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This paper makes thresontributions. First, we develop

to achieving high performance in message-passing programs
Designing new, efficient protocols to realize point-to-pait and
collective communication operations has therefore been an
active area of research. However, the best protocol for a gan
communication routine is both application and architecture
specific.

This paper contributes a new method of selection of the
optimal protocol for a given point-to-point communication pair.
Our technique analyzes the MPI communication call profile of
an application and uses a computation and communication
model we have developed to choose the proper protocol for
each communication phase. We have applied our system to
MPI applications such as CG, Sweep3D and Sparse Matrix
multiplication, as well as synthetic applications. Our scleme
yields an improvement in total execution time of up to 20%
compared to MVAPICH2 and up to 3.2% compared to the best,
highly optimized communication protocol for the real applica-
tions. Furthermore, experiments on the synthetic applicabns
show that the savings can be much more pronounced.

a model to predict the cost of each available protocol for
the supported point-to-point communication operatiorie T
model takes into account the message size, the function
call arrival times and the effect of each protocol on the
computation operations. Second, we present a system that
analyzes the communication call profile of the application
and predicts the optimal communication protocol based
on the modeled execution times for each protocol. The
execution times are modeled based on observed computation
times between communication calls, wait times for the task
in each communication pair and remote data copy times.
Finally, based on our experience, we develop a novel point-
to-point communication protocol.

We apply our system to real scientific and synthetic
programs. The former group consists of CG, Sparse Matrix
multiplication and Sweep3D. The synthetic programs are
used to exercise all aspects of our system. We consider a
large number of efficient MPI point-to-point protocols for
each communication pair, and our results show that our
system yields an improvement in total execution time up
to 20% compared to the MVAPICHZ2[3] implementation,

Message Passing Interface (MPI) is the de-facto stanwhich itself is efficient. Compared to the best, highly op-
dard for developing distributed applications. Scientifi®M timized communication protocol for a given application,
applications spend a significant amount of time executingur technique saves over 14% for synthetic applications
communication calls. The problem of reducing the totaland up to 3.2% for our three real applications. While the
execution times of MPI communication routines in scalablesavings depend on application characteristics, they can be
distributed applications has been a key area of research. quite pronounced.

The MPI standard provides two general types of com- The rest of the paper is organized as follows. We provide
munication operations: point-to-point and collective®isT an overview of the related work in Section II. The imple-
paper focuses on improving the execution times of point-tomentation of the new protocol and the system is described
point communication calls. A point-to-point communicatio in Section Ill. Next, Section IV discusses the measured
operation can be realized using many different low-levelresults on a real cluster. Finally, Section V summarizes and
protocols. For a given MPI application, different protacol describes future work.
will result in different execution times. Hence, the choafe
optimal implementation is application specific.

In this paper, we improve the execution time of point- The existing approaches to improving the execution time
to-point communication calls in an application by usingof point-to-point MPI communication routines are static,
its communication call profile. From this profile, we use and the selection of the protocol is carried out at compile
a model of computation and communication to predict thetime. Each available communication protocol is designed to
best protocol from a set of many potential protocols thatexecute different point-to-point communication openagio
can be used to implement the communication. Notably, wevith different execution times. The choice of protocol is
allow different protocols for different communication pai  based on the buffer size passed to the MPI communication

