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Abstract—We study oblivious routing in fat-tree based system
area networks with deterministic routing under the assumption
that the traffic demand is uncertain. The performance of a
routing algorithm under uncertain traffic demands is charac-
terized by the oblivious performance ratio that bounds the
relative performance of the routing algorithm with respect to
the optimal algorithm for any given traffic demand. We consider
both single path routing where only one path is used to carry
the traffic between each source-destination pair, and multi-path
routing where multiple paths are allowed. For single path routing,
we derive lower bounds of the oblivious performance ratio for
different fat-trees and develop routing schemes that achieve
the optimal oblivious performance ratios for commonly used
topologies. Our evaluation results indicate that the proposed
oblivious routing schemes not only provide the optimal worst case
performance guarantees, but also outperform existing schemes in
average cases. For multi-path routing, we show that it is possible
to obtain an optimal scheme for all traffic demands (an oblivious
performance ratio of 1). These results quantitatively demonstrate
the performance difference between single path routing and
multi-path routing in fat-trees.

Index Terms—Oblivious routing, fat-tree, system area networks

I. INTRODUCTION

The fat-tree topology has many properties that make it at-
tractive for large scale interconnects and system area networks
[17], [18]. Most importantly the bisection bandwidth of the
fat-tree topology scales linearly with the number of network
ports.1 The topology is also inherently highly resilient with a
large number of redundant paths. The fat-tree topology is very
popular for building medium and large system area networks
[15], [21]. In particular, it has been widely adopted in high
performance computing (HPC) clusters that employ the off-
the-shelf high speed system area networking technology, such
as Myrinet [22] and InfiniBand [16].

Although the fat-tree topology provides rich connectivity,
having a fat-tree topology alone does not guarantee high
performance: the routing mechanism also plays a crucial role.
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1 As originally defined [17], fat-trees are a very broad class of networks
with substantial flexibility regarding the bisection bandwidth. The fat-tree
topologies used in the current system area networks, which are also known
as constant bisectional bandwidth (CBB) networks [21], scale bisection
bandwidth linearly with the number of network ports. This paper focuses
on this type of fat-trees.

Historically, adaptive routing, which dynamically builds the
path for a packet based on the network condition, has been
used with the fat-tree topology to achieve load balancing
[18]. However, the routing in the current major system area
networking technology, such as InfiniBand and Myrinet, is
deterministic [16], [22]. For a fat-tree based system area
network with deterministic routing, it is important to employ
an efficient load balanced routing scheme in order to fully
exploit the rich connectivity provided by the fat-tree topology.

Traditional load balanced routing schemes usually optimize
the network usage for a given traffic demand. Such demand
specific schemes may not be effective for system area networks
where the traffic demand is uncertain and changing. Consider,
for example, the traffic demand in a large HPC cluster.
Since many users share such a system and can run different
applications, the traffic demand depends both on how the
processing nodes are allocated to different applications and
on the communication requirement within each application.
Hence, an ideal routing scheme should provide load balancing
across all possible traffic patterns. This requirement motivates
us to study demand-oblivious routing schemes that determine
routes independent of the traffic demand. Our focus is on
oblivious routing with routes being set deterministically since
most current system area networks use deterministic routing.
It has recently been demonstrated that oblivious routing can
promise excellent performance guarantees with uncertain traf-
fic demands in the Internet environment [1], [2], [28].

We investigate oblivious routing in fat-tree networks with
deterministic routing under the assumption that the traffic
demand is uncertain. For a given traffic demand, the perfor-
mance of a routing scheme is measured by the maximum link
load metric. The performance of a routing algorithm under
uncertain traffic demands is characterized by the oblivious
performance ratio [1]. The formal definition of the oblivious
performance ratio will be introduced in the next section. Infor-
mally, a routing algorithm r has an oblivious performance ratio
of x if for any traffic demand, the performance (maximum
link load) of r is at most x times that of the optimal routing
algorithm for this demand. An oblivious performance ratio of
1 means that the algorithm is optimal for all traffic demands.

This study focuses on the fat-tree topologies that are formed
with m-port switches, where m is a parameter that is restricted
to be a multiple of 2. Although the results are obtained for this
type of fat-trees, the results, as well as our analysis techniques,
can be extended to other types of fat-tree topologies. We
consider both single path routing where only one path is used
to carry the traffic between each source-destination pair, and
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multi-path routing where multiple paths are allowed. Let H
be the height of the fat-tree. The major results of this paper
include the following.

• For single path routing, we prove that (1) when H = 3,
the oblivious performance ratio of any single path routing
algorithm is at least

√

m
2 ; (2) when H = 4, the oblivious

performance ratio of any single path routing algorithm
is at least m

2 ; and (3) when H > 4, the oblivious
performance ratio of any single path routing algorithm
is at least (m

2 )b
H−2

3 c. We develop optimal single path
oblivious routing schemes that achieve the oblivious per-
formance ratio lower bounds for the cases when H = 3
and H = 4, which implies that the lower bounds for
these two cases are tight. These routing schemes are
sufficient for most practical cases since the heights of
most practical fat-trees are no more than 4. The results of
our performance study indicate that the proposed optimal
oblivious routing schemes not only provide the optimal
worst case performance guarantees among all single path
routing schemes, but also outperform existing schemes in
average cases.

• For multi-path routing, we show that it is possible to
obtain a scheme with an oblivious performance ratio of
1, that is, an optimal scheme for any traffic demand. This
suggests that multi-path routing is much more effective
in balancing network loads than single path routing in
fat-trees. Note that although it is well known that single
path routing is simple, but not as effective as multi-path
routing in balancing network loads in general, the perfor-
mance difference between single path routing and multi-
path routing in fat-trees is not well understood. Without
a clear understanding of the performance difference, it is
difficult to make a wise decision about whether a system
should use single path routing for its simplicity or multi-
path routing for its performance. This paper quantifies the
performance difference and resolves this issue.

The rest of the paper is organized as follows. In Section II,
we formally define routing and the metrics for evaluating
routing schemes, and specify the fat-tree topology. In Sec-
tion III, we present the results for multi-path routing. In
Section IV, we derive the lower bounds of the oblivious
performance ratio for any single path routing scheme in fat-
trees. In Section V, we give the optimal oblivious routing
schemes for commonly used fat-trees. Section VI reports the
results of our performance study. Section VII describes the
related work. Finally, Section VIII concludes the paper.

II. BACKGROUND

A. Routing and its performance metrics

Let the system have N processing nodes, numbered from
0 to N − 1. The traffic demand is described by an N × N
Traffic Matrix, TM . Each entry tmi,j in TM , 0 ≤ i ≤ N −1,
0 ≤ j ≤ N − 1, denotes the amount of traffic from node i to
node j. Let A be a set and |A| be the size of the set.

A routing specifies how the traffic for each Source-
Destination (SD) pair is routed across the network. We con-
sider single path routing where only one path can be used for

each SD pair, and multi-path routing where multiple paths can
be used. In multi-path routing, each path for an SD pair routes
a fraction of the traffic for the SD pair.

A multi-path routing is characterized by a set of paths
MPi,j = {MP 1

i,j , MP 2
i,j , ..., MP

|MPi,j |
i,j } for each SD pair

(i, j), and the fraction of the traffic routed through each path
fi,j = {fk

i,j |k = 1, 2, ..., |MPi,j |}.
∑|MPi,j |

k=1 fk
i,j = 1. Let

link l ∈ MP k
i,j . The contribution of the traffic tmi,j to link l

through path MP k
i,j is thus tmi,j × fk

i,j . Single path routing
is a special case of multi-path routing where |MPi,j | = 1
and all traffic from node i to node j is routed through MP 1

i,j

(f1
i,j = 1). Hence, a single path routing can be specified by a

path MP 1
i,j for each SD pair (i, j).

For a given traffic matrix, the performance of a routing is
measured by the maximum link load. Since all links in a fat-
tree network have the same capacity, the maximum link load is
equivalent to the maximum link utilization. Let Links denote
the set of all links in the network. For a multi-path routing
mr, the maximum link load is given by

MLOAD(mr, TM) = max
l∈Links

{
∑

i,j,k such that l∈MP k
i,j

tmi,j×fk
i,j}.

For a single path routing sr, the formula simplifies to

MLOAD(sr, TM) = max
l∈Links

{
∑

i,j such that l∈P 1
i,j

tmi,j}.

An optimal routing for a given traffic matrix TM is a
routing that minimizes the maximum link load. Formally, the
optimal load for a traffic matrix TM is given by

OPTU(TM) = min
r is a routing

{MLOAD(r, TM)}.

The performance ratio of a routing r on a traffic matrix
TM measures how far r is from being optimal on TM . It is
defined as the maximum link load of r divided by the smallest
possible maximum link load on TM [1].

PERF (r, TM) =
MLOAD(r, TM)

OPTU(TM)

PERF (r, TM) is at least 1. It is exactly 1 if and only if the
routing is optimal for TM . The definition of the performance
ratio follows the “competitive analysis” framework where per-
formance guarantees of a certain solution are provided relative
to the best possible solution. As such, the performance ratio is
not directly related to the absolute network performance: the
performance ratio of a routing scheme may be better when the
network is under heavy loads and worse when the network
is under light loads. The definition of performance ratio of a
routing is extended to be with respect to a set of traffic matrices
[1]. Let Γ be a set of traffic matrices, the performance ratio
of a routing r on Γ is defined as

PERF (r, Γ) = max
TM∈Γ

{PERF (r, TM)}.

When the set Γ includes all possible traffic matrices, the
performance ratio is referred to as the oblivious performance
ratio [1]. The oblivious performance ratio of a routing r is
denoted by PERF (r). The oblivious performance ratio is the
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worst performance ratio that a routing obtains with respect to
all traffic matrices. A routing with a minimum oblivious ratio
is an optimal oblivious routing scheme and its oblivious ratio
is the optimal oblivious ratio of the network.

