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Abstract—Folded-Clos networks, also referred to as fat-trees,
have been widely used as interconnects in large scale high
performance computing clusters. The switching capability of
such interconnects in computer communication environments,
however, is not well understood. In particular, the concept
of nonblocking interconnects, which is often used by system
vendors, has only been studied in the telephone communication
environment with the assumption of a centralized controller.
Such “nonblocking”networks do not support nonblocking com-
munications in computer communication environments where the
network control is distributed. This paper theoretically analyzes
the conditions for folded-Clos networks to achieve nonblocking
communications in computer communication environments with
various routing schemes including deterministic routing and
adaptive routing, and establishes nonblocking conditions.

Keywords-Clos Networks; fat-tree; nonblocking; computer
communications;

I. INTRODUCTION

Clos networks and their variations such as folded-Clos (also
referred to as fat-trees) have been widely used for multipro-
cessor interconnects and system area networks. Almost all
large scale commodity high performance computing clusters
are interconnected with such topologies.

A three-stage Clos network has the input stage, the middle
stage, and the output stage. The input stage consists of n×m
switches; the middle stage consists of r× r switches; and the
output stage consists of m × n switches. There are r input
switches, r output switches, and m middle switches with each
of the input and output switches having a link connecting to
each of the middle switches. Fig. 1 (a) depicts a three-stage
Clos network. We will use the notion Clos(n, m, r) to denote
the Clos network with parameters n, m, and r. Notice that the
links in Clos(n, m, r) are uni-directional. A folded-Clos (fat-
tree) network is the one-sided version of the Clos network: it
basically merges the corresponding input and output switches
into one switch. Fig. 1 (b) shows a folded-Clos (fat-tree)
network. Each edge in a folded-Clos network consists of two
directed links; lower level switches are (n + m) × (n + m)
switches; and top level switches are r × r switches. We will
use the notion ftree(n, m, r) to denote such a fat-tree, which
is logically equivalent to Clos(n, m, r).

The switching capability of ftree(n, m, r) (or
Clos(n, m, r)) is determined by the parameters n, m,
and r. The study of such networks has focused on finding
the most cost-effective values for n, m, and r to achieve
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Fig. 1. Clos and folded-Clos networks

nonblocking communication, that is, the ability to establish a
connection from an arbitrary input port to an arbitrary output
port without causing contention. A nonblocking network can
provide connectivity for any permutation communication,
which consists connections from arbitrary input ports to
arbitrary output ports with the restriction that each input or
output port can be used at most once in the communication.
The most important results in this area are summarized in
various nonblocking conditions for Clos networks including
strictly nonblocking [2], wide-sense nonblocking [4], [16], and
rearrangeably nonblocking [3]. Although these nonblocking
conditions results are significant, all of them were obtained
with the assumption that a centralized controller is used to
manage all network resources, which renders the results not
applicable to computer communications where the network
control is distributed.

When used in computing clusters, folded-Clos based in-
terconnects are often treated as the replacement of central
crossbar switches that support any permutation communication
with full bisection bandwidth [7]. Although many folded-Clos
based interconnects for clusters are “nonblocking” (strictly,
wide sense, or rearrangeably) in theory, the delivered perfor-
mance is far-from that of crossbar switches [5], [7]. Without
the centralized controller that takes all connection requests and
manages all network resources, even a strictly nonblocking
network can still block a permutation communication.

We define a nonblocking folded-Clos network in the com-
puter communication environment to be one that, with dis-



tributed control, can support any permutation communication
without network contention. Using this definition, if a folded-
Clos based interconnect is nonblocking, it can support any
permutation communication with no contention and can thus
achieve full bisection bandwidth for any permutation commu-
nication: such an interconnect behaves like a crossbar switch.

The understanding of folded-Clos based interconnects in
computer communication environments is insufficient: tech-
niques for building truly nonblocking folded-Clos intercon-
nects in computer communication environments have not been
developed; it is unclear what the cost of such interconnects
will be. Through theoretical analysis, this paper gives an-
swers to these important questions. We investigate folded-
Clos networks that are nonblocking in computer communi-
cation environments, develop techniques for building such
networks, and establish nonblocking conditions for folded-
Clos networks with distributed control under various routing
schemes including deterministic routing and adaptive routing.
The major results include the following, which can be used in
feasibility analysis for building nonblocking folded-Clos based
interconnects under other constraints, and directly applied to
build such interconnects.

• With single-path deterministic routing, it is not cost-
effective to build nonblocking ftree(n, m, r) with r ≤
2n+1. Using relatively small top level switches to build
nonblocking ftree(n, m, r) is not effective.

• With single-path deterministic routing, when r ≥ 2n+1,
the nonblocking condition for ftree(n, m, r) is m ≥
n2. Using single-path deterministic routing, O(N

√
N)-

port nonblocking interconnects can be constructed using
O(N) N -port switches. Commonly used multi-path de-
terministic routing schemes have the same nonblocking
condition as single-path routing.

• With local adaptive routing where routes may adapt based
on the information local to each switch, when r ≤ nc,
where c is a constant, there exists a function f(n) =

O(n2− 1
2(c+1) ) such that the nonblocking condition for

ftree(n, m, r) is m ≥ f(n). Local adaptive routing
allows using a smaller number of top level switches to
achieve nonblocking communication in comparison to
deterministic routing.

The rest of the paper is structured as follows. Section II
discusses the related work. Section III describes the back-
ground and notations used in the paper. Section IV considers
deterministic routing, derives the nonblocking condition, and
presents the routing scheme for nonblocking ftree(n, m, r)
with single-path deterministic routing. Section V considers
adaptive routing and shows that local adaptive routing im-
proves the nonblocking condition over deterministic routing.
Finally, Section VI concludes the paper.

