
Bandwidth Optimal All-reduce Algorithms

for Clusters of Workstations

Pitch Patarasuk Xin Yuan∗

Department of Computer Science, Florida State University
Tallahassee, FL 32306

{patarasu, xyuan}@cs.fsu.edu

Abstract

We consider an efficient realization of the all-reduce operation with large data sizes
in cluster environments, under the assumption that the reduce operator is associative
and commutative. We derive a tight lower bound of the amount of data that must
be communicated in order to complete this operation and propose a ring-based algo-
rithm that only requires tree connectivity to achieve bandwidth optimality. Unlike
the widely used butterfly-like all-reduce algorithm that incurs network contention in
SMP/multi-core clusters, the proposed algorithm can achieve contention-free commu-
nication in almost all contemporary clusters including SMP/multi-core clusters and
Ethernet switched clusters with multiple switches. We demonstrate that the proposed
algorithm is more efficient than other algorithms on clusters with different nodal ar-
chitectures and networking technologies when the data size is sufficiently large.

Keywords: All-reduce, collective communication, tree topology, cluster of workstations

1 Introduction

The all-reduce operation combines values from all processes and distributes the results to

all processes. It is commonly used in parallel computing. In the Message Passing Interface

(MPI) standard [18], the routine for this operation is MPI Allreduce.

We consider an efficient realization of the all-reduce operation with large data sizes in

cluster environments, under the assumption that the reduce operator is associative and com-

mutative. We derive a tight lower bound of the amount of data that must be communicated

∗Contact author: Xin Yuan, xyuan@cs.fsu.edu, phone: (850)644-9133, fax: (850)644-0058.

in order to complete the all-reduce operation, and use the lower bound to establish the mini-

mum time required for this operation. We propose a ring-based algorithm for this operation

that achieves bandwidth optimality on tree topologies in that (1) each node sends the min-

imum amount of data required to complete this operation, and (2) all communications are

contention free.

Currently, the most widely used all-reduce scheme is the butterfly-like algorithm [22, 23,

27], where the all-reduce operation is realized with a recursive halving reduce-scatter followed

by a recursive doubling all-gather. When the network can support the butterfly communica-

tion pattern without contention, this algorithm is optimal both in the latency term (using the

minimum number of communication rounds needed) and in the bandwidth term (each node

communicating the minimum amount of data required). The problem with the butterfly-

like algorithm is that the butterfly communication pattern can cause network contention in

many contemporary clusters such as the widely deployed SMP/multi-core clusters. In the

contrast, our ring-based algorithm only requires a tree topology to be bandwidth optimal

and can achieve contention-free communication in almost all contemporary clusters includ-

ing SMP/multi-core clusters and Ethernet switched clusters with multiple switches. The

ring-based algorithm also requires less working memory and can be applied to clusters with

non-power-of-two numbers of nodes. One limitation of the proposed algorithm is that it is

only optimal in the bandwidth term, but not the latency term: the number of communi-

cation rounds is proportional to the number of processes. Another issue in the ring-based

algorithm is that the reduction results are computed with different “bracketing”, which may

cause problems in the presence of rounding errors.

We evaluate the proposed algorithm on various clusters of workstations, including high-end

SMP/multi-core clusters with Myrinet and InfiniBand interconnects and low-end Ethernet

switched clusters. The results show that the proposed algorithm significantly outperforms

other algorithms when the data size is sufficiently large, which demonstrates the effectiveness

2

of the proposed algorithm.

The rest of the paper is organized as follows. Section 2 introduces the all-reduce oper-

ation and the communication model that we use. In Section 3, we derive the theoretical

lower bound on the communication time required for this operation. Section 4 presents

the proposed bandwidth optimal all-reduce algorithm. Section 5 reports the results of our

experiments. The related work is discussed in Section 6. Section 7 concludes the paper.

2 Background

2.1 All-reduce operation

We will use a generic operator ⊕ to denote the reduce operator in the all-reduce operation.