B. Fat-tree topology

In a fat-tree network, all links are bidirectional with the
same capacity. Fig. 1 compares a binary tree with a binary
fat-tree. In the binary tree, the number of links (and thus the
aggregate bandwidth) is reduced by half at each level from
the leaves to the root. This can cause congestion towards the
root. The binary fat-tree topology remedies this situation by
maintaining the same bandwidth at each level of the network.

(a) Binary tree (b) Binary fat−tree

Fig. 1. Binary tree and binary fat-tree topologies

The fat-tree topology shown in Fig. 1 (b) is not practical for
building large networks due to the large nodal degree of the
root. Alternatives were proposed to approximate such a topol-
ogy using multi-stage networks that are formed by nodes with
small nodal degrees [8], [15], [26]. For example, the fat-tree in
Fig. 1 (b) can be approximated by the topology in Fig. 2. These
alternatives trade connectivity with implementation simplicity.
In this paper, we focus on one of such alternative: the fat-tree
topologies formed by m-port switches, where m is a parameter
that is restricted to a multiple of 2. Let an internal node in
the fat-tree topology be a node with a degree more than 1.
All internal nodes in our fat-tree topology has a degree of
m (so that they can be realized by m-port switches). Such a
topology is a minor generalization of the topology proposed in
[15]. The technique we developed for this topology can easily
be extended for other fat-tree variations.

Fig. 2. Approximate the topology in Fig. 1 (b)

We will follow the naming convention in [15]: the fat-tree is
called m-port n-tree and denoted as FT (m, n). The parameter
m in FT (m, n), which must be a multiple of 2, specifies
the nodal degree of all internal nodes in the topology. The
parameter n specifies the number of levels of internal nodes
in the topology. Thus, the height of FT (m, n) is n + 1, that
is, FT (m, n) is an n + 1 level tree. In the rest of this paper,
internal nodes in FT (m, n) may also be referred to as switches

since each of the internal nodes is realized by a switch when
the topology is constructed. Similarly, leaf nodes may also be
referred to as processing nodes. A 4-port 3-tree, FT (4, 3), is
shown in Fig. 3.

a

0 1 2 3

0 1 2 30 1 2 3

level
link 
level

0

1

2

switch

0

1

2

b

SUBFT(4, 2)

4 paths from node a to node b 

Fig. 3. The 4-port 3-three (FT (4, 3))

Next, we will describe how FT (m, n) is formed. More
details can be found in [15]. FT (m, n) is formed by
connecting the root level switches to m sub-fat-trees with
n − 1 levels of switches. We will use the notation
SUBFT (m, n − 1) to denote the sub-fat-trees with n − 1
levels of switches. SUBFT (m, l) is different from FT (m, l)
in that SUBFT (m, l) must provide (open ended) up links
for the sub-fat-tree while FT (m, l) does not have up links.
SUBFT (m, l) is recursively constructed as follows.

When l = 1, SUBFT (m, 1) contains 1 m-port switch. m
2

of the ports in the switch connect to m
2 processing nodes, and

m
2 ports remain open. We will call these opened ports up-

link ports since they will be used to connect to the upper
level switches. We denote the number of up-link ports in
SUBFT (m, l) as nu(m, l). nu(m, 1) = m

2 . As will be shown
later, nu(m, l) = (m

2 )l. The up-link ports in SUBFT (m, l)
are numbered from 0 to nu(m, l) − 1.

SUBFT (m, l) is formed by connecting nu(m, l − 1) =
(m

2 )l−1 m-port top level (of the sub-fat-tree) switches with
m
2 SUBFT (m, l − 1)’s. Each of the top level switches uses
m
2 ports to connect to all m

2 of the SUBFT (m, l − 1)’s. Let
us number top level switches from 0 to nu(m, l − 1) − 1.
The up-link ports i, 0 ≤ i < nu(m, l − 1), in all of the
SUB(m, l − 1)’s are connected to top level switch i. The
remaining m

2 ports in a top level switch are up link ports
of SUBFT (m, l). Top level switch i provides up-link ports
m
2 × i to m

2 × (i+1)−1 for SUBFT (m, l). Fig. 4 (a) shows
SUBFT (m, 1) and (b) shows the structure of SUBFT (m, l).
Clearly, nu(m, l) = nu(m, l − 1) × m

2 = (m
2 )l. Hence, each

SUBFT (m, l) has (m
2 )l up-link ports and connects to (m

2 )l

processing nodes.
FT (m, n) is formed by having nu(m, n − 1) = (m

2 )n−1

root level switches connecting with m SUBFT (m, n− 1)’s.
Let us number top level switches from 0 to (m

2 )n−1 − 1.
The up-link port i, 0 ≤ i < nu(m, n − 1), in all of the
SUB(m, n − 1)’s is connected to top level switch i. Each
of the m ports in the root level switch connects to one
SUBFT (m, n − 1). The structure of FT (m, n) is shown in
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(b) SUBFT(m, l)

Fig. 4. SUBFT (m, 1) and SUBFT (m,n)

Fig. 5. FT (m, n) supports m(m
2 )n−1 processing nodes. The

root level contains nu(m, n−1) = (m
2 )n−1 switches and each

of the other n−1 layers has 2× (m
2 )n−1 switches. Hence, the

total number of switches in FT (m, n) is (2n− 1)× (m
2 )n−1.
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Fig. 5. The structure of FT (m,n)

Let us number the n levels of switches in FT (m, n) from
0 to n − 1 (root level switches being level 0 switches). We
will classify the links according to their levels. For 0 ≤ i <
n − 1, the links connecting level i switches with level i + 1
switches are called level i links. The links connecting level
n−1 switches with the processing nodes are level n−1 links.
All links in FT (m, n) are bi-directional links: with an up
channel for communication from a lower level switch to an
upper level switch, and a down channel from an upper level
switch to a lower level switch. We will use the term level i up
link to denote an up channel from a level i+1 switch to a level
i switch, and level i down link to denote a down channel from
a level i switch to a level i + 1 switch. A path between two
processing nodes in FT (m, n) has two phases: the first phase
contains only up channels and the second phase contains only
down channels.

From the definition of FT (m, n), one can easily derive the
following properties.
Property 1: FT (m, n) contains m SUBFT (m, n−1)’s, m×
m
2 SUBFT (m, n− 2)’s, ..., m × (m

2 )n−2 SUBFT (m, 1)’s.
Level 0 (root level) switches do not belong to any sub-fat-

tree. Each level 1 switch is in a SUBFT (m, n−1); each level
2 switch is in a SUBFT (m, n − 1) and a SUBFT (m, n −
2); and so on. A level i switch, 1 ≤ i ≤ n − 1, is in a
SUBFT (m, n− 1), a SUBFT (m, n− 2), ..., and a
SUBFT (m, n − i). In FT (m, n), we will call switches in
levels 0, 1, ..., and n − i − 1 the upper level switches for
SUBFT (m, i). The upper level switches for SUBFT (m, i)
provide connectivity among all SUBFT (m, i)’s.
Property 2: Through upper level switches for SUBFT (m, i),

1 ≤ i ≤ n − 1, an up-link port in a SUBFT (m, i) is only
connected to an up-link port of the same port number in any
other SUBFT (m, i). More specifically, up-link port j, 0 ≤
j ≤ nu(m, i) − 1 in one SUBFT (m, i) is only connected
with the up-link port j of other SUBFT (m, i)’s (but not other
ports) through upper level switches for SUBFT (m, i).

It is clear that this property is true for SUBFT (m, n− 1).
The property for general SUBFT (m, i), 1 ≤ i < n − 1,
can be formally proven by induction on i (with base case
i = n − 1) and by examining how the top level switches in
SUBFT (m, i)’s are connected.
Property 3: Let SUBFT (m, i) be the smallest sub-fat-tree in
FT (m, n) that contains two processing nodes a and b, there
exist (m

2 )i−1 different shortest paths from a to b. If such a
sub-tree does not exist, there are (m

2 )n−1 different shortest
paths from a to b. In this case, a and b are in different top
level sub-fat-trees (SUBFT (m, n− 1)’s).

Fig. 3 shows an example. From node a to node b in
FT (4, 3), there are (m

2 )n−1 = 22 = 4 shortest paths. In both
cases in Property 3, the number of shortest paths between any
two nodes can be represented as (m

2 )x with the value of x,
0 ≤ x ≤ n − 1, depending on the positions of the source and
the destination.
Property 4: In FT (m, n), let there exist (m

2 )x different
shortest paths from processing node s to processing node d.
Each of the level n − 1 − i up/down links that carry traffic
from s to d is used by (m

2 )x−i shortest paths, 0 ≤ i ≤ x.
This property is intuitive. For example, level n − 1 links

are the links connecting processing nodes. Hence, all paths
from the processing node connected by a level n − 1 link
must use the link. This is the case when i = 0: all ( m

2 )x

shortest paths use the link. For the next level (i = 1), a source
will have m

2 choices (the fan-out from the first switch) to go
to another node. Thus, each of such links will be used by
(m

2 )x/m
2 = (m

2 )x−1 shortest paths. The cases for links in
other levels are similar. Consider the 4 paths from node a to
node b in Fig. 3, all 4 paths use the level 2 up/down links (the
link connecting the processing node), 2 paths use each of the
level 1 up/down links that carries traffic from a to b, and 1
path uses each of the level 0 up/down links.
Property 5: In FT (m, n), a level i, 0 ≤ i ≤ n − 1, up link
carries traffic from at most (m

2 )n−1−i source nodes. A level i
down link carries traffic to at most (m

2 )n−1−i nodes.
This property is also intuitive. For example, when i = n−1,

a level i = n− 1 link directly connects to a processing nodes.
So such a link carries traffic to/from at most (m

2 )n−1−(n−1) =
1 node. When i = n − 2, the link connects to a level
n − 1 switch; and such a link carries traffic to/from the
(m

2 )n−1−(n−2) = m
2 nodes directly connected to that switch.

