can
be propagated out of the loop and communication
< a,(3:101),< (i+1,1),(:,1) >> must stay in the



loop. Hence, only the communication for a(2) can be
hoisted out of the loop and put before statement sl
while all other communication must be placed before
s4. Fig. 6 shows the communications in the program
in Fig. 2. Fig. 7 shows the communications after vec-
torization. We use SCD with quantifier of the index
range to represent the communications. For example,
Cy: (< a,(i),< (3,1),(i —1,1) >>,i = 1..100) de-
notes the communication < a, (i), < (¢, 1), (i—1,1) >>
will be performed in iteration 1 to 100. C% : (<
w, (1 : 100,50 : 100),< (2 j4,i 4+ 1),(4,5) >>) de-
notes that communication < w, (1 : 100,50 : 100), <
(27,44 1),(¢,5) >> will be performed once at the
point.

Cl:(<a,(1:2),<(5,1),(:—1,1) >>)
C:(<a,(2:2),<(i+1,1),(:,1) >>)
C1: (< w,(1:100,1:100),< (2* 5,14 1),(4,7) >>)
(s1) doi=1,100
C%: (< a,(),< (s1),(1=1,1) >>,7 = 3..100)
(s2)  b(i-1) = a(i)..
(s3) a(i4+2) = ...
C2: (<a,(i+1),<(:+1,1),(:1) >, = 2..100)
(s4)  b(i) = a(i+1) ...
(s5) doj =1, 100
(6)  x(i,i)=w (i,J)
(s7) end do
(s8) end do
(s9) if (...) then
C} ¢ (< w,(1:100,50 :100), < (2 * 37,7+ 1),
(F4+7—1,2%x542%7—3)>>)
Cl: (< w,(1:100,50:100),< (2*3,7+ 1), (5,5) >>)

(s10) doi=1,100
(s11) do j = 50, 100
(s12) x(i+j-1, 2¥142%j-3) = w (i, j)
(13)  y(i,3) = wiJ)
(s14) end do
(s15) end do
Cl: (< a,(2:101,150),< (i + 1,150), (i, 150) >>)

(s16) doi=1,100
(s17) y(i, 150) = x(i+1, 150)
(s18) end do
(s19) endif
Cl: (<, (2:101,1:200),< (i +1,5),(5,5) >>)
Ct : (< w,{(1:100,1 : 199),(1,200)},
< (24,5 +1),(4,7) >>,
(s20) doi=1, 100
(s21)  b(i) = ...
C7 ¢ (< w,(§,200),< (2% 4,5+ 1),(:,5) >>,
i =2..100)
(s22) doj=1,200
(s23) z(i, j) = x(i+1, )* w(i, ,j)
(s24) end do
(s25)  w(i+1, 200) = ...
(s26) end do

Figure 7: Communication after message vectorization

5.2 Redundancy elimination

After message vectorization, communications can
be further optimized by redundant communication
elimination. Redundant communication elimination
can also be done by propagating the SCDs. Two dif-
ferent schemes can be used for this optimization. One
propagates the communication to be eliminated to find
the communication that can subsume it and the other
one propagates communication to identify other com-
munications subsumed by it. All the communications
are represented by SCDs. These two schemes use sim-
ilar propagation method, so we only consider the sec-
ond method in the remainder of this section.

For the compiler trying to find all the communi-
cations that can be subsumed by the communication
S at node n, the compiler initiates a propagation
with request(< S,n,UP,LEVEL(n),—1). During
the propagation, when ever a communication C' that is
a subset of S is found, the communication C' is marked
as redundant. The propagation stops when S is killed
or ROOT node is reached. The propagation follows
the rules discussed at section 4. However, downward
propagation into the nested loops that is triggered by
rule 6 is not needed. The local action at each node
will place the communication for the elements that
are killed in the node immediately following the node.
Local action at a branch node may also place com-
munications at its successors when two different SCD
set are propagated to the branch node. For example,
let a branch node X has two successors, Y and 7,
and Y places request(< Si, X,UP,level,1 >) and Z
places request(< Sa, X, UP,level,2 >), the local ac-
tion at node X will place communication S; —S1 NS,
at node Y and communication Sy —S; NSy at node Z.
Note that the redundant communication elimination
can be carried out together with the message vector-
ization phase.

For example, propagating communication C? be-
fore s20 in Fig. 7 will trigger request into two branchs
of the if statement (s9). In the then branch, C% will
be killed in statement s10 and will subsume commu-
nication C%, while the else branch can pass commu-
nication C? to s9. The action in node s9 will keep C?
at the else branch. Note that the node in the interval
flow graph that corresponds to the else branch is cre-
ated by the edge splitting transformation. Propagat-
ing the communication CZ in Fig. 7 causes the commu-
nication after statement S3 to be placed one iteration
earlier and it completely subsumes the communication
C?. The communication C§ before statement s20 in
Fig. 7 can be propagated to the root node. Along the
way, it subsumes the communication C3 before s1 and
C# before s10. The communications after propagating
communication C2, C% and C} for redundant commu-
nication elimination in the program in Fig. 7 is shown

in Fig. 8.



6 Conclusion

Data flow analysis provides precise information for
communication optimization. However, it suffers from
efficiency problem due to the complexity of the infor-
mation required by communication optimizations. In
this paper, we proposed using demand driven data
flow analysis for communication optimization. Our
approach has the advantage of no over—analysis and
manageable cost. A generic algorithm is presented
and applications of the algorithm on communication
optimizations are discussed. We are currently imple-

menting these algorithms.

Cl:(<a,(1:2),<(s1),(z=1,1) >>)
Cl:(<a,(2:2),<(i+1,1),(:,1) >>)
Cy ¢ (< w,(1:100,1 :199),(1,200),
<(2%4,i+1),(2,5) >>)

(s1) doi=1,100

(s2)  b(i-1) = a(i)...

(s3) a(i4+2) = ...

C2: (<a,(i+2),<(f+1,1),(51) >,i=1.99)
(s4)  b(i) = a(i+1) ...
(s5) doj =1, 100
(6)  x(i,3)=w(iJ)
(s7) end do
(s8) end do
(s9) if (...) then
C} ¢ (< w,(1:100,50 :100), < (2* 7,7 + 1),
(F4+7—1,2%xi42%7—3)>>)
(s10) doi=1,100
(s11) do j = 50, 100
(s12) x(i+j-1, 2%i+2%-3) = w (i, j)
(s13) y(i,3) = w(i, )
(s14) end do
(s15) end do
Cl: (<, (2:101,1:200),< (i +1,5),(5,5) >>)

(s16) doi=1, 100
(s17) v(i, 150) = x(i+1, 150)
(s18) end do
(s18) else
Cl: (< &, (2:101,1:200),< (i+1,7), (i,4) >>)
(s19) endif
(s20) doi=1, 100
(s21) b)) = ...
(s22) doj =1, 200
(s23) z(i, i) = x(i+1, §)* w(i, j)
(s24) end do
(s25)  w(i+1, 200) = ...
Cf (< w, (i +1,200),< (2% 5,0 + 1), (4,4) >>,
i=1..99)
(s26) end do

Figure 8: Communication after redundant communi-

cation elimination
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