A Load Balancing Package for Domain
Decomposition
on Distributed Memory Systems *

X. Yuan'!, B. He!, D. Balsara? and R. Melhem!

! Department of Computer Science, The Univ. of Pittsburgh, Pittsburgh, PA 15260.
2 The Nat. Center for Supercomputing Applications, The Univ. of Illinois at
Urbana-Champain, Champaign, IL 61820.

Abstract. We present a tool for balanced decomposition of spatial do-
mains. In addition to applying a nested bisection algorithm to determine
the boundaries of each subdomain, the tool replicates a user specified
zone along the boundaries of the subdomain in order to minimize fu-
ture interactions between subdomains. Results of running the tool on
the Cray T3D system, as well as using it in the implementation of a
parallel Particle-particle/Particle-Mesh code are reported and discussed.

1 Introduction

A wide range of scientific applications suffer from load imbalances and excessive
interprocessor communications when they are ported for execution on massively
parallel processing systems. In this paper, we will introduce a dynamic load
balancing package, Bisect, which we developed on the CRAY T3D system and
which has been ported to the IBM SP-2 and to workstation clusters using MPI
primitives. The package uses the nested bisection method to achieve dynamic
load balancing for applications in which computations are non-uniformly dis-
tributed over some physical domain [3]. Specifically, given N objects, each being
associated with a position in a physical domain, the domain is decomposed into
disjoint subdomains, and each subdomain, along with the objects it contains, is
mapped to a different processor. The goal is to choose a decomposition that will
balance the computation among the processors in the system.

In addition to the load balancing feature, the Bisect package also adopts a
technique called domain extension to optimize the communication in applications
which exhibit local spatial dependencies. In such applications, the computation
associated with an object, not only depends on the attributes of that object,
but also on the attributes of the objects that are spatially close to it. Bisect has
the capability of extending the subdomain assigned to each processor to con-
tain those objects which are not in that subdomain, but affect the computation
associated with it. These objects are called ghost objects.

* This work is in part supported by an NSF Grand Challenge grant ASC-9318185

The nested bisection technique and the domain extension technique are com-
bined seamlessly in the Bisect package to achieve good performance. This pack-
age can be used for a large class of scientific applications which exhibit the spa-
trally dependent fine-grained parallelism. Examples include Molecular Dynamics
and N-body simulations [4, 5], Finite Elements and Finite Difference methods on
irregular grids, Algebraic Multigrid computations, and particle-particle/particle-
mesh (P3M) methods [1, 4].

2 Nested Bisection with Domain Extension

The Bisect package assumes that, initially, each processor in a p processor dis-
tributed memory system has n = % objects distributed over a physical domain.
Each object has a number of data attributes and is associated with a weight
which may be set to reflect the amount of computation needed to process that
object.

The nested bisection algorithm [2] is incorporated in the Bisect package to
redistribute the objects among the processors such that: 1) each processor is
assigned objects that fall in a rectangular 3-dimensional subdomain, and 2) the
sum of the weights of the objects assigned to each processor is almost uniform
among the processors. In each iteration of the bisection algorithm, the domain
is decomposed into two subdomains so that the difference between the sums
of the weights on either subdomain is as small as possible. Then, the same
process is applied on the two subdomains in parallel and this process is repeated
log p times. The following lemmas establish some bounds on the performance of
parallel bisection when all objects have equal weights.

Lemmal. If S, is the execution time for a p processor nested bisection algo-
rithm, then the speedup of the algorithm is bounded by 5—2 = (E%), here we
P

assume p is a power of two.

Lemma 2. The mazimum memory requirement for the nested bisection algo-
rithm in each processor is O(n./p).

To address the interprocessor communication problem, a domain extension
technique is used in Bisect. In domain extension, each processor gets not only the
“real objects” which are in the domain assigned to it, but also the “ghost objects”
which are not in that domain but contribute to the computations performed
on the “real objects”. In other words, each processor gets objects in its own
domain and copies of the objects that are surrounding the domain, within a
user specified distance. This way, all the information needed to complete the
computation in a processor is stored locally. Once the objects are redistributed
by Bisect, no further communication is needed during the computation. The
following lemma characterizes the memory requirement for the nested bisection
with domain extension.

Lemma 3. The mazimum memory requirement for the nested bisection algo-
rithm with domain extension in each processor is O(np).

By incorporating the domain extension into the nested bisection, the package
is able to achieve both load balancing and optimization of the communication in
the application. Our experimental results on both randomly generated objects
and heavily clustered objects show that Bisect is a very efficient package both
in terms of execution time and the effect on load balancing.