III. MULTI-PATH OBLIVIOUS ROUTING

Let the traffic matrix be TM with entries tmi,j , 0 ≤ i ≤
N − 1 and 0 ≤ j ≤ N − 1, specifying the amount of traffic
from node i to node j. The total traffic sent from node i is
∑

j tmi,j and the total traffic received by node i is
∑

j tmj,i.
Since there is only one link connecting each processing node to
the network, such traffic must be carried on that link regardless
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of the routing scheme. Hence, for any routing scheme the load
on the link (which has two directions) connecting to node i
is max{

∑

j tmi,j ,
∑

j tmj,i}. We define the base load of a
traffic matrix TM as

baseload(TM) = max
0≤i≤N−1

{max{
∑

j

tmi,j ,
∑

j

tmj,i}}.

Clearly, for any TM and any FT (m, n), the minimum
maximum link load with any routing scheme, single path or
multi-path, is at least baseload(TM):

OPTU(TM) ≥ baseload(TM).

We will give a multi-path routing algorithm, OMRMN ,
such that MLOAD(OMRMN, TM) = baseload(TM) for
any FT (m, n) and any TM (PERF (OMRMN) = 1).
OMRMN works as follows: Let X be the number of shortest
paths between processing nodes i and j (since processing
nodes are in the same level of the fat-tree, X is fixed for all
pairs of nodes) and let the X different shortest paths between
nodes i and j be P 1

i,j , P 2
i,j , ..., P X

i,j (From Property 3 in
Section II-B, these paths can be easily found). OMRMN
makes use of all the paths and allocates exactly the same
amount of traffic on each path. That is, MPi,j = {P 1

i,j , P 2
i,j ,

..., P X
i,j} and f1

i,j = ... = fX
i,j = 1

X
.

Theorem 1: For any FT (m, n), PERF (OMRMN) = 1.
Proof: Since in FT (m, n) the up links and down links are
symmetrical, it is sufficient to show that, for any traffic
matrix TM , the load on each up link l is no more than
baseload(TM). Consider a source s in FT (m, n). Let us
denote LD(s) =

∑

j 6=s tms,j the total amount of traffic sent
from node s. For each source node s, using OMRMN , each
level n − 1 − i link carries at most LD(s)/(m

2 )i traffic since
the traffic is evenly distributed among the (m

2 )i links at level
n − 1 − i that can carry traffic from node s (Property 4).
In addition, each level n − 1 − i link carries traffic from
at most (m

2 )i source nodes (Property 5). Let the nodes be
s0, s1, ..., s( m

2 )i−1 and the load on a level n − 1 − i link
l be load(l), we have load(l) ≤ ∑( m

2 )i−1
j=0

LD(sj)
( m

2 )i . Since
LD(sj) ≤ baseload(TM), 0 ≤ j ≤ (m

2 )i − 1, we have
load(l) ≤ baseload(TM). Note that there is no restriction
on the link l and traffic matrix TM . Hence, for all links
and all traffic matrices, we have load(l) ≤ baseload(TM) ≤
OPTU(TM). Hence, PERF (OMRMN) = 1. 2

Corollary 1 For any FT (m, n) and any traffic matrix TM ,
OPTU(TM) = baseload(TM). 2

Theorem 1 states that OMRMN is optimal for all traffic
patterns. However, OMRMN uses all of the shortest paths
between two processing nodes. We will refer to it as an
unrestricted multi-path routing scheme. Practical system area
networks cannot support such unrestricted multi-path routing
in large fat-trees, and the performance of more restricted forms
of routing must be studied.

IV. LOWER BOUNDS OF OBLIVIOUS PERFORMANCE RATIO
FOR SINGLE PATH ROUTING

We will first introduce some concepts that will be used later
in the lower bound derivation. Let A = {(s1, d1), (s2, d2), ...}

be a set of source-destination (SD) pairs.
Definition 1: The set of SD pairs, A = {(s1, d1), (s2, d2), ...},
is said to be node disjoint if for any (si, di) ∈ A and
(sj , dj) ∈ A with i 6= j, we have si 6= sj and di 6= dj .

Basically, in a node disjoint set of SD pairs, each source
(in the source-destination pairs) appears in the set as a source
exactly once; and each destination appears as a destination
exactly once. A node may appear as a source and as a
destination in a node disjoint set. For example, {(1, 2), (1, 3)}
is not a node disjoint set while {(1, 2), (3, 1)} is.
Definition 2: For a set of SD pairs A, a set of SD pairs B is
said to be a node disjoint subset of A when (1) B ⊆ A; and
(2) B is a node disjoint set.
Definition 3: For a given set of SD pairs A, a set of SD pairs
B is said to be a largest node disjoint subset of A when (1)
B is a node disjoint subset of A; and (2) for any node disjoint
subset C of A, |B| ≥ |C|. We let L(A) be the size of a largest
node disjoint subset of A.

Let SA
s = {(s, x)|(s, x) ∈ A} be the set of SD pairs

in A with source node s and DA
d = {(x, d)|(x, d) ∈ A}

be the set of SD pairs in A with destination node d.
SRC(A) = {s|∃(s, d) ∈ A} is the set of source nodes in
A and DST (A) = {d|∃(s, d) ∈ A} is the set of destination
nodes in A. We denote by LS(A) the largest number of SD
pairs in A either with the same source or with the same
destination. Formally,

LS(A) = max{ max
s∈SRC(A)

|SA
s |, max

d∈DST (A)
|DA

d |}.

For any node i, |SA
i | ≤ LS(A) and |DA

i | ≤ LS(A).
Consider for example A =

{(1, 2), (1, 3), (2, 1), (2, 4), (3, 1)}. The set {(1, 2), (2, 1)} is
a node disjoint subset of A, but not a largest node disjoint
subset. Both {(1, 2), (2, 4), (3, 1)} and {(1, 3), (2, 4), (3, 1)}
are largest node disjoint subsets of A. Hence, L(A) = 3.
SRC(A) = {1, 2, 3}; and DST (A) = {1, 2, 3, 4}.
SA

1 = {(1, 2), (1, 3)}; SA
2 = {(2, 1), (2, 4)}; and

SA
3 = {(3, 1)}. DA

1 = {(2, 1), (3, 1)}; DA
2 = {(1, 2)};

DA
3 = {(1, 3)}; and DA

4 = {(2, 4)}. Hence, LS(A) = 2.
Lemma 1: Let A be a set of SD pairs, |SRC(A)| ≥ L(A)
and |DST (A)| ≥ L(A).
Proof: Straight-forward from the largest node disjoint subset
definition. 2

Lemma 2: Let A and B be two sets of SD pairs, L(A) +
L(B) ≥ L(A

⋃

B).
Proof: Let C be a largest node disjoint subset of A

⋃

B. |C| =
L(A

⋃

B). Each element in C must either be in A, or in B
(or in both A and B). Let CA = {(s, d)|(s, d) ∈ C ∩ A} and
CB = {(s, d)|(s, d) ∈ C ∩B}. We have |CA|+ |CB| ≥ |C| =
L(A

⋃

B). Since CA is a node disjoint subset of A and CB is
a node disjoint subset of B, by definition, L(A) ≥ |CA| and
L(B) ≥ |CB |. Hence, L(A) + L(B) ≥ L(A

⋃

B). 2

Lemma 3: Let A be a set of SD pairs. If there is a source
node s such that |SA

s | > L(A), then L(A−SA
s ) = L(A)− 1.

Proof: Since SA
s has only one source node, L(SA

s ) = 1.
From Lemma 2, we have L(A − SA

s ) + L(SA
s ) ≥ L((A −

SA
s )

⋃

SA
s ) = L(A). Hence, L(A − SA

s ) ≥ L(A) − 1.
Next, we will prove L(A − SA

s ) ≤ L(A) − 1 by contra-
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diction. Let B = {(s1, d1), (s2, d2), ..., (sk , dk)} be a largest
node disjoint subset of A − SA

s . Assume that |B| = k =
L(A − SA

s ) > L(A) − 1. Since A − SA
s is a subset of A,

k ≤ L(A). Hence, k must be exactly equal to L(A). Since
|SA

s | > L(A) = k, there exists at least one (s, d) ∈ SA
s such

that d 6= di, 1 ≤ i ≤ k. Hence, the set C = B
⋃

{(s, d)} is
node disjoint and |C| = L(A) + 1. Since C is a node disjoint
subset of A, |C| ≤ L(A). This is the contradiction. Hence,
L(A − SA

a ) = L(A) − 1. 2

Lemma 3a: Let A be a set of SD pairs. If there is a node d
such that |DA

d | > L(A), then L(A − DA
d ) = L(A) − 1. 2

Lemma 4: Let A be a set of SD pairs. If there exist k source
nodes si, 1 ≤ i ≤ k, such that |SA

si
| > L(A), and l destination

nodes dj , 1 ≤ j ≤ l, such that |DA
dj
| > L(A), then L(A −

⋃k

i=1 SA
si
−

⋃l

j=1 DA
dj

) = L(A) − k − l.
Proof: The conclusion in this lemma is obtained by repeatedly
applying Lemma 3 and Lemma 3a. 2.
Lemma 5: Let A be a set of SD pairs. |A| ≤ L(A)×LS(A).
Proof: See Appendix. 2

We use a topology, called extended 2-layer fat-tree
(EFT2(m, k)), in the derivation of the lower bounds.
EFT2(m, k) contains two levels of switches. The top level
contains m

2 k-port switches. The bottom level contains k m-
port switches. Half of the m ports in the bottom level switches
are used to connect to processing nodes and the other half
connect to top level switches. There is a link between each
top level switch and each bottom layer switch. The structure of
EFT2(m, k) is similar to FT (m, 2) (shown in Fig. 6) except
that EFT2(m, k) allows different types of switches in the two
levels. FT (m, 2) is the same as EFT2(m, m). A sub-graph of
EFT2(m, k), called SEFT2(m, k), contains all lower level
switches and processing nodes in EFT2(m, k), but only one
top level switch. Fig. 7 shows the SEFT2(m, k) topology,
which is basically a regular tree topology with the root having
k children and each level 1 switch having m

2 children. In
Fig. 7, we separate the two directional channels.
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each switch is numbered by a tuple: (number, level)

Fig. 6. FT (m, 2) topology
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Fig. 7. SEFT2(m,k) topology

In EFT2(m, k), there are m
2 upper level switches and

each of the k lower level switches connects directly to each
of the upper level switches. Hence, by routing different SD
pairs through different upper level switches, this topology can
provide m

2 link disjoint paths for any m
2 node disjoint SD pairs.