II. RELATED WORK

The switching capability of Clos networks in the context
of switching telephone traffics has been extensively studied.
Various nonblocking conditions have been established. A Clos
network is strictly nonblocking if it is always possible to

set up a connecting path from an idle input port to an idle
output port independent of the existing connections and the
path search algorithm. Clos showed [2] that Clos(n, m, r) is
strictly nonblocking if the number of middle stage switches
m ≥ 2n− 1. A network is wide-sense nonblocking when it is
always possible to set up a path from an idle input port to an
idle output by suitably choosing routes for new connections.
The conditions for a network to be wide-sense nonblocking
depend on the routing algorithm; some results are obtained
by Benes [4] and Yang [16]. A network is rearrangeably
nonblocking if a new connection from an idle input port to an
idle output port can always be established by rearranging the
paths for existing connections. Benes [3] showed that a Clos
network is rearrangeably nonblocking if m ≥ n. All these
results assume a centralized controller and cannot be directly
applied to computer networks with distributed control.

After Leiserson introduced the fat-tree topology to computer
networks [10], [11], the topology has become popular and
extensive research has been performed on this topology. The
topology has been greatly extended [13], [14]. Since tradi-
tional nonblocking networks are blocking in the computer
communication environment, most studies have focused on
understanding the performance of such networks by analyzing
the blocking probability [6], [9], [15], or developing tech-
niques to reduce the blocking probability [1], [6], [9], [15],
[17]. Various routing techniques including randomized routing
[6], [15], multi-path routing [1], [17], and adaptive routing
[9], have been proposed to minimize the blocking probability.
Even with all these improvements, recent studies still show
that the contemporary fat-tree based interconnects offer much
lower performance than crossbar switches [5], [7]. This paper
investigates the conditions for folded-Clos networks to be
nonblocking in computer communication environments, which
differs from all existing work in the area.

III. BACKGROUND AND NOTATIONS

This paper focuses on ftree(n, m, r)’s that are nonblock-
ing in computer communication environments. An example
ftree(n, m, r) is shown in Fig. 1 (b). There are two layers
of switches and one layer of leaf nodes in the topology.
The leaf nodes are communication sources and destinations.
ftree(n, m, r) has r bottom level n, m-port switches and m
top level r-port switches. It supports r × n leaf nodes. Each
edge in the topology consists of two directed links. The links
from leaf nodes to bottom level switches and from bottom level
switches to top level switches are uplinks. The links from top
level switches to bottom level switches and from bottom level
switches to leaf nodes are downlinks. As shown in Fig. 1 (b),
we number the m top level switches from 0 to m − 1, the
r bottom level switches from 0 to r − 1, and the r × n leaf
nodes from 0 to r×n−1. Other numbering schemes will also
be used in the paper. They will be introduced before they are
used.

Let us denote (s, d) a source-destination (SD) pair with
source node s to destination node d. SRC(s, d) is the switch
that s is in and DST (s, d) is the switch d is in. We say



that SRC(s, d) is the source switch of (s, d) and that (s, d)
starts from SRC(s, d). Similarly, DST (s, d) is the destination
switch of (s, d) and (s, d) ends at DST (s, d). We will use
the phrase SD pairs from the same switch to denote SD pairs
whose sources are in the same switch, SD pairs from different
switches to denote SD pairs whose sources are in different
switches, SD pairs to the same switch to denote SD pairs
whose destinations are in the same switch, and SD pairs
to different switches to denote SD pairs whose destinations
are in different switches. A communication pattern can be
represented by a set of SD pairs.
Definition 1: A permutation communication, or permutation,
is a communication pattern where each leaf node can be the
source in at most one SD pair and the destination in at most
one SD pair in the communication pattern.
Property 1: Let (s1, d1) and (s2, d2) be two SD pairs in a
permutation. s1 6= s2 and d1 6= d2.

This property can be obtained from the definition of per-
mutation. Since ftree(n, m, r) have r × n leaf nodes, a
permutation communication can at most have r×n SD pairs.
When all source nodes and all destination nodes are used in a
permutation, there are exactly r×n SD pairs. A permutation,
however, does not require all leaf nodes to be used.

To support the communication for a SD pair, a path must be
used to carry the traffics for the communication. In computer
communication environments, distributed control is performed
by the routing algorithm, which determines the path for each
packet. We consider several widely used routing algorithms for
folded-Clos networks: single-path deterministic routing, multi-
path deterministic routing, and adaptive routing. In single-path
deterministic routing, one path is used to carry all traffics for
each SD pair and the path for each SD pair is pre-determined.
In (traffic oblivious) multi-path deterministic routing, the traf-
fics for the same SD pair are distributed among multiple pre-
determined paths either in a deterministic or random manner.
For both single path deterministic routing and multi-path
deterministic routing, the paths used are independent of the
traffic pattern. In adaptive routing, different paths can be
used for one SD pair and the path to be used is determined
dynamically based on the traffic condition.

Some adaptive routing algorithms require routes to adapt
based on the whole communication pattern. We call such
algorithms global adaptive routing algorithms since the whole
communication pattern must be considered in order to deter-
mine a path. Global adaptive routing is equivalent to routing
with a centralized controller (so that the whole communication
pattern is known to the routing algorithm); and the nonblock-
ing conditions for such routing schemes on fat-trees have
been established. In this paper, we focus on local adaptive
routing where routes adapt only based on the information that
is available locally to each switch.

With a given routing algorithm, when packets in two SD
pairs in a communication pattern are routed through one
network link, we say that the communication pattern causes
network contention.
Definition 2: A folded-Clos network is nonblocking with

a routing algorithm if any permutation communication can
be supported without network contention using the routing
algorithm on the network.