Keywords-MPI; point-to-point communication; protocol se-
lection

I. INTRODUCTION

II. RELATED WORK



operation. An eager protocol is used for small messagegur system collects and analyzes the application profile
while a rendezvous protocol is used for large messages. dynamically. Second, the optimal protocol is chosen based
MPI communication over RDMA has been successfullyon the modeled execution times of the communication phase.
implemented [5]. The use of RDMA over InfiniBand for  In summary, efforts to handle different MPI function call
MPI communication has been widely accepted as the prearrival sequences and message sizes have been handled stat-
ferred method for remote data copy operations due tdgcally. In contrast, our work models the execution time for
several advantages previously studied [4]. The initiatinga communication phase of a given application dynamically.
task performs a copy of the remote buffer into the localBased on the modeled execution time, our system predicts
buffer. The remote data copy operation happens withouthe optimal protocol for the communication phase.
the intervention of the remote CPU, thus providing the
opportunity for computation-communication overlap. I1l. PROFILE GUIDED PROTOCOL SELECTION
Recent work [9] introduces a new protocol for point-to- Thi i ts imol tation details of i
point communication over RDMA for certain message sizes IS Section presents implementation details ot our Sys
The protocol decouples sender from receiver by making éem. First, we discuss protocols we consider, including our

local copy of the user buffer and notifies the receiver abouP® coPY protocol [9]. Then we discuss the novel parts

the address of the buffer. This reduces the execution tim(?f ?ur Ty?[]ema |n|clufd|ng a new sendetr-|n|t||ated postt-coply
of the send operation. Upon arrival, the receiver perform§ro ocol (the dual of our pre-copy protocol), our protoco

c remots copy f the bufer over ROMA and noies the 2L 188, 0, 4r nlve POTe s pacen
sender of completion. Yy : p g

Yuan et al. refine the traditional rendezvous protocol overs ize and system-dependent factors. Finally, we describe ou
RDMA [9] presented by others [10], [7], [8] through two profile generation scheme and protocol decision mechanism.
protocols they denoteeceiver initiated andsender initiated. A Protocols
In the case of receiver initiated rendezvous protocol, the ™
receiver notifies the sender of the user buffer's address. This section describes the protocols we consider in im-
When the sender initiates the send operation, it performplementing MPI operations.
a RDMA write operation on the user buffer. Once the copy Pre-Copy Protocol: The sender-side pre-copy protocol
operation is complete, the sender notifies the receiversof itpresented by Yuan et al. [9] de-couples the sender from the
completion. In the case of the sender- initiated protodw, t receiver by making a local copy of the incoming buffer. The
sender notifies the receiver of the address of the user bufféscal buffer is RDMA-registered durinyPl _| ni t to save
to be sent. Upon arrival, the receiver performs a RDMAthe registration cost for every send call. The sender nstifie
read operation on the sender’s buffer to transfer the data. ghe receiver of the address of the copied buffer and marks
speculative and adaptive approach for MPI rendezvous ovehe completion of the send operation. The receiver register
RDMA was proposed [8] in which the task that arrives earlythe destination user buffer for RDMA operation upon arrival
chooses the communication protocol. at the receive call. It then performs an RDMA read operation
Static protocol decision schemes suffer from the lack ofand a remote buffer copy. Figure 1 (left) shows the scenario
knowledge of (1) the critical path of the application, (2&th in which the receiver arrives at the receive call after the
function call arrival times; and (3) the call sequence. Thesender arrives at the send call. Upon completion of the
global critical path of the application follows the opeoats =~ RDMA operation, the receiver notifies the sender and the
that affect the total execution time of the application. Thesender’s buffer is marked for release.
choice of a communication protocol affects the execution The cost of RDMA remote buffer copy operation is about
time of the operations on the critical path. Each protocolfour times the cost of local buffer copy operation for a given
is designed to exploit specific communication call arrivalmessage size. As shown in Figure 1 (left), when the receiver
patterns to minimize the communication time resulting inarrives late at the receive call, it spends at least fourdime
improved execution time of the application. These diffi- the time spent by the sender at the send call. Consider a
culties can be overcome by collecting and analyzing thecommunication pattern in which the receiver is always on
communication call trace of the application. the critical path and the receive operation is synchronlus.
Profile guided optimization of MPI programs has beenthis case, the pre-copy protocol puts the RDMA operation
a widely researched topic [1], [2], [14], [11], [13]. Our on the critical path and increases the total execution tifne o
work dynamically collects MPI application profiles, anatgz the application.
the application behavior, and proposes ways to improve the  Post-Copy Protocol: We developedost-copy, a novel
execution time of applications. The work by Venkata etprotocol where the receiver spends the least time at the
al [12] on optimizing the MPI communication protocols is receive call when the sender is early. Upon arrival, the
closely related to our work. The effort is aimed at switchingsender performs an RDMA remote buffer copy operation
the open RDMA connections between the communicatingpn a buffer that is pre-allocated at the receiver task. The
tasks. Our work differs from this work in two ways. First, size of the preallocated buffer is configured at startup dase
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on the application’s communication pattern and memory resystem-dependent factors. First, denotg,, rc.q(b) and
quirements. The sender maintains the usage for the reeivert, 4,,,_write(b) as the time required to complete RDMA
user buffer and then marks the completion of the send calkead and write operations, respectively, for a message of