As a result, if a scheme routes X , X ≤ m
2 , node disjoint SD

pairs on a link, the performance ratio of this routing scheme
is at least X since the X node disjoint SD pairs can be routed
using a set of link disjoint paths. Lemmas 6 and 7 formally
capture this intuition.
Lemma 6: Let the processing nodes in EFT2(m, k) be
numbered from 0 to N−1. Let A = {(s1, d1), ..., (s|A|, d|A|)}
be a set of node disjoint SD pairs (for 1 ≤ i ≤ |A|,
si ∈ {0, ..., N − 1} and di ∈ {0, ..., N − 1}). When |A| ≤ m

2 ,
the SD pairs in A can be routed in EFT2(m, k) with |A| link
disjoint paths.
Proof: Since |A| ≤ m

2 , we can assign a different top level
switch SWi for each SD pair (si, di) ∈ A. For each (si, di),
if si and di connect to the same (lower level) switch SW , the
path from si to di is si → SW → di. If si and di are not in
the same switch, let si connect to SW1 and di to SW2. The
path for (si, di) is si → SW1 → SWi → SW2 → di. Since
A is node disjoint, all of the paths are link disjoint. 2

Lemma 7: Let sr be a single path routing on EFT2(m, k).
Assume that under routing sr, there exists a link l that carries
traffic for a set A of node disjoint SD pairs, |A| ≤ m

2 , Then,
PERF (sr) ≥ |A|.
Proof: Consider a traffic matrix TM where tmi,j = 1 for
all (i, j) ∈ A and all other entries are 0. From Lemma 6,
there exists a routing scheme sr′ that routes the SD pairs in
A using link disjoint paths. Hence, MLOAD(sr′, TM) = 1
and OPTU(TM) ≤ 1. Since using routing sr, the load on
link l is |A| and MLOAD(sr, TM) ≥ |A|. Hence,

PERF (sr) ≥ MLOAD(sr, TM)

OUTU(TM)
≥ |A|

1
= |A|.2

For a single path routing r, let us define the maximum
disjoint size on link l, mds(r, l), to be the size of the largest
node disjoint subset of the set of SD pairs routed on l.
In EFT2(m, k) and SEFT2(m, k), a level 1 link directly
connected to a processing node: the SD pairs on that link
has at most one source node or one destination node. From
Lemma 1, the maximum disjoint size on such a link is at most
1. The maximum disjoint size of routing r, mds(r), is defined
as mds(r) = maxl∈Links mds(r, l).

Lemma 8 and Theorem 2 prove the lower bound of
the oblivious performance ratio for single path routing on
EFT2(m, k). The proof follows the following logic. To
realize routes for all SD pairs in EFT2(m, k), there are
k(k − 1)(m

2 )2 SD pairs that must be routed through upper
level switches. Since there are m

2 upper level switches in
EFT2(m, k), at least one upper level switch must carry
at least k(k − 1)m

2 SD pairs. This particular upper level
switch, the lower switches, and processing nodes form an
SEFT2(m, k). Lemma 8 proves a more general result, im-
plying that to carry traffic for k(k−1)m

2 SD pairs through the
root in the SEFT2(m, k), at least one link must carry traffic
for

√

m
2 node disjoint SD pairs. Combining these results with

Lemma 7, we derive the lower bound for EFT2(m, k).
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Lemma 8: Consider using the SEFT2(m, k) topology to
route a subset of all possible SD pairs. If the largest of the
maximum disjoint sizes of all links is at most X, the number
of SD pairs routed through the root is at most k(k − 1)X2

when X ≥ m
k

.
Proof: Let (s, d) be a SD pair. The pair must be routed through
the root only when nodes s and d are connected to different
switches. We will call the root switch in SEFT2(m, k) switch
(R, 0) and the k level 1 switches (0, 1), (1, 1), ..., (k − 1, 1)
as shown in Fig. 7. Let S be a largest set of SD pairs that
are routed through the root when the largest of the maximum
disjoint sizes of all links is at most X. Let Si,j , 0 ≤ i 6=
j ≤ k − 1, be the set of SD pairs in S with source nodes
in switch (i, 1) and destination nodes in switch (j, 1). S =
⋃

i,j such that 0≤i6=j≤k−1 Si,j . Let us denote

LXsrc
i,j =

⋃

a such that a∈SRC(Si,j) and |SSi,j
a |>X

SSi,j
a

Let Ei,j = |SRC(LXsrc
i,j )|. For the SD pairs in Si,j , Ei,j

is the number of source nodes in switch (i, 1), each of which
having more than X destination nodes in switch (j, 1). LXsrc

i,j

contains all such SD pairs. Similarly, we will denote

LXdst
i,j =

⋃

d such that d∈DST (Si,j) and |DSi,j

d
|>X

D
Si,j

d

Let Fi,j = |DST (LXdst
i,j )|. For the SD pairs in Si,j , Fi,j is the

number of destination nodes in switch (j, 1), each of which
having more than X source nodes in switch (i, 1). LXdst

i,j

contains all such SD pairs.
All SD pairs in Si,j must pass through links (i, 1) → (R, 0)

and (R, 0) → (j, 1). First, let us consider link (i, 1) → (R, 0).
Let all SD pairs with source nodes in (i, 1) be All(i,1)→(R,0) =
⋃

j 6=i Si,j . All SD pairs in All(i,1)→(R,0) must go through
link (i, 1) → (R, 0). Hence, L(All(i,1)→(R,0)) ≤ X . From
Lemma 4, L(All(i,1)→(R,0)−

⋃

x6=i LXsrc
i,x ) ≤ X−

∑

x6=i Ei,x.
Since Si,j − LXsrc

i,j ⊆ All(i,1)→(R,0) − ⋃

x6=i LXsrc
i,x , we

have L(Si,j − LXsrc
i,j ) ≤ L(All(i,1)→(R,0) −

⋃

x6=i LXsrc
i,x ) ≤

X − ∑

x6=i Ei,x. Hence, applying Lemma 4,

L(Si,j − LXsrc
i,j − LXdst

i,j ) ≤ X −
∑

x6=i

Ei,x − Fi,j .

Using the similar logic, by considering link (R, 0) → (j, 1),
we can obtain

L(Si,j − LXsrc
i,j − LXdst

i,j ) ≤ X − Ei,j −
∑

x6=j

Fx,j .

Combining these two inequalities, we obtain L(Si,j −
LXsrc

i,j − LXdst
i,j ) ≤ X − (

∑

x6=i Ei,x + Fi,j + Ei,j +
∑

x6=j Fx,j)/2. Each source or destination node in Si,j −
LXsrc

i,j − LXdst
i,j can have no more than X SD pairs in the

set (otherwise, these SD pairs would be included in either
LXsrc

i,j or LXdst
i,j ). Hence, LS(Si,j −LXsrc

i,j −LXdst
i,j ) ≤ X .

From Lemma 5, |Si,j −LXsrc
i,j −LXdst

i,j | ≤ L(Si,j −LXsrc
i,j −

LXdst
i,j )×LS(Si,j −LXsrc

i,j −LXdst
i,j ) ≤ (X − (

∑

x6=i Ei,x +
Fi,j + Ei,j +

∑

x6=j Fx,j)/2) × X . Hence,

|⋃k−1
i=0

⋃

j 6=i(Si,j − LXsrc
i,j − LXdst

i,j )|

≤ ∑k−1
i=0

∑

j 6=i |Si,j − LXsrc
i,j − LXdst

i,j |
≤

∑k−1
i=0

∑

j 6=i X × (X−(
∑

x6=i Ei,x + Fi,j

+Ei,j +
∑

x6=j Fx,j)/2)

= k(k − 1)X2 −X
2

∑k−1
i=0

∑

j 6=i(
∑

x6=i Ei,x + Ei,j)

−X
2

∑k−1
i=0

∑

j 6=i(
∑

x6=j Fx,j + Fi,j)

The values of j and x are in the range 0..k − 1 and are
not equal to i. Thus,

∑

j 6=i

∑

x6=i Ei,x = (k − 1)
∑

j 6=i Ei,j .
This can be seen by expanding the summation form: each
term Ei,j , j 6= i, happens k − 1 times in the summation.
Hence,