IV. DETERMINISTIC ROUTING

This section considers nonblocking folded-Clos networks
with deterministic routing. We will first consider single-path
deterministic routing and then discuss multi-path routing.

A. Single-path deterministic routing

In single-path deterministic routing, a path is deterministi-
cally assigned to each SD pair. The following lemma gives the
condition for a folded-Clos network to be nonblocking with
single-path deterministic routing.
Lemma 1: For any single-path deterministic routing,
ftree(n, m, r) is nonblocking if and only if each directed link
carries traffics either from one source or to one destination.
Proof: We will prove the necessary condition by contradiction.
Let a directed link L in ftree(n, m, r) carries traffics from
more than one source and to more than one destination. There
exists at least two SD pairs, (s1, d1) and (s2, d2), s1 6= s2 and
d1 6= d2, whose traffics are routed through L. By Definition
1, the communication pattern that contains only these two
SD pairs ({(s1, d1), (s2, d2)}) is a permutation. Since the
routing is deterministic, there is contention on link L for
this permutation and thus, the network is blocking. Hence, if
ftree(n, m, r) is nonblocking, each link in the network carries
traffics either from one source or one destination.

We will now prove the sufficient condition by contradiction.
Assume that we have a permutation P that can cause network
contention: there exists two SD pairs in P that are routed
through one link. Let the two SD pairs be (s1, d1) and (s2, d2)
and the link be L. Since P is a permutation, we have s1 6= s2

and d1 6= d2 (Property 1). This contradicts to the assumption
that link L only carries traffics either from one source or to one
destination. Hence, if each link in the network carries traffics
either from one source or to one destination, ftree(n, m, r)
is nonblocking. 2

In ftree(n, m, r), each link between a leaf node and a
bottom level switch only connects to one leaf node: the traffics
on such a link is either to that leaf node or from the leaf
node regardless of the routing algorithm. Such a link does not
have contention for any permutation. The links between top
level switches and bottom level switches may have contention.
Since a nonblocking network must support any permutation,
all possible SD pairs must be assigned a path by the routing
algorithm. For SD pair (s, d), where s and d are not in the
same bottom level switch, it must be routed through a top
level switch and use the links between top level switches and
bottom level switches. There are r(r − 1)n2 such SD pairs
for ftree(n, m, r) that must be routed carefully in order to
achieve nonblocking communication.

In deriving the nonblocking condition for single-path de-
terministic routing, we must determine the smallest m such
that all of the r(r − 1)n2 SD pairs can be routed with each
link supporting SD pairs with either the same source or the



same destination. We will use a subgraph of ftree(n, m, r) to
analyze the number of SD pairs that can be routed through one
top level switch. Fig. 2 shows the subgraph, which contains all
lower level switches in ftree(n, m, r), but only one top level
switch. The subgraph is effectively ftree(n + 1, r), a regular
tree topology with the root having r children and each bottom
level switch having n leaf nodes.
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Fig. 2. The subgraph of ftree(n,m, r) (ftree(n + 1, r))

Lemma 2: Consider using the ftree(n + 1, r) topology to
route a subset of all possible SD pairs with source and
destination in different switches. If each link can carry traffics
either from one source or to one destination, then the largest
number of SD pairs that can be routed through the root is at
most r× (r−1) when r ≥ 2n+1, and 2nr when r ≤ 2n+1.
Proof: Let S be a largest set of SD pairs that are routed
through the root switch when all links carry traffics either to
one destination or from one source. To count the number of SD
pairs in S, we partition the SD pairs in S into three types: (1)
the SD pairs whose source switch has 2 or more sources in the
SD pairs in S, (2) the SD pairs whose destination switch has 2
or more destinations in the SD pairs in S, and (3) the SD pairs
whose source switch has one source and whose destination
switch has one destination in the SD pairs in S. Let us denote
the number of type (1) SD pairs in S be NUM1, the number
of type (2) SD pairs be NUM2, the number of type (3) SD
pairs be NUM3, and the total number of SD pairs in S be
NUM .

Let the number of switches that have 2 or more sources in
the SD pairs in S be A; the number of switches that have 2
or more destinations be B. Consider the number of type (1)
SD pairs. Since there are two or more sources in each of such
switches, all these sources in one switch must communicate
with one destination. Otherwise, the link from the switch to
the root will carry SD pairs from more than one source and to
more than one destination. Hence, one switch can contribute
at most n such SD pairs to NUM1 (when all of the leaf nodes
in the switch are sources). Since there are A such switches,
the number of such SD pairs, NUM1, is at most A × n.

NUM1 ≤ A × n.

Similarly,
NUM2 ≤ B × n.

Now, consider the number of type (3) SD pairs, NUM3. Since
there are A switches that cannot be source switches for type
(3) SD pairs, at most r − A switches can be source switches

for such SD pairs. Since each switch can at most have one
destination in type (3) SD pairs, each source can at most
communicate to r − 1 destinations (one destination in each
of the r − 1 switches other than the source switch). Hence,

NUM3 ≤ (r − A) × (r − 1).

Using a similar logic, by excluding switches with 2 or more
destinations, we have

NUM3 ≤ (r − B) × (r − 1).

Combine these two inequations, we obtain

NUM3 ≤ r × (r − 1) − (
A + B

2
)(r − 1).

Therefore, the total number of SD pairs,

NUM≤ NUM1 + NUM2 + NUM3

≤ A × n + B × n + r × (r − 1) − A+B
2 × (r − 1)

= r × (r − 1) + A+B
2 × (2 × n + 1 − r)

When r ≥ 2n + 1, A+B
2 × (2 × n + 1 − r) ≤ 0 and

NUM ≤ r × (r − 1).