3 The Bisect Package

Although the main idea in Bisect is to redistribute the objects so that the com-
putational load is balanced in each processor and to obtain the extended domain,
Bisect provides many features that give the user maximum flexibility. Specifi-
cally, besides specifying the domain and the problem size in terms of the number
of objects and the number of attributes for each object, the user may specify the
following:

— A bin size to indicate the accuracy of the load balancing algorithm, as de-
scribed later,

— A choice among the following load balancing criteria: 1) balance on the
domain size. The resulting subdomains will have the same sizes. 2) balance
on the number of objects. The resulting subdomains will have almost the
same number of objects. 3) balance on the weights. The sum of weights in
the resulting subdomains will be almost the same.

— The size by which each subdomain is to be extended.

— A choice of periodic and non-periodic boundary conditions for extending the
exterior boundaries of the subdomains.

— The sequence of dimensions that are to be bisected, or a default automatic bi-
section. The automatic bisection results in the domain being bisected in each
dimension in a round-robin manner. If the user has some specific knowledge
of object distribution, (s)he can manage the bisected dimensions to achieve
the best load balancing results.

Assume that, before the i** iteration of Bisect, 1 < i < log p, the objects in a
given subdomain are distributed among processors Py, ..., P, where k = 5.
The process to carry out a bisection along a specific dimension with domain

extension is divided into three parts:

1) Determining the bisection line using Bin Sorting: A parallel sorting
algorithm is needed for this task. While an exact sorting along the dimension to
be bisected can find the optimum bisection line, it introduces a high overhead
of (O(N lg(N))) for sorting and counting. For efficiency considerations, we use a
parallel bin sorting algorithm, where, the dimension to be bisected is divided into
a certain number of bins (slices). Each processor sums the weights of its local
objects that belong to each bin, and a global sum algorithm is used to obtain
the total weight of the objects in each bin. This information is then used by
each processor to determine the bisection line along a bin boundary. Note that
the bin sorting algorithm is linear in the number of objects, and logarithmic

in the number of processors (for the sum), which greatly reduces the sorting
overhead. However, bin sorting restricts the cut line to be along bin boundaries
and therefore, some load imbalance may be introduced. Thus, larger bin numbers
result in larger runtime overhead and more balanced load.

In some scientific applications, the distribution of objects is extremely non-
uniform. For these applications, the load imbalance incurred by the bin sort
may cause some processors to get a null subdomain. This may cause runtime
errors in the original application, since application programs generally assume
non-null physical domains. Precaution is taken to prevent this situation; because
the number of bisections along each dimension is known, Bisect can guarantee
that each processor gets at least one bin size domain.

2) Particle handling: Once the bisection line is decided, each processor de-
termines how to handle each of the objects it has, such that the objects in one
of the two resulting subdomains are in processors P, .. .,P% and the objects
in the other subdomain are in processors P§+1’ ..., Pp. Specifically, a processor
P;, examines each of its “real objects”, and determines one of the following:
1) to keep the object as a real object, 2) to send the object to processor Pj
as a real object, where Pj = Pj_% or Pj+% depending on whether j < k/2 or
J > k/2, respectively. 3) to keep the object as a real object and send it to Pj as
a ghost object, or 4) to keep the object as a ghost object and send it to P; as a
real object. In other words, when a cut is placed along a dimension, an internal
boundary condition is created. All the objects residing within the user-specified
distance of the boundary are duplicated as real objects in one processor and as
ghost objects in another processor. Similarly, P; examines each of its “ghost ob-
jects” and determines whether it should keep the object, send it to F;, or both.
This way all the objects in the extended domain will be moved to the proper
processors.

Besides the internal boundary conditions, some applications require periodic
or wrap-around boundary condition for the entire problem domain. The objects
in one side of the initial domain will affect the computation of the objects in the
opposite side of the domain. As a result, the objects in the boundary bins of the
initial problem domain must be duplicated.

3) Moving Particles: After the second phase, each processor, P;, packs all
the objects that it should send to F; in a message and sends that message.
From Lemmas 2 and 3, however, we can see that in the worst case, the memory
requirement for Bisect may be quite large. Object rebalancing within each group
before each bisection step will reduce the maximum memory requirements in each

processor from the O(n,/p) specified in Lemma 2 to O(2n).