∑

j 6=i(
∑

x6=i Ei,x + Ei,j) = k
∑

j 6=i Ei,j . Similarly,
∑

j 6=i(
∑

x6=j Fx,j + Fi,j) = k
∑

j 6=i Fi,j . Hence,

|⋃k−1
i=0

⋃

j 6=i(Si,j − LXsrc
i,j − LXdst

i,j )|
≤ k(k − 1)X2 − kX

2

∑k−1
i=0

∑

j 6=i Ei,j − kX
2

∑k−1
i=0

∑

j 6=i Fi,j

Since each switch connects to m
2 processing nodes,

LXsrc
i,j ≤ Ei,j × m

2 and LXdst
i,j ≤ Fi,j × m

2 . Hence,

|S| = |⋃k−1
i=0

⋃

j 6=i Si,j |
≤ |⋃k−1

i=0

⋃

j 6=i((Si,j − LXsrc
i,j − LXdst

i,j )
⋃

LXsrc
i,j

⋃

LXdst
i,j )|

≤ |
⋃k−1

i=0

⋃

j 6=i(Si,j − LXsrc
i,j − LXdst

i,j )|
+|⋃k−1

i=0

⋃

j 6=i LXsrc
i,j | + |⋃k−1

i=0

⋃

j 6=i LXdst
i,j |

≤ k(k − 1)X2 − kX
2

∑k−1
i=0

∑

j 6=i Ei,j − kX
2

∑k−1
i=0

∑

j 6=i Fi,j

+m
2

∑k−1
i=0

∑

j 6=i Ei,j + m
2

∑k−1
i=0

∑

j 6=i Fi,j

= k(k − 1)X2

−(kX
2 − m

2 )(
∑k−1

i=0

∑

j 6=i Ei,j +
∑k−1

i=0

∑

j 6=i Fi,j)

When X ≥ m
k

, kX
2 ≥ m

2 . Thus, |S| ≤ k(k − 1)X2. 2

Let us denote by T (X) the maximum number of SD
pairs routed through SEFT2(m, k) when the largest of the
maximum disjoint sizes of the links in SEFT2(m, k) is X.
Obviously, when X > Y and T (Y ) is less than the total
number of SD pairs that can be routed, T (X) > T (Y )
regardless of the relation among X , m, and k. Lemma 8
states that when X ≥ m

k
, T (X) ≤ k(k − 1)X2. Hence, when

X < m
k

, T (X) < T (m
k

) ≤ k(k − 1)(m
k

)2.
Theorem 2: Let r be a single path routing algorithm on
EFT2(m, k). If k ≥

√
2m, PERF (r) ≥

√

m
2 .

Proof: Regardless of the single path routing algorithm r
used, k(k − 1)(m

2 )2 SD pairs must be routed through
top level switches. Since there are m

2 top level switches
in EFT2(m, k), at least one top level switch must
carry k(k−1)( m

2 )2

m
2

= k(k − 1)m
2 SD pairs. Consider the

SEFT2(m, k) formed by this particular top level switch
(with k(k − 1)m

2 SD pairs passing through) with all level 1
switches and all processing nodes. Let the maximum disjoint
size of the links connecting to this switch be X. Under the
assumption k ≥

√
2m, if X < m

k
≤ m√

2m
=

√

m
2 , T (X) <

k(k−1)(m
k

)2 ≤ k(k−1)m
2 . Since there are k(k−1)m

2 SD pairs
that must be routed through the switch (T (X) ≥ k(k− 1) m

2 ),
X <

√

m
2 cannot be true. Thus, X ≥

√

m
2 . Since m

2 ≥
√

m
2 ,

from Lemma 7, PERF (r) ≥
√

m
2 . 2

Theorem 3: Let r be a single path routing algorithm for
FT (m, 2), m ≥ 2, PERF (r) ≥

√

m
2 .

Proof: FT (m, 2) is equivalent to EFT2(m, m). Since in
FT (m, 2), m ≥ 2 and m ≥

√
2m. From Theorem 2,

PERF (r) ≥
√

m
2 . 2
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Theorem 4: Let r be a single path routing algorithm for
FT (m, 3), PERF (r) ≥ m

2 .
Proof: FT (m, 3) is composed by top level switches (m-
port) with m SUBFT (m, 2)’s. Let us consider the maximum
disjoint sizes on the links that connect the SUBFT (m, 2)’s
with the root level switches (Level 0 links). By treating
each SUBFT (m, 2) as one 2(m

2 )2-port switch, FT (m, 3)
is approximated as EFT2(2(m

2 )2, m). The top level links
in EFT2(2(m

2 )2, m) correspond to the top level links in
FT (m, 3). For any routing algorithm r on FT (m, 3), there
is a routing algorithm r′ on EFT2(2(m

2 )2, m) such that
the corresponding top level links are used exactly the same.
Following the proof of Theorem 2, since m ≥

√

2 × 2(m
2 )2,

for any r′ on EFT2(2(m
2 )2, m), the largest of the maximum

disjoint size of the level 0 links is at least
√

2×( m
2 )2

2 = m
2 .

Hence, for the any routing r on FT (m, 3), there exists a link
carrying at least m

2 node disjoint SD pairs. Let this set of
node disjoint SD pairs be A. Consider the traffic matrix TM
where tmi,j = 1 for all (i, j) ∈ A and all other entries are
0. Clearly, MLOAD(r, TM) ≥ m

2 . Since A is node disjoint,
each node sends and receives at most 1 unit of traffic and
baseload(TM) = OPTU(TM) = 1 (Corollary 1). Thus,

PERF (r) ≥ MLOAD(r, TM)

OPTU(TM)
=

m

2
.2

Theorem 5: Let r be a single path routing algorithm for
FT (m, n), PERF (r) ≥ (m

2 )b
n−1

3 c.
Proof: Let us consider the maximum disjoint sizes on links
connecting to up-link ports of SUBFT (m, i)’s, 1 ≤ i ≤
n − 1, in FT (m, n). From Property 1 and Property 2 of
FT (m, n), the connectivity in FT (m, n) can be partitioned
into two levels (with respective to such links): the lower
level connectivity provided by SUBFT (m, i)’s and the upper
level connectivity provided by the upper level switches for
SUBFT (m, i)’s. The connectivity in SUBFT (m, i) can be
approximated as a 2(m

2 )i-port switch; and the upper level
switches that connect the up-link ports with the same port
number in each of the SUBFT (m, i) (Property 2), which
approximates a m(m

2 )n−1−i-port switch. Consider the case
when i = b 2(n−1)

3 c, the topology can be approximated by
EFT2(2(m

2 )b
2(n−1)

3 c, m(m
2 )d

n−1
3 e). Following the same logic

as the proof of Theorem 4, for any r on FT (m, n), there

exists a link carrying at least

√

2( m
2 )b

2(n−1)
3

c

2 = (m
2 )b

n−1
3 c

node disjoint pairs and

PERF (r) ≥ (
m

2
)b

n−1
3 c.2

V. OPTIMAL SINGLE PATH OBLIVIOUS ROUTING FOR
FT (m, 2) AND FT (m, 3)

Most practical fat-trees have no more than three levels of
switches since such topologies can already support thousands
of processing nodes. For example, FT (24, 3) supports 3456
process nodes; FT (32, 3) supports 8192 processing nodes;
and FT (48, 3) can support 27648 processing nodes. Hence,
developing routing schemes for FT (m, 2) and FT (m, 3)
bears most practical significance. Moreover, the development

of these algorithms also has theoretical significance by making
the lower bounds of the oblivious performance ratio for
FT (m, 2) and FT (m, 3) (Theorem 3 and Theorem 4) tight
bounds. The proposed optimal single path oblivious routing
schemes are based on the following lemma.
Lemma 9: If a single path routing scheme r routes SD pairs
such that the SD pairs in each of the links in FT (m, n)
are either from at most X sources or towards at most X
destinations, then PERF (r) ≤ X .
Proof: As discussed earlier, for any traffic demand TM ,
on FT (m, n), OPTU(TM) ≥ baseload(TM). Since
each link carries traffic either from at most X sources
or towards X destinations, the load of the link is no
more than X × baseload(TM), hence, PERF (r, TM) ≤
X×baseload(TM)

baseload(TM) = X . Since this applies for any traffic
demand TM , PERF (r) ≤ X . 2

Existing routing schemes for the fat-tree topology [9], [15]
try to balance the link load by spreading the traffic among
different links. However, all of these schemes spread the
traffic with a “locally optimal” heuristic: they make sure that
the traffic from one node to all other nodes are spread out
uniformly among all possible links. However, such a locally
optimal heuristic is not globally optimal in the sense that a
link can potentially carry traffic from many sources and to
many destinations, which can potentially make the link a hot-
spot for some particular traffic patterns. The proposed optimal
oblivious routing schemes achieve global optimality by routing
traffics either from at most

√

m
2 sources or to at most

√

m
2

destinations on each link in FT (m, 2), and traffics either from
at most m

2 sources or to at most m
2 destinations on each link in

FT (m, 3). From Lemma 9, this ensures that the performance
ratios of our schemes are at most

√

m
2 for FT (m, 2) and m

2
for FT (m, 3), which are optimal (Theorems 3 and 4).

A. Optimal oblivious routing for FT (m, 2)

To describe the oblivious routing algorithm, we will give
a non-recursive description of FT (m, 2). FT (m, 2) contains
3m
2 switches and supports m2

2 processing nodes. In this
topology, m

2 switches are in the level 0 and m switches are in
level 1. The m

2 top level switches are labeled switches (0, 0),
(1, 0), ..., (m

2 − 1, 0). The m level 1 switches are labeled
switches (0, 1), (1, 1), ..., (m − 1, 1). Each level 1 switch
(i, 1), 0 ≤ i ≤ m − 1, is connected with m

2 processing nodes
numbered as (i, 0), (i, 1), ..., (i, m

2 −1). Notice that the process
nodes and switches are numbered independently. There is a
link between switch (i, 0), 0 ≤ i ≤ m

2 − 1, and switch (j, 1),
0 ≤ j ≤ m − 1. For 0 ≤ i ≤ m − 1, there is a link between
processing node (i, x), 0 ≤ x ≤ m

2 − 1, and switch (i, 1).
Fig. 8 depicts the FT (8, 2) topology as well as the switch
and processing node labeling.