When r ≤ 2n+1, A+B
2 × (2×n+1−r) ≥ 0. Since A ≤ r

and B ≤ r,

NUM≤ r × (r − 1) + A+B
2 × (2 × n + 1 − r)

≤ r × (r − 1) + r+r
2 (2 × n + 1 − r)

= 2 × n × r.

2

Theorem 1: when r ≤ 2n+1, the number of ports supported
by a nonblocking ftree(n, m, r) with any single-path deter-
ministic routing is no more than 2(n, m).
Proof: Regardless of the routing algorithm used, a total
of r(r − 1)n2 SD pairs must be routed through top level
switches in ftree(n, m, r). From Lemma 1 and Lemma 2,
when r ≤ 2n + 1, each top level switch can route at most
2 × n × r SD pairs in a nonblocking ftree(n, m, r) for any
single-path deterministic routing scheme. Hence, there are at
least r(r−1)n2

2nr
= (r−1)n

2 top level switches needed; and m ≥
(r−1)n

2 . The number of ports supported by ftree(n, m, r) is
r × n ≤ 2( r−1

2 × n + n) ≤ 2(m + n). 2

Theorem 1 indicates that it is not effective to build non-
blocking folded-Clos networks using relatively small top level
switches. When r ≤ 2n+1, the total number of ports supported
by a nonblocking folded-Clos network is at most twice that
in its bottom level switches. Hence, one should focus on
nonblocking folded-Clos networks with relatively large top
level switches (r ≥ 2n + 1).
Theorem 2: Let ftree(n, m, r) be nonblocking with any
single-path deterministic routing. When r ≥ 2n + 1, m ≥ n2.
Proof: Similar to the proof of Theorem 1, regardless of the
routing algorithm used, r(r − 1)n2 SD pairs must be routed
through top level switches. From Lemma 1 and Lemma 2,
when r ≥ 2n + 1, each top level switch can route at most
r(r − 1) SD pairs in a nonblocking ftree(n, m, r) for any
single-path deterministic routing scheme. Hence, there are at



least r(r−1)n2

r(r−1) = n2 top level switches needed; and m ≥ n2.
2

Theorem 2 gives the lower bound of the number of top level
switches needed to make ftree(n, m, r) nonblocking with
any single-path deterministic routing. The following theorem
establishes that this lower bound can be achieved: the m ≥ n2

nonblocking condition is tight.
Theorem 3: There exists a single-path deterministic routing al-
gorithm for ftree(n, m = n2, r) that supports all permutations
without network contention. In other words, ftree(n, m =
n2, r) is nonblocking using that routing algorithm.
Proof: We will first describe the routing algorithm and then
prove ftree(n, m = n2, r) is nonblocking with the routing
algorithm.

In ftree(n, m = n2, r), there are n2 top level switches.
We will number of n2 top level switches by (i, j), 0 ≤ i ≤
n − 1 and 0 ≤ j ≤ n − 1. There are r bottom level switches
numbered from 0 to r−1. Each bottom level switch v, 0 ≤ v ≤
r − 1, connects to n leaf nodes numbered as (v, k), 0 ≤ k ≤
n − 1. The routing algorithm routes SD pair (s = (v, i), d =
(w, j)), 0 ≤ v 6= w ≤ r− 1 and 0 ≤ i, j ≤ n− 1, through top
level switch (i, j). That is, SD pair (s = (v, i), d = (w, j)) is
routed through path (v, i) → v → (i, j) → w → (w, j). Note
that when v = w, (s = (v, i), d = (v, j)) is routed through
path (v, i) → v → (v, j).

Using this algorithm, each uplink in ftree(n, m = n2, r)
carries traffics from one source. This obviously holds for the
uplinks from leaf nodes to bottom level switches. Consider the
uplink from an arbitrary bottom level switch v to an arbitrary
top level switch (i, j). There are r − 1 SD pairs on this
link: (s = (v, i), d = (0, j)), (s = (v, i), d = (1, j)), ...,
(s = (v, i), d = (v − 1, j)), (s = (v, i), d = (v + 1, j)), ...,
(s = (v, i), d = (r, j)). There is only one source (v, i) for all
the SD pairs. Similarly, each downlink in ftree(n, m = n2, r)
carries traffics to one destination. Consider the downlink from
an arbitrary top level switch (i, j) to an arbitrary bottom level
switch v. There are r−1 SD pairs on this link: (s = (0, i), d =
(v, j)), (s = (1, i), d = (v, j)), ..., (s = (v− 1, i), d = (v, j)),
(s = (v + 1, i), d = (v, j)), ..., (s = (r, i), d = (v, j)).
There is only one destination (v, j) in all the SD pairs. Fig. 3
shows the SD pairs routed through the links between top level
switch (i, j) and bottom level switch v. Hence, the algorithm
routes SD pairs such that each link in ftree(n, m = n2, r)
carries traffics either from at most one source or to at most
one destination. It follows from Lemma 1 that the network is
nonblocking. 2

Discussion

The main application of Clos networks is to build large
(nonblocking) interconnects from smaller switches. Here, we
compare nonblocking folded-Clos networks in computer com-
munication environments with tradition rearrangeably non-
blocking networks in their capability for building larger in-
terconnects.