4 Experimental Results

In this section, we present experimental results for Bisect. We study the per-
formance of Bisect on both uniformly distributed objects and non-uniformly

distributed objects. We also study the effect of the number of bins and the num-
ber of processors on the performance. Here, the performance means both the
runtime of Bisect and its effectiveness to achieve load balancing.

Table 1 shows the performance of Bisect on uniformly-distributed objects.
We use 1000 bins along each dimension with each subdomain extended by one
bin. The program is run on a 32 PE system. The results show that, in all cases,
the load imbalance is less than one percent with regard to the average number of
objects. It also shows that Bisect runs very fast. With 32 Cray T3D processors, it
only takes a fraction of a second to decompose a domain with 1 million objects.

Table 1. Performance of Bisect on uniformly distributed objects

Total no. of objects per PE no. of objects per PE Time
no. of without ghosts with ghosts (sec)
objects | min | max | ave [imb. ratio| min | max | ave |imb ratio
131072 | 4065 | 4126 | 4096 0.7% 4145 | 4213 | 4176 0.9% 0.10
262144 | 8135 | 8246 | 8192 0.7% 8312 | 8420 | 8356 0.8% 0.19
524288 [16238|16514(16384| 0.8% [16575[16855|16712| 0.8% 0.38
1048576(32558(32982(32768| 0.7% |33206(33674|33427| 0.7% 0.74

Table 2. Performance for different number of bins on 524288 uniformly distributed

objects

no. of objects per PE no. of objects per PE Time
Bin # without ghosts with ghosts (sec)
min | max | ave |imb. ratio| min | max | ave |imb ratio
500 [16273[16514|16384| 0.8% [16925|17164|17044| 0.7% 0.39
1000 [16306|16462(|16384| 0.5% |16642|16772|16713| 0.4% 0.39
5000 |16371(16403(16384| 0.1% [16434|16472|16452| 0.1% 0.43
10000 [16378(16392(16384| 0.0% [16404|16435|16420 0.1% 0.47

Tables 2 and 3 show the effect of the number of bins on the performance of
Bisect for uniformly and non-uniformly distributed objects, respectively. Here
we can see the general pattern that larger number of bins leads to better load
balancing. For the uniformly distributed objects, 500 bins in each dimension
achieves good load balancing. The number of bins in each dimension especially
affects the performance of Bisect for the nonuniformly distributed objects. With
500 bins in each dimension, load balancing after Bisect is poor. However, when
the number of bins is larger than 1000, the load balancing is good. It is in-

Table 3. Performance for different number of bins on 512000 non-uniformly distributed
objects

no. of objects per PE no. of objects per PE Time
Bin # without ghosts with ghosts (sec)
min | max | ave [imb. ratio| min | max | ave |imb ratio
500 [11263(21926{16000| 37.0% |17483|53098(33352| 59.2% |0.73
1000 (12904|18213|16000| 13.8% |17084(32639|23913| 36.5% |0.49
5000 [15585(16425(16000 2.7% [16177|18678|17442| 7.1% 0.59
10000 [15686|16196(16000| 1.2% [16147(17353|16717| 3.8% 0.89

teresting to see that the number of bins has a minor effect on the runtime of
Bisect. Therefore, using large numbers of bins to achieve better load balancing
is recommended for application programs that invoke Bisect.

Table 4 shows the performance of Bisect on different number of processors
assuming 512K objects, 1000 bins along each dimension and a 1 bin extension
domain. The second column and the third column show that the imbalance ratio
increases with the increase in the number of PEs. The fifth column shows the
speedup over two-processor execution time. The sixth column lists the theoretical
upper bound of the algorithm which results from Lemma 1. The last column
shows the percentage of actual speedup to the upper bound. The results show
that, up to 128 processors, Bisect achieves 87.4 percent of the achievable speedup.

Table 4. Performance for different number of processors on 524288 uniformly dis-
tributed objects

PE #| imb. ratio imb. ratio |time | actual |speedup upper| speedup
without ghosts|with ghosts|(sec) |speedup bound(“l’m) percentage

2 0.0% 0.0% 1.158 1 1 100.0%

4 0.1% 0.1% 1.163| 0.996 1 99.6%

8 0.2% 0.2% 0.880(1.316 1.333 98.7%
16 0.6% 0.6% 0.593| 1.953 2 97.6%
32 0.8% 0.8% 0.377| 3.072 3.2 96.0%
64 1.0% 1.2% 0.234| 4.949 5.333 92.8%
128 1.5% 1.6% 0.145| 7.986 9.142 87.4%

5 Application to a Particle-Particle/Particle-Mesh
Simulation

Bisect was used in a Particle-Particle/Particle-Mesh (P?M) program that was
written to study galaxy formation. The fundamental computational problem in
particle based study of galaxy formation is to evaluate the forces at each timestep
and advance the system in time. There is a close similarity between this problem
and problems in plasma physics. The program is based on the algorithm given
in Hockney and Eastwood [4] though other algorithms like the one in Balsara
and Brandt [1] would also benefit from the strategies developed here. Thus the
utility of Bisect extends to almost all forms of plasma physics simulations.