To ease exposition, let us assume that
√

m
2 is an integer. Our

algorithm OSRM2, described in Fig. 9, can also handle the
case when

√

m
2 is not an integer. In FT (m, 2), each level 1

link connects to 1 processing node and can only carry traffic
to and from one node (Property 5). Thus, We only need to
make sure that the traffic on each level 0 link has no more
than

√

m
2 sources or destinations.
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Let Z =
√

m
2 . OSRM2 partitions the m

2 = Z2 processing
nodes in each bottom level switch into Z groups, each group
having Z nodes. More specifically, the m

2 processing nodes
connected to switch (i, 1), 0 ≤ i ≤ m−1, are partitioned into
Z =

√

m
2 groups: group j, 0 ≤ j ≤ Z − 1, includes nodes

(i, j ∗Z), (i, j ∗Z + 1), ..., (i, j ∗Z + Z − 1). Let us denote
gi → gj as SD pairs from nodes in group i in the one switch
to nodes in group j in all other switches. Fig. 8 shows how the
routing algorithm works on FT (8, 2). In FT (8, 2), m

2 = 4 and
√

m
2 = 2. As shown in the figure, the m

2 = 4 nodes attached
to each lower level switch are partitioned into two groups:
group 0 and group 1 with each group having 2 nodes. The SD
pairs are scheduled such that g0 → g0 goes through switch
(0, 0); g0 → g1 goes through switch (1, 0); g1 → g0 goes
through switch (2, 0); and g1 → g1 goes through switch (3,
0). Since each upper level switch carries SD pairs from nodes
in one group to nodes in another group, each up link (to a top
level switch) carries SD pairs with exactly

√

m
2 sources and

each down link (to a lower level switch) carries SD pairs with
exactly

√

m
2 destinations.

g −>g0 0
g −>g0 1

g −>g1 0

g −>g1 1

g −>g0 0
g −>g0 1 g −>g1 0

g −>g1 1

������������ ���� ���� ����
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group 0

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (7, 1)

group 1 nodes (7, 0)    (7, 1)    (7, 2)    (7, 3)     

Fig. 8. Optimal oblivious routing for FT (8, 2)

For a general FT (m, 2), the SD pairs are scheduled as
follows. The up-link (i, 1) → (j, 0), 0 ≤ i ≤ m − 1 and
0 ≤ j ≤ m

2 − 1, carries SD pairs with source nodes in group
j/Z in switch (i, 1) and destination nodes in group j mod Z in
all other switches. OSRM2 is shown in Fig. 9. When

√

m
2 is

an integer, the algorithm works exactly as just described. When
√

m
2 is not an integer, the algorithm partitions the m

2 sources
attached with each of the level 1 switch into Zs = d

√

m
2 e

groups and the m
2 destinations into Zd = b

√

m
2 c groups. It

then uses the same logic as the cases when
√

m
2 is an integer

to schedule the SD pairs.
Theorem 6: When

√

m
2 is an integer, PERF (OSRM2) =

√

m
2 .

Proof: As discuss earlier, using OSRM2, each link carries
traffic either from

√

m
2 sources or to

√

m
2 destinations. From

Lemma 9, PERF (OSRM2) ≤
√

m
2 . From Theorem 3,

PERF (OSRM2) ≥
√

m
2 . Hence, PERF (OSRM2) =

√

m
2 and OSRM2 is an optimal oblivious routing algorithm

for FT (m, 2) when
√

m
2 is an integer. 2

B. Optimal oblivious routing for FT (m, 3)

We will now consider FT (m, 3). FT (m, 3) contains three
levels of switches, with the top level having nu(m, 2) = m

2 ×
m
2 switches and each of the other levels having m×m

2 switches
(m SUBFT (m, 2)’s, each SUBFT (m, 2) having m

2 switches
at each level). We label the switches by ((i0, i1), level): the

Algorithm OSRM2:

Route from node (s0, s1) to node (d0, d1)
Let m2 = m

2 ;
Let Zs = d

√
m2e, Zd = b

√
m2c;

Let Ns = dm2
Zs

e, Nd = dm2
Zd

e;
if (s0 == d0)

use route: node(s0, s1) → switch(s0, 1) → node(d0, d1)
if (s0! = d0)

use route: node(s0, s1) → switch(s0, 1)
→ switch(s1/Ns ∗ Nd + d1/Nd, 0)
→ switch(d0, 1) → node(d0, d1)

Fig. 9. Optimal oblivious routing for FT (m, 2)

top level switches are labeled as ((i0, i1), 0), 0 ≤ i0 ≤ m
2 − 1

and 0 ≤ i1 ≤ m
2 − 1; the level 1 switches are labeled as

((i0, i1), 1), 0 ≤ i0 ≤ m − 1, and 0 ≤ i1 ≤ m
2 − 1; the level

2 switches are labeled as ((i0, i1), 2), 0 ≤ i0 ≤ m − 1 and
0 ≤ i1 ≤ m

2 − 1. Notice that in the switch labeling, for levels
1 and 2, i0 identifies the columns corresponding to the i0-
th SUBFT (m, 2) and i1 identifies the column corresponding
to the i1-th SUBFT (m, 1) within the i0-th SUBFT (m, 2).
A FT (m, 3) has m × m

2 × m
2 processing nodes, which are

labeled as (p0, p1, p2), 0 ≤ p0 ≤ m−1, 0 ≤ p1 ≤ m
2 −1, and

0 ≤ p2 ≤ m
2 − 1. A processing node (p0, p1, p2) is attached

to switch ((p0, p1), 2), 0 ≤ p0 ≤ m−1, 0 ≤ p1 ≤ m
2 −1, and

0 ≤ p2 ≤ m
2 −1. A level 2 switch ((i0, i1), 2), 0 ≤ i0 ≤ m−1

and 0 ≤ i1 ≤ m
2 −1, has a link to each of the level 1 switches

((i0, X), 1), 0 ≤ X ≤ m
2 − 1. A level 1 switch ((i0, i1), 1),

0 ≤ i0 ≤ m − 1 and 0 ≤ i1 ≤ m
2 − 1, has a link to each of

the level 0 switches ((i1, X), 0), 0 ≤ X ≤ m
2 − 1.

Like in the FT (m, 2) case, our optimal routing algorithm
ensures that the SD pairs on each link are either from at most
m
2 sources or towards at most m

2 destinations. From Property 5
in Section II-B, each level 1 or level 2 link in FT (m, 3) carries
traffic either from no more than m

2 sources or to no more than
m
2 destinations. Hence, routing within each SUBFT (m, 2)

does not affect the performance oblivious ratio. Hence, we
only need to focus on level 0 links. The idea is similar to that
in OSRM2: the routing algorithm ensures that each up link
out of the sub-fat-tree SUBFT (m, 2) carries traffic from m

2
sources and each down link to a SUBFT (m, 2) carries traffic
to m

2 destinations. Basically, we can treat each SUBFT (m, 2)
as if it is a 2(m

2 )2-port switch that connects to (m
2 )2 processing

nodes and has (m
2 )2 up-links. The routing algorithm partitions

the 2( m
2 )2

2 = Z2 processing nodes in a SUBFT (m, 2) into
Z = m

2 groups, each group having Z = m
2 nodes. Node

(p0, p1, p2) is in group p2 of the p0-th SUBFT (m, 2). The
routing for links between SUBFT (m, 2) and the top level
switch is similar to that for links between level 1 switches
to level 0 switches in FT (m, 2): the up-link ((i0, 0), 1) →
((0, 0), 0) carries traffic from group 0 processing nodes (in
the i0-th SUBFT (m, 2))to group 0 processing nodes in other
SUBFT (m, 2)’s; ((i0, 0), 1) → ((0, 1), 0) carries traffic from
group 0 processing nodes to group 1 processing nodes in other
SUBFT (m, 2)’s; and so on. The detailed routing algorithm,
called OSRM3, is shown in Fig. 10
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Algorithm OSRM3:

Route from node (s0, s1, s2) to (d0, d1, d2):
if (s0 == d0 and s1 == d1)

/* within one SUBFT (m, 2)*/
/* routing won’t affect the oblivious ratio */
Use route: node(s0, s1, s2) → switch((s0, s1), 2)

→ node(d0, d1, d2)
else if (s0 == d0)

/* within one SUBFT (m, 2) */
/* routing won’t affect the oblivious ratio */
Use route: node(s0, s1, s2) → switch((s0, s1), 2)

→ switch((s0, s2), 1)
→ switch((s0, d1), 2)
→ node(d0, d1, d2)

else
/* must be careful about links to/from level 0 switches */
Use route: node(s0, s1, s2) → switch((s0, s1), 2)

→ switch((s0, s2), 1)
→ switch((s2, d2), 0)
→ switch((d0, s2), 1)
→ switch((d0, d1), 2)
→ node(d0, d1, d2)

Fig. 10. Optimal oblivious single routing for FT (m, 3)

Theorem 7: PERF (OSRM3) = m
2 .

Proof: From above discussion, using OSRM3, the SD pairs
on each link have either at most m

2 source nodes or at most m
2

destination nodes. From Lemma 9, PERF (OSRM3) ≤ m
2 .

From Theorem 4, an performance oblivious ratio of m
2 is the

low bound for any single path routing scheme on FT (m, 3).
Hence, PERF (OSRM3) = m

2 and OSRM3 is an optimal
oblivious routing algorithm for FT (m, 3). 2

The proposed oblivious routing algorithms, OSRM2,
OSRM3, and OMRMN , are quite simple. The paths be-
tween two nodes can basically be enumerated, and thus, can
be established with either a centralized or a distributed scheme.
Detailed realization of the routing schemes is beyond the scope
of this paper. Interested readers can refer to other literature
such as [9] for more details.

In fat-trees with uncertain traffic demands, the performance
of (unrestricted) multi-path routing is much better than that of
single path routing. These results argue strongly that in a large
fat-tree based system area network, the unrestricted multi-path
routing should be used to alleviate the network contention
problem. Moreover, these results raise questions in the current
system area networks that only support a limited form of multi-
path routing. One example is the InfiniBand, where only a
limited number of paths (128) between any two processing
nodes are supported. With such a restriction, it is difficult to
achieve optimal load balancing with multi-path routing in fat-
trees.