Consider the case when the same sized switches are used
to build the nonblocking networks. That is, r = m + n. We
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(a) SD pairs in the uplink from switch v to switch (i, j)

(b) SD pairs in the downlink from switch (i, j) to switch v

Fig. 3. SD pairs routed through links between top level switch (i, j) and
bottom level switch v

will use the m-port n-trees (FT (m, n)) [12] as a representative
rearrangeably nonblocking folded-Clos in the comparison. Our
two level nonblocking folded-Clos network, ftree(n, m =
n2, r = n+n2), uses 2n2 +n n2 +n-port switches to support
n3 +n2 nonblocking ports. Let N = n2 +n, our nonblocking
network uses roughly 2N N -port switches to support roughly
N

3
2 nonblocking ports. Traditional FT (N, 2) uses 3N

2 N -port
switches to support N2

2 ports [12].
Table I compares that number of ports and the number of

switches needed for the two types of folded-Clos networks
using practical building blocks: 20-port, 30-port, and 42-
port switches. Our nonblocking networks behave like crossbar
switches while FT (m, n) is not nonblocking in computer
communication environments. It is thus expected that our
nonblocking networks are more expensive to construct. Our
technique allows larger nonblocking folded-Clos networks to
be constructed from smaller switches as shown in Table I,
and is optimal for building such networks with single-path
deterministic routing.

To support larger numbers of ports, the method to build
2-level nonblocking folded-Clos networks can be recursively
applied to build more levels of nonblocking folded-Clos net-
works. For example, to obtain a 3-level nonblocking network,
a 2-level nonblocking network can be used to replace each of
either the top level switches or the bottom level switches in 2-
level networks. Since our nonblocking ftree(n, m, r) supports
all permutations with no contention, it can be shown by induc-

building ftree(n,m = n2, r = n + n2) FT (n + n2, 2)
block # of # of # of # of
size switches ports switches ports

20-port 36 80 30 200
(4 + 42)
30-port 55 150 45 450

(5 + 52)
42-port 88 252 63 884

(6 + 62)

TABLE I
SIZE OF NONBLOCKING ftree(n, m = n2, r = n + n2) AND

FT (n + n2, 2)



tion that the recursively-built larger network will also support
all permutations with no contention and is thus nonblocking.
One question is whether it is more effective to replace bottom
level switches or top level switches with a fat-tree. Theorem
1 gives the answer to this question: it is more beneficial to
have large top level switches. Hence, when building more than
two levels folded-Clos networks, one should replace top level
switches with nonblocking networks. Using this approach, a
three-level nonblocking folded-Clos network built with n+n2-
port switches will resemble ftree(n, m = n2, r = n3 + n2),
with each top level n3 + n2-port switch being realized with a
ftree(n, m = n2, r = n+n2). This nonblocking network has
2n4+3n3+n2 n2+n-port switches and supports n4+n3 ports.
Let N = n + n2. The three-level nonblocking folded-Clos
network uses O(N2) O(N)-port switches to obtain an O(N 2)-
port nonblocking network. As a comparison, FT (N, 3) uses
O(N2) O(N)-port switches to obtain O(N 3)-port fat-trees.

B. Traffic oblivious multi-path deterministic routing

Besides single-path deterministic routing, other routing
schemes such as multi-path routing deterministic routing [12],
[17] have also been developed for folded-Clos networks.
InfiniBand allows multiple paths to be set-up between two end-
points [8]. In multi-path deterministic routing, multiple paths
are established for each source-destination pair; and packets
for one SD pair are distributed among the paths either in
a deterministic or random manner. Single-path deterministic
routing is a form of multi-path deterministic routing. Although
multi-path routing schemes can achieve better load balance in
folded-Clos networks than single-path routing [17], splitting
packets from one SD pairs to multiple paths in a deterministic
or random manner does not improve the nonblocking condi-
tion: under such conditions, the timing for a path to be used
to route a packet in a SD pair is unpredictable (depending on
the packet arrival timing and the routing scheme); to achieve
nonblocking communication for any permutation, Lemma 1
still needs to hold, which leads to the same bound in Theorem
2 (m ≥ n2) for traffic oblivious multi-path deterministic
routing schemes. As will be shown in the next section, when
the routes for a SD pair can be adapted based on the traffic
pattern, the nonblocking condition can be improved.

V. ADAPTIVE ROUTING

As discussed earlier, global adaptive routing where routes
may adapt based on the whole communication pattern is
equivalent to routing with a centralized controller; and the
nonblocking conditions for such schemes have been estab-
lished. In this work, we consider local adaptive routing where
routes may adapt based on the information that is available
locally to each switch. By developing a local adaptive routing
algorithm that uses less than n2 upper level switches (m < n2)
in ftree(n, m, r) to achieve nonblocking communication, we
show that local adaptive routing improves the nonblocking
condition over deterministic routing, which indicates that more
cost-effective nonblocking ftree(n, m, r) can be built with
local adaptive routing.

For ftree(n, m, r), routing adaptivity can only be achieved
in input switches. Once a packet reaches the top level switch,
there is only one path to each destination and no adaptivity
is possible. Hence, we will focus on local adaptive routing
algorithms where the routes adapt only based on the local traf-
fic pattern in each input switch. Our proposed local adaptive
routing algorithm has the following properties.

• For a given communication pattern, the algorithm assigns
one path to carry all traffics for one SD pair. Routing
adaptivity is reflected in the fact that the paths for the
same SD pair in different patterns may be different.

• For a given communication pattern, the path for a SD pair
is determined based on the SD pairs in the communication
pattern whose sources are in the same switch (adapt based
on local information). SD pairs from different switches
are routed independently.

By routing SD pairs from different switches independently,
local adaptive routing algorithms with the above two proper-
ties, including our proposed routing algorithm, can be realized
in a distributed manner by implementing the routing logic in
each of the input switches, which have the information of all
SD pairs from the switches. In the distributed implementation,
the algorithm does not require global information to be shared
among different switches. Each input switch adapts based on
its local traffic pattern. Routing and traffic patterns in other
switches do not affect the routing decision. Note that the terms
SD pairs from different switches and SD pairs from the same
switches are defined in Section III.