MPI Allreduce requires the reduce operator to be associative, that is, (a⊕b)⊕c = a⊕(b⊕c).

Moreover, all built-in operations for MPI Allreduce are also commutative, that is, a⊕b = b⊕a.

We assume that the reduce operator is both associative and commutative in this paper.

In terms of operating results, an all-reduce operation is equivalent to a reduction operation

that reduces the results to one process, followed by a broadcast operation that distributes

the results to all processes. Specifically, let the N processes be denoted as p0, p1, ..., pN−1.

Before the all-reduce operation, each process pi, 0 ≤ i ≤ N − 1, has X data items a0
i , a1

i ,

..., aX−1
i . At the end of the operation, all processes have all X-item results r0, r1, ..., rX−1,

where rj = a
j
0 ⊕ a

j
1 ⊕ ... ⊕ a

j
N−1, 0 ≤ j ≤ X − 1.

In the presence of rounding errors, MPI poses some quality requirements for this operation

[23]. It is required that all processes must receive the same resulting data. In addition, the

same reduction order and bracketing for all elements is not strictly required, but should be

strived for.

2.2 Communication performance model

Since we consider operations with large data sizes, we will use a linear model to model the

time for point-to-point communications: the time to transfer a message of size m, T (m) =

3

βm, where β is a constant. Notice that the linear model ignores communication start-up

overheads and the communication time is proportional to the message size. Let i be a

constant, T (i × m) = i × T (m) and T (m1 + m2) = T (m1) + T (m2).

In analyzing all-reduce algorithms, we assume that all processes start the operation at the

same time. The time for an all-reduce operation is defined as the time when all processes

start the operation until the last process receives the last message (and computes the final

result). Our analysis focuses on the communication time and ignore the computation time. In

practice, both the communication start-up overheads and the computation in the operation,

which are omitted in our analysis, can be significant.

3 The lower bounds

In a general-purpose all-reduce operation, data items are independent of each other. The

reduction on different items are independent of one another. Hence, the amount of data that

must be communicated in order to complete an all-reduce operation on X items is equal to

X times the amount for the single-item all-reduce operation. To obtain the lower bound

for a general all-reduce operation on X items, we only need to find the lower bound for the

operation on a single item.

In a one-item all-reduce operation on N processes, each process pi, 0 ≤ i ≤ N − 1, has

one initial item ai. At the end of the all-reduce operation, all processes contain the final

result r = a0 ⊕ a1 ⊕ ⊕ aN−1. Let B = {b0, ..., bi} be a set of initial items. We will

use the notation ⊕(B) = ⊕({b0, b1, ..., bi}) = b0 ⊕ b1 ⊕ ... ⊕ bi to represent the reduction

operation on the initial items in B. Let ALL = {a0, a1, ..., aN−1} be the set that contains

all initial items, r = ⊕(ALL). Let B = {b0, b1, ..., bi} ⊆ ALL be a subset of initial items,

⊕(B) = b0 ⊕ b1 ⊕ ...⊕ bi is a partial result. All initial items, ai, 0 ≤ i ≤ N − 1, as well as the

final result r are partial results. Let φ be the empty set. Since φ ⊆ ALL, for completeness, we

introduce a null (empty) partial result, denoted as ⊥ = ⊕(φ). Intuitively, any computation

4

(reduction) result that is not a partial result will not contribute to the calculation of the

final result in any way and can be represented as ⊥. Each partial result except ⊥ has the

same size as an initial item. Let ⊕(B) be a partial result and a ∈ B, we say that the effect of

item a is in the partial result ⊕(B). Let pr1 = ⊕(A) and pr2 = ⊕(B) be two partial results.

We extend the reduce operator to take partial results as parameters. Specifically,

pr1 ⊕ pr2 =















⊕(A
⋃

B), if (A
⋂

B = φ) and (A 6= φ) and (B 6= φ)

⊥, if (A
⋂

B 6= φ) or (A = φ) or (B = φ)

Basically, if two partial results cover disjoint sets of initial items, applying the reduce

operation on these two partial results yields another partial result that covers the union of

the initial items. When the items covered by these two partial results intersect, applying

the reduce operation on the two partial results yields something that is not a partial result

(some initial items appear multiple times), which is denoted by ⊥ as discussed earlier.