Figure 1 (right) shows the scenario in which the receiversize b. Also, we denoté,,..,(b) as the time to register
arrives late at the receive call. The receiver performs duffer b for an RDMA operation and,,emcopy(b) as the
local copy of the buffer upon arrival when the buffer hastime to make a local copy of the buffer. Also, three system-
been completely written, and then the buffer is releaseddependent constants are US€Q..c_deiay: trdma_asyne:
Unlike the sender pre-copy protocol, the expensive RDMAL,dma_roundtrip; these are the times spent in the MPI calls
operation is performed by the sender. This provides do initiate an RDMA write operation and the time for the
counterbalancing protocol for pre-copy protocol. RDMA write to complete.

Other Protocols: We consider two other protocols  The models also depend on several system independent
in our model: receiver-initiated and sender-initiated -ren factors. These iNClud&sc,q_enters tsend_teaves treco_enters
dezvous. These are described in detail elsewhere [9]. Th@nd t,cc, icave, @S the time at which the sender (receiver)
essential details are as follows. For message sizes largenters (leaves) the send (receive) operation.
than pre-copy threshold, rendezvous protocols are used to Figure 2 (left) shows modeled times for the post-copy pro-
negotiate transfer of the user buffer between sides. Botkocol when the sender is early. Upon arrival, the sender reg-
the sender and the receiver register the user buffers fdsters the user buffer in time,cmrey- It SPENAS dima_write
the RDMA operation upon arrival. In case of the receiver-time to perform an RDMA write into the receiver's remote
initiated rendezvous protocol, the receiver notifies thedse  puffer. The modeled time spent in the rest of the send func-
of the address of the user buffer upon arrival. The sendetion is denoted byt ;e deiay. Therefore,t(MPI _I send)
performs an RDMA write operation on the remote USer= t,,...,.cq + trama_write + tfunc_delay- At the receiver,
buffer and notifies the receiver upon completion. Similarly the receive operation spends,cmcopy time to perform a
in case of the sender-initiated protocol, the sender nstifielocal copy into the user buffer, thugMPl | recv) =
the receiver of the address of the user buffer; the receiver, .,.copy + tfunc_delay- There is no time inVPI _\i t
performs an RDMA read on the remote user buffer and thempart fromt sync_detay, SOLMPI _VNi t sena) = ¢ func_delay
notifies the sender upon completion. andt(MPl _VMi t ,cci) = trunc_delay-

Figure 2 (right) shows the case in which the receiver
is early. In this case, tha/Pl Wit operation at the

We model the four protocols based on both systemreceiver waits for the sender to copy the remote buffer
independent and system-dependent parameters as well @8 t,qmq_write time starting fromésenq_enter. The total
the type of MPI call. The MPI point-to-point communica- time spent inVPl _\Wi t is calculated based on timeg, .,
tion calls consist of three basic operatioW#l | send, when MPl _Vi t is called and time,,cimcopy t0 perform
MPI _Irecv andMPl _Wi t . The synchronous operations the local copy operation. So whil&gMPl _| send) and
are carried out by the corresponding asynchronous operatMPl Wi t ,.,.4) are identical to the previous case, we now
tion followed by MPI _Wi t . All depend on the following havet(MPl _I r €cV) = tfunc_delay and t(MPl _VA&i t ,.ccy)

B. Modeling Protocol Execution Time
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Figure 2: Execution model for post-copy when either sender (left)emeiver (right) is early.