In the rest of the paper, the term local adaptive routing
algorithm will refer to local adaptive routing algorithms with
these two properties. The following lemma defines a class of
local adaptive routing algorithms that are the building blocks
of our proposed scheme.
Lemma 3: Let (s1, d1) and (s2, d2) be two arbitrary SD pairs
in a communication pattern where d1 6= d2 are in the same
switch. If a local adaptive routing algorithm for ftree(n, m, r)
guarantees to route such two SD pairs through different top
level switches, then routes for any two SD pairs in any
permutation whose sources are in different input switches will
not have network contention using the local adaptive routing
algorithm.
Proof: Let us denote SRC(s, d) the source switch of SD
pair (s, d) and DST (s, d) the destination switch of SD pair
(s, d). Let (s1, d1) and (s2, d2) be arbitrary two SD pairs
in a permutation where s1 and s2 are in different switches
(SRC(s1, d1) 6= SRC(s2, d2)). We will prove that under the
assumption in the lemma, these two SD pairs will not have
contention. Let (s1, d1) be routed through top level switch
A and (s2, d2) be routed through top level switch B (A and
B may be the same). Since SRC(s1, d1) 6= SRC(s2, d2),
uplinks SRC(s1, d1) → A and SRC(s2, d2) → B are
different regardless whether A = B or not, and there is
no contention in the uplinks for the two SD pairs. For the
downlink A → DST (s1, d1) and B → DST (s2, d2), there
are two cases. When DST (s1, d1) = DST (s2, d2), since
(s1, d1) and (s2, d2) are from one permutation communication,



d1 6= d2. By the assumption of this lemma, we have A 6= B
and thus, the downlinks for the two SD pairs are different
and there is no network contention. When DST (s1, d1) 6=
DST (s2, d2), regardless whether A = B or not, the downlinks
A → DST (s1, d1) and B → DST (s2, d2) are different and
there is no contention. 2

Lemma 3 states that for a class of local adaptive routing
algorithms that guarantee to use different top level switches to
route SD pairs with different destinations in the same switch,
SD pairs from different switches in a permutation will not have
contention. We will use the term Class DIFF to denote this
class of local adaptive routing algorithms. Lemma 3 implies
the following.

1) Using a Class DIFF algorithm, SD pairs from different
switches can be routed independently: paths for SD pairs
from different switches will not have contention.

2) A Class DIFF algorithm that also avoids contention for
SD pairs from the same switch will achieve nonblocking
communication. Hence, to design a routing algorithm
that achieves nonblocking communication using Class
DIFF algorithms as building blocks, we can focus on
contention free routing for SD pairs from the same
switch.

For any ftree(n, m, r), there exists a constant c such that
r ≤ nc. For practical folded-Clos networks, c is a small
constant. For example, in ftree(n, m, r = n2), c = 2. In
ftree(n, m, r = n2 + n), c = 3. In our adaptive routing
algorithm, we number the r bottom level switches with c
n-based digits: sc−1sc−2...s0, 0 ≤ si ≤ n − 1 for all
0 ≤ i ≤ c − 1; and we number the r × n leaf nodes (sources
and destinations) with c + 1 n-based digits: sc−1sc−2...s0p,
where sc−1sc−2...s0 is the switch that the leaf node is in,
and 0 ≤ p ≤ n − 1 is the local node number within switch
sc−1sc−2...s0. For a node sc−1sc−2...s0p, we will say that p
is the first digit of the node number, s0 is the second digit, ...,
sc−1 is the c + 1-th digit of the node number.

Our adaptive routing algorithm for ftree(n, m, r) uses
Class DIFF schemes and schedules SD pairs from each switch
independently. SD pairs from each switch are routed in phases.
In each phase, SD pairs are routed over (c + 1) × n top
level switches. We will use the term configuration to denote
the group of (c + 1) × n top level switches used in one
scheduling phase. The same routing logic is applied for all
configurations until all SD pairs in a pattern are routed. Within
each configuration, we further group the (c + 1)×n top level
switches into c + 1 sets of n switches. We will call each set
of n top level switches, a partition. In each of the partitions,
the n top level switches are numbered from 0 to n − 1.

Let sc−1sc−2...s0p be a generic destination node number.
In our adaptive routing algorithm, the k-th partition (1 ≤
k ≤ c + 1) in the c + 1 partitions in a configuration,
is used to route traffics to destinations with different k-th
digits. Specifically, in the first partition, top level switch
i, 0 ≤ i ≤ n − 1 is only used to carry SD pairs with
destinations whose local node number p = i for all bottom
level switches: only SD pairs whose destinations have different

local node numbers are routed through this partition. Similarly,
the second partition is used to route SD pairs to destinations
with different second digits. Specifically, in the second par-
tition, top level switch i carries traffics (from any sources)
to destinations (sc−1...s1(s0 = i)(p = 0)), (sc−1...s1(s0 =
(i + 1)%n)(p = 1)),..., ((sc−1...s1(s0 = (i + j)%n)(p = j)),
..., ((sc−1...s1(s0 = (i + n − 1)%n)(p = n − 1)). Here,
% is the modulo operation. The routing in other c − 1
partitions is similar to that in the second partition. The i-
th partition, 2 ≤ i ≤ c + 1, is used to route SD pairs to
destinations with different i-th digit values (different si−2