The P3M algorithm evaluates the gravitational force on a system of self-
gravitating particles. It does this by splitting the force into two parts, a long
range force and a short range force. The long range force evaluation is an accurate
representation of the force contribution to a given particle from all particles that
are farther than a certain distance (known as the cut off distance) from it. It
is obtained by making a triangular shaped charge (TSC) interpolation of the
particle’s mass on to a grid. A fast Fourier transform step yields the potential
on the grid. The forces evaluated from this potential are then interpolated back
to the particles. Because of the fact that a mesh was used by the particles this
step of evaluating the long range forces is also known as a particle mesh (PM)
step. Because of the interpolations involved in the PM step the force exerted on
a particle from other particles that are within a cut off distance from it is not
fully represented. Thus an extra step has to be put in to supply the remaining
force contribution. This is the short range force and because it operates between
two particles this step is known as the particle-particle (PP) step.

It is important to realize that in order to balance the load, the PM step
needs a mapping of particles onto processors that is reasonably consistent with
the underlying distribution of the mesh. Likewise, in order to balance the load,
the PP step needs a mapping of particles onto processors that balances the local
work done by the particles. Thus in each case we need a spatially dependent load
balancing algorithm which is exactly what Bisect is. Moreover, the capability of
Bisect to provide ghost particles to each processor minimizes the communication
that is needed in the PM step and eliminates communication totally in PP steps.

In Figure 1, we present the results of executing the P3M program on a
cubic domain containing 262144 particles on the T3D using 16, 32, 64 and 128
processors. The figure shows the speedup obtained when Bisect is used to balance
the number of particles in each subdomain, as opposed to producing equal size
domains (spatially uniform partitions). The speedup for the PP and the PM
parts are shown separately. In general, however, the execution time of the PP
part is much larger than the PM part. For example, with 32 processors, the PP
part in each iteration took about 27 seconds to complete, while the PM part
in each iteration took about 3 seconds to complete. The time to execute Bisect
was about 0.7 seconds. These execution times as well as the curves in Figure
1, highly depend on the number of particles and their initial distribution in the
problem domain. A complete analysis of the effect of Bisect on balancing the

Speedup

ratio — M
3.0r = = o " pp
2.0+ B m P o
1.0

16 32 64 128 processor number

Fig. 1. The effect of load balancing on the execution of P?M

computation load and reducing the communication load of P3M is outside the
scope of this paper.

6 Conclusion

Bisect is a powerful tool for domain decomposition on parallel systems. In addi-
tion to balancing the load in each subdomain, Bisect may augment each subdo-
main with copies of the objects it will need from other subdomains, thus reducing
the communication overhead that may be needed for interaction on subdomain
boundaries. From experimental data, we can see that the effectiveness of Bisect
for balancing the load increases with the number of objects in the system. That
is, Bisect is most effective when it is most needed. Moreover, by changing the
number of bins in each direction, one can reach a compromise between the load
balance achieved and the cost of achieving the load balance (the time to execute
Bisect). In general, however, the cost of running Bisect is small relative to the
gain obtained from balancing the load.

References

1. Balsara, D.S. and Brandt, A., “Multilevel Methods for Fast Solution of N-Body
and Hybrid Systems”, Int. Ser. Num. Math, 98, 131. 1991.

2. Bokhari, S.H., “Assignment problems in Parallel and Distributed Computing”,
Kluwer Academic Publishers, 1981.

3. Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and Walker, D. “Solving
Problems on Concurrent Processors”. Prentice-Hall, 1988.

4. R.W.Hockney and J.W. Eastwood, “Computer Simulation Using Particles.” New
York: Mcgraw Hill International, 1981.

5. Warren, M.S. and Salmon, J.K “A Parallel Hashed Oct-tree N-body Algorithm”.
In Supercomputing 93, PP. 12-21, 1993.

This article was processed using the INTpX macro package with LLNCS style