VI. PERFORMANCE STUDY

We compare the performance of several known single path
routing algorithms, including the Multiple LID algorithm
(MLID) in [15] and the widest shortest routing (WSR)
algorithm. WSR was designed to achieve load balancing in

FT (m, 2) FT (m, 3)
OMRMN 1 1

OSRM2
√

m
2 -

OSRM3 - m
2

MLID m
2 m − 1

WSR m
2 m − 1

TABLE I
OBLIVIOUS PERFORMANCE RATIOS OF DIFFERENT ROUTING ALGORITHMS

the Internet environment. It works as follows. We first generate
a traffic matrix where each SD pair has one unit of traffic.
All links in the network are initialized with the same weight.
The algorithm then computes routes for each SD pair in
the following order (0, 1), (0, 2), ..., (0, N − 1), (1, 0), ...,
(1, N − 1), ......, (N − 1, 1), (N − 1, 1), ..., (N − 1, N − 2).
Every time a route is computed, the weight of each of the
links along the route is increased by 1. When computing the
route for each SD pair, the path with the smallest accumulated
weight is selected. Note that the “shortest” heuristic enforces
that only the shortest paths between two nodes are selected;
and the “widest” heuristic spreads traffic from the same source
among all links in the fat-tree. A recently proposed scheme
[9] yields exactly the same routes as WSR.

Table I shows the oblivious performance ratios for different
routing algorithms. The worst case oblivious performance ra-
tios for MLID and WSR are obtained by analyzing the paths
computed by the algorithms. This table shows (1) that our
optimal single path oblivious routing algorithms provide better
performance guarantees than other existing single path routing
algorithms; and (2) that multi-path routing (OMRMN ) is
significantly better than single path routing.

We design experiments to investigate the performance of
single path routing algorithms with practical traffic patterns. In
particular, our optimal oblivious routing algorithms (OSRM2
and OSRM3) group SD pairs in a particular way so as to
guarantee the best performance in the worst case condition.
This, however, might yield lower performance on typical uni-
form traffic demands (average case performance). In fact, both
MLID and WSR fully spread traffic among all links in the
fat-tree topology and should perform well (among single path
routing schemes) for typical traffic demands. In this section,
we will use the average case performance in the comparison
and show that the proposed optimal oblivious algorithms not
only provide the optimal worst case performance guarantees,
but also often perform better in average cases. We will report
results for FT (32, 2), FT (8, 3), and FT (16, 3) that support
512, 128, and 1024 processing nodes respectively.

We will show the results for four types of traffic patterns:
random uniform traffic, regular traffic, clustered traffic, and
hot-spot traffic. In a random uniform traffic demand, each entry
in the traffic matrix has an equal probability to send 1 unit of
traffic (or not send any traffic). The regular traffic consists
five different patterns on all nodes in the system: ring, 2-
dimensional mesh, 3-dimensional mesh, hypercube, and binary
tree. These communication patterns are frequently used in
high performance applications. In a clustered traffic demand,
the processing nodes are partitioned into groups of the same
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size (size = 2, 4, 8, 16, 32, 64, 128 nodes). Each processing
node in the system is in one group. The members in each
group are randomly selected from all processing nodes. 1 unit
of data is communicated between each pair of nodes in one
group (all-to-all communication pattern within each group).
This patterns represent the cases when the nodes in the system
are allocated to different jobs with each job having the all-to-
all communication. The hot-spot traffic is created as follows:
the system contains a number of hot-spots, which are a group
of processing nodes performing the all-to-all communication
(1 unit of data between each pair in a hot-spot). The rest of
the system is quiet. The number of hot-spots and the size of
the hot-spots are parameters of this traffic pattern. For each
data point, we produce 32 random instances and report the
average performance ratio for the 32 instances. For regular
traffic patterns, the node assignment is randomly generated
for each instance. For example, in different ring patterns, the
nodes can be in different positions of the ring.

The results for the random uniform traffic on FT (16, 3) are
depicted in Fig. 11. The results on FT (32, 2) and FT (8, 3) are
very similar. For the random traffic with different probability
values, all of the single path routing algorithms achieve a
similar performance and their performance ratios are very
close to 1. This indicates that single path routing is effective
in dealing with such demands. All of the routing schemes
considered are able to evenly distribute the load when all pairs
are communicating. When the load is high (the probability
of the communication between two nodes is larger than
0.75), all schemes have a performance ratio of 1. When the
communication is more sparse, since MLID, OSRM3, and
WSR are deterministic and demand oblivious, they may not
perform as good as the optimal routing scheme, which is
typically demand-dependent. Hence, their performance ratios
are slightly higher (when the network load is lower). Note
again that the performance ratio is relative and is not directly
related to the absolute network performance.
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Fig. 11. Random uniform traffic on FT (16, 3)

Tables II and III show the performance of different routing
algorithms for regular traffic patterns. The regular traffic
patterns are imposed on all the nodes in the system. The
MLID and WSR always have exactly the same performance
ratio for symmetrical traffics on the fat-tree topology even
though paths between a pair of nodes are different under the
two routing schemes. They give different performance ratios

Traffic Average performance ratio
Pattern MLID/WSR OSRM2
Ring 3.47 2.97

2D Mesh 1.88 1.74
3D Mesh 2.34 2.14

Hypercube 2.03 1.90
Binary Tree 2.37 2.20

TABLE II
AVERAGE PERFORMANCE RATIO FOR REGULAR TRAFFIC ON THE WHOLE

FT (32, 2)

Topology Traffic Average performance ratio
Pattern MLID/WSR OSRM3
Ring 2.84 2.80

2D Mesh 1.64 1.63
FT (8, 3) 3D Mesh 2.04 1.99

Hypercube 1.90 1.90
Binary Tree 2.07 2.03

Ring 3.78 3.78
2D Mesh 2.83 2.83

FT (16, 3) 3D Mesh 2.48 2.43
Hypercube 2.11 2.10
Binary Tree 2.69 2.67

TABLE III
AVERAGE PERFORMANCE RATIO FOR REGULAR TRAFFIC ON THE WHOLE

FT (8, 3) AND FT (16, 3)

only when the traffic matrix is asymmetrical, like the random
traffic in Fig. 11. Thus, for all results presented in the rest
of this section where the traffic matrices are symmetrical, the
results for MLID and WSR will be given together. As can be
seen from Table II, OSRM2 offers a fairly large performance
improvement over MLID/WSR for the regular traffics on
FT (32, 2), ranging from 6.8% for the hypercube pattern to
16.8% for the ring pattern. For FT (16, 3) and FT (8, 3),
OSRM3 has slightly better performance, but the difference is
statistically insignificant. This shows that the proposed optimal
oblivious routing schemes do not sacrifice the average case
performance for these traffic patterns.

Fig. 12 shows the results for clustered traffic on FT (32, 2)
and Fig. 13 shows the results for FT (8, 3). Results for
FT (16, 3) are similar to those in FT (8, 3). As can be seen
from the figures, the single path routing algorithms are not
effective in dealing with such traffic demands: the average per-
formance ratios for all single path routing schemes are much
larger than 1, especially when the group size is small. This
indicates that with single path routing, the network contention
can be a problem with such traffic demands. The advantage
of our optimal oblivious routing scheme is manifested in
this experiment: OSRM2 performs noticeable better than
MLID/WSR. Notice that when the group size is equal to 2,
the average performance ratio for MLID/WSR is larger than
4 on FT (32, 2). OSRM2 guarantees that the performance
ratio for any traffic pattern is no more than

√

32
2 = 4. Our

schemes improve the performance noticeably on FT (32, 2),
but only slightly on FT (8, 3) and FT (16, 3).
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Fig. 12. Clustered traffic on FT (32, 2)
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Fig. 13. Clustered traffic on FT (8, 3)

Fig. 14 and Fig. 15 show the results for hop-spot traffics.
In the experiments, there are four hot-spots in the system with
the size of the hot-spots varying. The performance ratios of
all schemes are close to 1, which indicates that all schemes
can handle this traffic pattern effectively. The performance of
OSRM3 is similar to other single path routing schemes in
FT (16, 3) while OSRM2 is slightly (about 3% on average
among all cases in the experiment) worse than WSR/DLID
in FT (32, 2). This is the only case in all of our experiments
that OSRM2 performs worse on average: there exist traffic
patterns that our proposed algorithms cannot handle as good
as other algorithms. This is a common limitation of all
deterministic routing schemes.
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Fig. 14. Results for 4 hot-spots with different hot-spot sizes on FT (32, 2)

We have performed many other experiments with differ-
ent traffic demands: including clustered traffic with random
group sizes, clustered traffic with a random regular pattern
in each group, and clustered traffic with random traffic in
each group. We have also carried out experiments on other
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Fig. 15. Results for 4 hot-spots with different hot-spot sizes on FT (16, 3)

FT (m, 2)’s and FT (m, 3)’s. All of these experiments have
similar results: our optimal oblivious routing algorithms are
either comparable to or better than MLID and WSR on
average. Moreover, the improvement on FT (m, 2) is quite
noticeable in most cases as we showed in the figures and
tables, while the improvement on FT (m, 3) is small. This is
because OSRM2 improves the worst-case performance ratio
over MLID/WSR on FT (m, 2) by a factor of

m
2√
m
2

=
√

m
2

while OSRM3 improves the worst-case performance ratio
over MLID/WSR on FT (m, 3) by a factor of m−1

m
2

≈ 2.
The hot-spot traffic is the only case in all of our experi-
ments that the proposed schemes perform slightly worse than
other schemes on average. These results indicate that our
optimal single path oblivious routing algorithms can provide
performance guarantees without sacrificing the average case
performance and they often provide better performance in
average cases.