values). Specifically, in the i-th partition, top level switch i
carries traffics to destinations (sc−1...(si−2 = i)...s0(p = 0)),
(sc−1...(si−2 = (i + 1)%n)...s0(p = 1)), ..., ((sc−1...(si−2 =
(i + j)%n))...s0(p = j)), ..., ((sc−1...(si−2 = (i + n −
1)%n)...s0(p = n − 1)). Note that the routing applies to all
SD pairs from all source switches.
Lemma 4: The routing in each partition belongs to Class DIFF.
Proof: For the first partition, any two destinations with node
numbers sc−1...s0(p = n1) and sc−1...s0(p = n2) in the same
switch sc−1...s0 will be routed through two different top level
switches n1 and n2 in this partition. The routing belongs to
Class DIFF by definition from Lemma 3. For the second par-
tition, different destinations in the same switch are also routed
through different top level switches. For an arbitrary bottom
level switch sc−1...s0, SD pairs with destination sc−1...s00
are routed through top level switch switch s0, destination
sc−1...s01 through top level switch (s0 − 1)%n, ..., and
destination sc−1...s0j, 0 ≤ j ≤ n−1, through top level switch
(s0 − j)%n in the partition. Thus, the routing for the second
partition is also a Class DIFF routing algorithm. Following a
similar logic for the routing in the second partition, the routing
for the i-th partition, 2 ≤ i ≤ c + 1, is a Class DIFF routing
algorithm. 2

As discussed earlier, using Class DIFF algorithms as build-
ing blocks in a routing algorithm, if one can guarantee that
SD pairs from the same switch in any permutation can be
routed without contention, the algorithm achieves nonblocking
communication. The following lemma gives the condition for
a set of SD pairs to be routed through each partition without
causing contention.
Lemma 5: Let (s1, d1 = s1

c−1...s
1
0p

1), (s2, d2 = s2
c−1...s

2
0p

2),
..., (sk, dk = sk

c−1...s
k
0pk) be a set of SD pairs from the same

switch in a permutation. If d1, d2, ..., dk each has a different
first digit pj , 1 ≤ j ≤ k, then all of the k SD pairs can be
routed through the first partition without contention. If (sj

i −
pj)%n, 1 ≤ j ≤ k, are different, then all of the k SD pairs
can be routed through the i+2-th partition without contention.
Proof: Since the routing in the partition is a Class DIFF routing
algorithm as discussed earlier, from Lemma 3, routes for the
set of SD pairs will have no contention with paths for SD
pairs from other switches in each partition.

Now consider the routes for SD pairs from the same source.
When d1, d2, ..., dk each has a different first digit pj , 1 ≤ j ≤
k, then all of the k SD pairs will be routed through different
switches pj , 1 ≤ j ≤ k, in the first partition. The paths for all



of the SD pairs are link-disjoint. Similarly, when (sj
i −pj)%n,

1 ≤ j ≤ k, are different, each of the k SD pairs will be routed
through a different top level switch (sj

i − pj)%n in the i + 2-
th partition: the paths for all the SD pairs are link-disjoint.
Thus, All of the k SD pairs can be routed through the i+2-th
partition without contention. 2

Lemma 5 shows that each of the partitions in a configuration
can be used to route a set of SD pairs that satisfy the
conditions. In the worst case, at least one SD pair from each
switch can be routed through each partition without causing
contention. We will call a set of SD pairs that can be routed
through a partition without causing contention the set of SD
pairs that can be routed through the partition.

Using the routing logics, our adaptive routing algorithm for
nonblocking ftree(n, m, r), NONBLOCKINGADAPTIVE, is
described in Fig. 4. Since the routing in each partition is a
Class DIFF routing algorithm, routing SD pairs from different
switches for the same partition will not have contention and
can be done independently. The routing algorithm routes SD
pairs from each source switch independently. It considers
configurations one at a time, greedily finds the largest number
of SD pairs that can be routed through one of the unused
partitions in each configuration, and routes the SD pairs to
partition. This process is repeated with more configurations
until all SD pairs are routed. After the configurations for SD
pairs from all switches are computed, the algorithm merges the
routes for SD pairs from different source switches (lines (14)
and (15)): the corresponding partitions in each configuration
for SD pairs from different switches can be routed through the
same n top level switches without contention from Lemma 4.
In the description, we assume that there are sufficient number
of top level switches to be allocated. In the following, we will
first prove this algorithm achieves nonblocking communication
for any permutation and then give the upper bound of the
number of top level switches required for this algorithm in
Theorem 5.
Theorem 4: Algorithm NONBLOCKINGADAPTIVE results
in nonblocking communication.
Proof: From Lines (7) and (8) in Fig 4, we can see that the
NONBLOCKINGADAPTIVE only routes SD pairs that can
be routed on a partition to the partition. It follows that the
communication is nonblocking for any permutation (Lemma
5). 2

Analyzing the number of top level switches needed by the
algorithm is more challenging. Before we prove the upper
bound for the number of top level switches needed in NON-
BLOCKINGADAPTIVE, we will show that this algorithm
requires less than n2 top level switches for any permutation
in ftree(n, m, r). For any two SD pairs from a switch in
a permutation, the destinations are different: they differ in
at least one digit in the c + 1 n-based digits representation.
The two SD pairs can be routed through one partition in a
configuration: if the first digits of the destinations are different,
the two SD pairs can be routed through the first partition; if
the first digits are the same, there exists an j such that the
j-th digits of the destinations are different, and the two SD

Algorithm NONBLOCKINADAPTIVE:
Input: A permutation P
Output: the routes for all SD pairs in P

(1) Let P i, 0 ≤ i ≤ r − 1, be the set of SD pairs in P
from switch i;

(2) For each P i, 0 ≤ i ≤ r − 1, do
(3) xi = 0;
(4) While (P i is not empty) do
(5) Ci

xi
= new configuration; xi++;