= tsend_enter T tmemreg T trdma_write T tmemcopy +  fOr the communication phase is chosen using our model,
tfunc_delay- basing the overall run time on the longest-running task.
Figure 3 shows the execution model for pre-copy when

the sender arrives early. Figure 4 shows the execution modep. Converting Synchronous Calls to Asynchronous Calls

for receiver-initiated and sender-initiated protocolsewtthe L ) b | d with
receiver arrives early. A communication operation can be overlapped with a

computation operation or another communication operation
if the two operations do not share a common user buffer.
Previous work by Preissl et al.[6] showed that certain
This section describes how we dynamically select the besfynchronous MPI communication calls can be converted
protocol for each communication pair in a phase. First, thento corresponding asynchronous calls by analyzing the MPI
runtime system collects an MPI communication call profilecall sequence. The source code is modified so that the
for each task of the application with the legacy (MVA- asynchronous calls that use the user buffer are placed ahead
PICH2) implementation of the communication operations. of the computation operations that do not touch the buffer.
The profile contains the following information: communi- This enables a communication operation to be executed
cation call arrival times, communication pattern, usagief with an overlapping computation operation, resulting in
user buffer by subsequent MPI calls, and time spent in thgpeedup for the application. However, such a scheme needs
computation operations between MPI calls for pre-copy andhe capability of analyzing and modifying the application
post-copy protocols. Our system collects the communinatio source code. We have developed a novel way of identifying
call arrival times by recording the arrival time relative to the opportunity of communication overlap and converting
the arrival of MPI _I ni t call. We define ecommunication  synchronous calls into asynchronous calls without source
phase as a sequence of communication calls delineated bgode transformations.
the programmer usingPl _Pcontrol calls. The execu-  The hybrid approach based on usage of the buffer passed
tion times are calculated for the matching MPI operationsio the communication routine is as follows. If the buffer dise
in one communication phase. The buffer usage informatiomy MPI _Send has more than one MPI call in the profile,
for the user buffers is collected by protecting the buffersthe correspondindvPl _| send is called with the buffer.
for read and write accesses. Specifically, the system pofileThe last MPI call in the list of MPI calls associated with
the MPI calls following anMPl _Send call until the user the user buffer waits for the completion of the asynchronous
buffer is modified. Similarly, the MPI calls following an communication operation. To handle the situation where an
MPI _Recv call are profiled until the buffer is accessed.  operation attempts to modify the user buffer before it is
Armed with the information above, at each MPI point- transferred, the buffer is write protected. If invoked, the
to-point call, the run time system models the execution othandler for the write access waits for the transfer of the
the ongoing MPI call to predict the execution time. The buffer before it returns to the faulting operatidvPl _Recv
modeling occurs at each task using collected arrival timegs handled in a similar fashion. The Online Protocol Se-
for the participating tasks. The predicted execution tisie i lection algorithm incorporates the mechanism by modeling
then piggy-backed on the task’s subsequent MPI call. asynchronous calls for the corresponding synchronous. call
At the end of two iterations, we collect the total executionThe mechanism can be enabled by placMgl_Pcontrol
times for each task for each protocol. The optimal protocolkalls at the start of the communication phase.

C. Online Protocol Selection Algorithm
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IV. PERFORMANCEEVALUATION protocol for each application.