VII. RELATED WORK

The research most related to this work falls into three areas:
the development of system area networks, routing on fat-tree,
and oblivious routing. System area networks with the off-
the-shelf networking technology such as InfiniBand [16] and
Myrinet [22] have become more common recently. The load
balancing problems in such networks motivated this research.
Most routing research for system area networks (see for
example, [5], [6], [19], [24], [25]) has focused on developing
techniques for computing and establishing routes. In [9],
[15], routing algorithms were developed for fat-tree based
InfiniBand networks. We show that algorithms in [9], [15] are
not optimal oblivious routing schemes. Routing performance
with various routing algorithms, such as randomized routing
and adaptive routing, and various performance metrics on
the fat-tree topology has also been studied [8], [17], [18].
However, we are unaware of any work studying the routing
performance on fat-trees with deterministic routing when the
traffic demand is uncertain and changing.

Oblivious routing has recently attracted much attention due
to its effectiveness in guaranteeing routing performance under
uncertain and changing traffic demands in the Internet envi-
ronment [1], [2], [28]. The bounds of the competitive ratios
of oblivious routing on the general directed and undirected
topologies have been analyzed [3], [10], [11], [12], [23]. In
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[23], it was shown that for any undirected network, there exists
an oblivious randomized routing algorithm that can achieve
a polylogarithmic competitive ratio. The results in [3] show
that for directed network, the optimal competitive ratio of
oblivious routing algorithm is at least O(

√
n), where n is

the number of nodes in the network. Works in [10], [11]
considered the cases when demands are randomly chosen from
a known distribution, and showed that routing algorithms with
polylogarithmic competitive ratios can be obtained for directed
networks and that the competitive ratio cannot be significantly
improved. These lower bounds for general networks are much
higher than the lower bound for fat-trees. Various polynomial
time algorithms for computing the optimal oblivious routing
were also developed [1], [2], [3], [4], [13]. These algorithms
are still too computational intensive to be applied to find the
optimal oblivious routing scheme for large fat-trees. Moreover,
these methods can only be used to compute optimal oblivious
routing for unrestricted multi-path routing, but cannot be used
to compute optimal deterministic oblivious single path routing.
In this paper, we consider deterministic oblivious routing
in fat-trees. We show that in fat-trees, competitive ratio for
multi-path oblivious routing is 1, which is much smaller than
that lower bounds obtained for general networks. Moreover,
optimal oblivious routing for fat-trees with unrestricted multi-
path routing is given (OMRMN ) without running the high
complexity algorithms. We further give the bounds for the
competitive ratios of single-path oblivious routing and develop
optimal single path oblivious routing schemes for FT (m, 2)
and FT (m, 3). Oblivious routing on specific topologies has
also been studied [7], [14], [27]. However, the fat-tree topology
has not been investigated.

VIII. CONCLUSION

We study oblivious routing in fat-tree based system area
networks with deterministic routing under the assumption that
the traffic demand is uncertain and changing. We show that sin-
gle path routing cannot provide good performance guarantees
while unrestricted multi-path routing is effective in balancing
network loads in fat-trees. We develop optimal single path
oblivious routing schemes for FT (m, 2) and FT (m, 3) and
demonstrate that these optimal oblivious routing schemes
can not only provide the optimal worst-case performance
guarantees, but also offer better performance than existing
single path routing schemes in average cases. These results
may directly influence the design of systems with large scale
fat-tree based networks such as large HPC clusters.
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Routing on Node-Capacitated and Directed Graphs,” ACM Trans. on
Algorithms, Volume 3, Issue 4, Article No. 51, November 2007.

[13] C. Harrelson, K. Hildrum, and S. B. Rao, “A Polynomial-time Tree
Decomposition to Minimize Congestion,” In Proc. of the 15th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 34-43, 2003.

[14] C. Kaklamanis, D. Krizanc, and T. Tsantilas, “Tight Bounds for Obliv-
ious Routing in the Hypercube,” In Proc. of the 2nd ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 31-36, 1990.

[15] X. Lin, Y. Chung, and T. Huang, “A Multiple LID Routing Scheme for
Fat-Tree-Based InfiniBand Networks.” Proceedings of the 18th IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS’04),
p. 11a, Sana Fe, NM, April 2004.

[16] InfiniBandTM Trade Association, InfiniBand TM Architecture Specifi-
cation, Release 1.2, October 2004.

[17] C. E. Leiserson, “Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing.” IEEE Transactions on Computers, 34(10)892-901,
October 1985.

[18] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M.
N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre,
D. S. Wells, M. C. Wong-Chan, S-W. Yang, and R. Zak, “The network
architecture of the Connection Machine CM-5.” Journal of Parallel and
Distributed Computing, 33(2):145–158, Mar 1996.

[19] P. Lopez, J. Flich, and J. Duato, “Deadlock-Free Routing in InfiniBand
through Destination Renaming,” Proc. 2001 International Conference
on Parallel Processing (ICPP), pages 427-434, Sept. 2001.

[20] J.C. Martinez, J. Flich, A. Robles, P. Lopez, and J. Duato, “Supporting
Fully Adaptive Routing in InfiniBand Networks.” Proceedings of the
17th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’03), p44a, Nice, France, April 2003.

[21] Mellanox Technologies, “InfiniBand in the Enter-
prise Data Center.” White Paper, 2006. Available at
http://www.mellanox.com/pdf/whitepapers
/scaling10gbsclusters.pdf.

[22] Myricom home page, http://www.myri.com.
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APPENDIX

Lemma 5: Let A be a set of SD pairs. |A| ≤ L(A)×LS(A).
Proof: We will prove this lemma by induction on L(A).

Base case: when L(A) = 1, |A| ≤ LS(A). Let B =
{(s1, d1)} be one largest node disjoint subset of A. If A only
contains (s1, d1), the case is proven. Otherwise, there exists
another SD pair (s2, d2) in A. Since L(A) = 1, either s1 = s2

or d1 = d2. We will show that if s1 = s2, A = SA
s1

. Similar
logic can be used to show that if d1 = d2, A = DA

d1
. In both

case, |A| ≤ L(A) × LS(A) = LS(A).
Let us now prove that if s1 = s2, A = SA

s1
. Assume that

A 6= SA
s1

, there exists a SD pair (s, d) such that s 6= s1. In
this case, if d 6= d1, then {(s1, d1), (s, d)} is a node disjoint
subset of A; otherwise, d = d1 and {(s1, d2), (s, d)} is a node
disjoint subset of A. Hence, L(A) ≥ 2 (contradiction).

Induction case: Assume that |A| ≤ L(A) × LS(A) when
L(A) ≤ k (induction hypothesis), we will prove that |A| ≤
L(A) × LS(A) when L(A) = k + 1.

Let B = {(s1, d1), (s2, d2), ..., (sk+1, dk+1)} be a largest
node disjoint subset of A. If SRC(A) = {s1, s2, ..., sk+1},
|A| ≤ (k + 1)×LS(A) (since each source nodes can at most
have LS(A) SD pairs in A and there are k + 1 source nodes)
and the theorem is proven.

If SRC(A) ⊃ {s1, s2, ..., sk+1}, there must exist a source
node s ∈ SRC(A) such that s 6= si, 1 ≤ i ≤ k + 1. Let
(s, d) ∈ A. We have d ∈ DST (B) (Otherwise, (s, d)

⋃

B
is node disjoint and B is not a largest node disjoint subset).
Without loss generality, let d = d1. We have
{(s, d1), (s1, d1)} ⊆ DA

d1
. Obviously L(DA

d1
) = 1,

LS(DA
d1

) ≤ LS(A), and LS(A − DA
d1

) ≤ LS(A).
Next, we will show that L(A − DA

d1
) = k. From Lemma

2, L(A − DA
d1

) ≥ L(A) − L(DA
d1

) = k + 1 − 1 = k. Since
L(A) = k + 1 ≥ L(A−DA

d1
), to show that L(A−DA

d1
) = k,

we only need to show that L(A − DA
d1

) 6= k + 1. We prove
this by contradiction. Assume that L(A − DA

d1
) = k + 1. Let

C = {(s′1, d′1), (s′2, d′2), ..., (s′k+1, d
′
k+1)} be a largest node

disjoint subset of A−DA
d1

. We have s1 ∈ SRC(C) (otherwise,
C

⋃{(s1, d1)} is a node disjoint subset of A and L(A) ≥
k + 2). Similarly, s ∈ SRC(C). Let us assume that s1 =
s′1 and s = s′2. d′2 must be in DST (B) − {d1} (otherwise,
(s, d′2)

⋃

B is node disjoint and B is not the largest node
disjoint subset). Similarly, d′

1 must be in DST (B)−{d1}. Let
dk+1 = d′1 and d2 = d′2. We have s2 ∈ SRC(C) (otherwise,
C−{(s′2, d′2)}+{(s2, d2), (s, d1)} is a node disjoint subset of
A and L(A) ≥ k+2). This process (finding that a source node
si in B belongs to SRC(C) and then finding that destination
node d′ such that (si, d

′) ∈ C belongs to DST (B)) can be
repeated. Once the process cannot continue, one can construct
a node disjoint subset of A whose size is k + 2. Since there
are a finite number of elements in B and C, this process will
stop at some point (in the worst case, one of B or C runs
out of elements). Thus, L(A) ≥ k + 2, which contradicts the
assumption that L(A) = k + 1. Hence, L(A − DA

d1
) = k. By

the induction hypothesis,

|A − DA
d1
| ≤ L(A − DA

d1
) × LS(A − DA

d1
) ≤ k × LS(A)

|DA
d1
| ≤ L(DA

d1
) × LS(DA

d1
) ≤ LS(A).

Hence, |A| = |A − DA
d1
| + |DA

d1
| ≤ (k + 1) × LS(A). 2
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