(6) While ((P i is not empty) and
(Ci

x has unused partitions)) do
(7) Find the largest subset of P i,

LSET , that can be routed on one of
the unused partition, PART , in C i

xi
;

(8) Route SD pairs in LSET on PART ;
(9) Mark PART as used;
(10) P i = P i − LSET ;
(11) End while
(12) End while
(13) End for
(14) Let totalconf be the largest xi, 0 ≤ i ≤ r − 1;
(15) For j=0 to totalconf − 1 do

merge corresponding partitions in C i
j , 0 ≤ i ≤ r − 1;

(16) End for

Fig. 4. An adaptive routing algorithm for nonblocking ftree(n,m, r)

pairs can be routed through the j-th partition (sj−2 − p’s are
different). Hence, the LSET found in line (7) in the first
iteration after a new configuration is allocated will have at
least two SD pairs when there are more than one SD pair in
P i. In other iterations, when P i is not empty, the LSET at
least contains one SD pair from each switch since each unused
partition can at least route one SD pair for each switch with no
contention. Hence, the c+1 partitions in one configuration can
route at least route c+2 SD pairs for each source switch. Since
each switch can have at most n SD pairs in a permutation, at
most n

c+2 configurations and n
c+2 × (c + 1) × n = c+1

c+2n2

top level switches are needed, which is less than the n2

switches required with deterministic routing. In the following,
we will show that NONBLOCKINGADAPTIVE improve the
nonblocking condition asymptotically.
Lemma 6: Consider a set of numbers encoded with c + 1 n-
based digits, dcdc−1...d0. For any k different numbers, there
exists at least one i, 0 ≤ i ≤ c, such that there are at least
k

1
2(c+1) numbers in the set of k different numbers either with

different d0 or with different (di − d0)%n’s.
Proof: Let the number of different values of each digit di

among the k different numbers be Xi. If Xi < k
1

c+1 for all
0 ≤ i ≤ c, then at most X0 ×X1 × ...×Xc different numbers
can be in the set. Hence, k ≤ X0 ×X1 × ...×Xc < k, which
cannot be true. Hence, there exists at least one i such that
Xi ≥ k

1
c+1 .

If i = 0, there exists k
1

c+1 (more than k
1

2(c+1) ) numbers



with different d0 and the lemma is proven. If i 6= 0, there
exists a set of k

1
c+1 numbers with different di’s. If this case,

if the number of different d0’s in the set of numbers is less
than k

1
2(c+1) , the number of different (di − d0)%n’s in the set

is at least k
1

2(c+1) . 2

Theorem 5: Let r ≤ nc, where c is a constant. Algorithm
NONBLOCKINGADAPTIVE requires at most O(n2− 1

2(c+1) )
top level switches to route any permutation in ftree(n, m, r).
Proof: Consider the number of configurations needed by NON-
BLOCKINGADAPTIVE for any permutation communication.
Each source switch will have at most n SD pairs to route
in a permutation. Let sc−1...s0p be a generic destination
in the permutation. From Lemma 6, among the n different
destinations in the n SD pairs, which are represented by c+1
n-based digits, there exists an i, 0 ≤ i ≤ c, such that there are
n

1
2(c+1) destinations with different first digits or with different

(si−2 − p)%n’s. This set of n
1

2(c+1) SD pairs with one for
each of those destinations can be routed through a partition
(Lemma 5). Since the largest subset of P i that can be routed on
one partition is found in line (7) in Fig. 4, the first partition
after each new configuration is allocated will route at least
n

1
2(c+1) SD pairs for each source switch when |P i| = n.

Let T (n) be the number of configurations needed when each
switch has n SD pairs in a permutation to be routed. Note
that since all switches route SD pairs independently and share
the same set of upper level switches, the entire permutation P
will also require T (n) configurations to be routed. We have
T (n) ≤ T (n − n

1
2(c+1) ) + 1.

For n > X > n
2 , n

1
2(c+1) > X

1
2(c+1) > (n

2 )
1

2(c+1) . Hence,

T (n) ≤ T (n/2) +
n

2

( n

2 )
1

2(c+1)

= T (n/2) + (n
2 )1−

1
2(c+1)

≤ (n
2 )1−

1
2(c+1) (1 + ( 1

2 )1−
1

2(c+1) + ( 1
2 )2×(1− 1

2(c+1)
) + ...)

= O(n1− 1
2(c+1) )

Hence, the number of top level switches needed for the
algorithm is not more than T (n)×(c+1)×n = O(n2− 1

2(c+1) ),
where c is a constant. 2

Algorithm NONBLOCKINGADAPTIVE asymptotically
improves the nonblocking condition for ftree(n, m, r) with
deterministic routing. However, it may not achieve the lower
bound of m for local adaptive routing. The tight nonblocking
condition for ftree(n, m, r) with local adaptive routing is,
thus, still open for investigation.

VI. CONCLUSION

We study folded-Clos networks that are nonblocking in
computer communication environments and develop tech-
niques to construct such networks. We show that it is not
effective to build nonblocking folded-Clos with small top level
switches. We prove that for ftree(n, m, r) with single-path
deterministic routing, the nonblocking condition is m ≥ n2

when r ≥ 2n + 1. We give the single-path routing scheme
that can be used to build nonblocking ftree(n, m = n2, r),
which is optimal. We further prove that using local adaptive
routing, the nonblocking condition can be improved over
deterministic routing. The results indicate that it is possible
to build large nonblocking folded-Clos networks in computer
communication environments using smaller components. This
paper leaves an open problem to be investigated in the future:
what is the tight nonblocking condition for ftree(n, m, r)
with local adaptive routing?
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