We tested our system on a cluster with 16 nodes each e indicated the repeating communication phases in
with 64 bit 8-core 2.33 GHz Intel Xeon processors and g>Parse Matrix, CG and Sweep3D before running the applica-
GB of system memory. The nodes are interconnected witions- For the Sparse Matrix application, our system chose
InfiniBand fabric. To evaluate our system for a combinationth® Post-copy protocol as optimal. For 16 tasks the total
of multiple protocols, we used standard MPI benchmark£X€cution time is 11% better than MVAPICHZ. In the case
along with our own microbenchmarks that combine multiple® CG, the system chose the pre-copy protocol as optimal.
communication phases, each optimal for one protocol. For 16 tasks, t.he total execution time is 19.8% petter than

Our standard MPI benchmarks were Sparse Matrix, CGl\/IVAPICH2. With Sweep3D, the modeled execution times

and Sweep3d. Figure 5 (left) shows a comparison of théor each protocol were similar and the system chose receiver
application runs for the four protocols with MVAPICH2. initiated protocol as optimal. For 16 tasks, it showed 2.9%

Each application has a characteristic communication phasg!Provement in total execution time over MVAPICH2. The

that is repeatedly executed by the application. We reqh@e t execution times fo'r the real benchmarks indipate that the
programmer to plackPl_Pcontrol (n) calls to demarcate the system was dynamically able to choose the optimal protocol.
start and end of communication phaseBased on this input, Figure 5 (right) presents the normalized execution times
our system applies the protocol models and chooses ther the microbenchmarks compared to MVAPICH2. The first

optimal protocol for the communication phase. Because eaciicrobenchmark consists of two communication phases, one
real MPI benchmark has a single communication phase thaif which executes best with the receiver- initiated protoco

is executed repeatedly, our system outputs a single optimand the other with the pre-copy protocol. Our system is able
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Figure 5: Normalized execution times for real benchmarks (left) amghf) microbenchmarks.

to find this combination automatically and results in an 8.2%PMPI layer for the first iteration of MVAPICH2 execution
improvement in total execution time over MVAPICH2. of each communication phase. The execution times for the

Next, we evaluate the scheme for conversion of syncomputation operations collected during profile generatio
chronous calls to asynchronous calls. This microbenchmarre used by the system to execute the protocol models.
consists of three communication phases, each suitable for Table | shows the accuracy of the online protocol mod-
pre-copy, post-copy and receiver-initiated protocolspee-  eling scheme by comparing the real and modeled execution
tively. Here, our system chooses the optimal protocol fortimes of Sparse Matrix application for 4 tasks. For the
each communication phase and results in a 4.9% improveavailable protocols, the accuracy of the model is 94% to
ment compared to MVAPICH?2. 99%.

The rightmost graph shows the normalized execution Table Il lists the overhead and total execution times for
times after enabling the mechanism for the conversion ofparse Matrix application. The overhead scales up linearly
synchronous MPI calls to asynchronous MPI calls. Due tavith the number of tasks. In comparison to the total ex-
the overlap of multiple MPI calls during each phase, theecution times of the real MPI benchmarks, the observed
system chooses precopy for the first phase and receivepverhead is negligible.
initiated protocol for the last two phases. This results in

a 14% improvement in the total execution time of the ) _
Our system successfully analyzes the execution profile

application. ) o 4 )
Finally, we observe that switching the protocol affects theOf a given application and predicts the optimal protocol

execution times of the computation routines. Specificatly, for ea_ch communication phqs_e. The evaluat|or_1 shows '_[hat
case of the microbenchmarks and CG. we observed that t profile-based protocol decision can be effectively cdrrie
computation routine between tvMPI_éend calls showed Out dynamically with minimal overhead. This eliminates

a twofold speedup when we switched the protocol fromtEe neef_cli to %xecute thmt'rﬁ appll(i_atlo_n onqeh t?] collept |
receiver-initiated to pre-copy. With pre-copyPl_Send call the profile and re-execute the application with the optima

prepares a local copy of the user buffer and places thQrotocols. The sender-initiated post-copy protocol esi

pages of the buffer into the data cache. The subsequeﬁlf1 alternative to the pre-copy protocol. As fu_turglwork,
computation operation writes into the user buffer while theV® plan to apply our system to large-scale scientific MPI

pages are in the cache. This speeds up the computatic?rppl'cat'ons'

operation due to fewer cache misses. We observed a similar REFERENCES
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