In our proofs, we also use a 	 operator on partial results, which is defined as follows. Let

pr1 = ⊕(A) and pr2 = ⊕(B) be two partial results,

pr1 	 pr2 = ⊕(A − B).

Basically, the 	 operator removes the effects of items in B from the partial result pr1. For

example, (a ⊕ b ⊕ c) 	 b = ⊕({a, b, c} − {b}) = a ⊕ c; a 	 a = ⊕({a} − {a}) = ⊥.

During the all-reduce operation, each process may send a partial result that it can compute

to another process or receive a partial result from another process. The partial results that

can be computed by a process in a given time depend on the initial item at the process as

well as the set of partial results received by the process. We define the state of a process at a

given time to be the set of partial results that include the initial item in the process and all

partial results that the process received from other processes. We call the set of all partial

results that can be computed at a given time in a process the coverage set of the process.

Clearly, the coverage set is a function of the state. Let the state of a process be S, we denote

the coverage set as COV ER(S):

5

COV ER(S) = {pr|∃pr1, pr2, ..., pri ∈ S, pr = pr1 ⊕ pr2 ⊕ ... ⊕ pri}

The partial results in a state are atomic items that cannot be separated even though

they can be combined with other partial results. For example, if a process has a state

S = {a, b ⊕ c}, the coverage set is COV ER(S) = {⊥, a, b ⊕ c, a ⊕ b ⊕ c}, which does not

include a ⊕ b or a ⊕ c.

In the derivation of the lower bound, we focus on all-reduce schemes whose communications

do no have race conditions such that all messages in an operation can be sequentialized.

All-reduce algorithms with race conditions are usually incorrect and not considered in this

paper. Without loss of generality, we will also assume that each message transfers one partial

result between two processes: a message with multiple partial results are treated as multiple

messages. A message is denoted as (src → dst, pr), where src is the source process, dst is

the destination process, and pr is a partial result. Let a generic all-reduce scheme use n

messages. Under the assumption that the messages do not have race conditions and can be

sequentialized, the n messages can be ordered based on the timing when each message occurs.

For concurrent messages that happen at the same time, the tie can be broken arbitrarily. Let

messages M1, M2, ..., Mn be the n messages in an all-reduce scheme ordered based on their

timing. Let Mj = (sj → dj, prj) and S
Mj

i be the state of process pi before Mj, 1 ≤ j ≤ n.

We will use the notation S
Mn+1

i to denote the state of pi after the last message (Mn). Clearly,

we have prj ∈ COV ER(S
Mj

j).

Since we are only interested in the number of partial results communicated, we will use the

sequence of messages in an algorithm to represent the algorithm. Let a message sequence be

M1, M2, ..., Mk, where Mj = (sj → dj, prj). We say that the sequence of messages is valid

when prj ∈ COV ER(S
Mj

j), 1 ≤ j ≤ k. Clearly, any all-reduce algorithm can be represented

by a valid sequence of messages. Similarly, any valid sequence of messages can be realized

by an algorithm.

Lemma 1: The minimum number of partial results to be communicated to complete a

6

one-item all-reduce operation on N processes over all algorithms is at most 2 × (N − 1).

Proof: The proof is straight-forward by constructing an algorithm that communicates 2 ×

(N−1) partial results to complete the operation. The all-reduce operation can be completed

with a flat tree reduce algorithm that communicates N − 1 partial results followed by a flat

tree broadcast algorithm that communicates N − 1 partial results. 2

Lemma 2: The number of partial results to be communicated to complete a one-item

all-reduce operation on N processes using any algorithm is at least 2 × (N − 1).

Proof: The lemma applies both when the messages are within the N processes and when

additional processes are used to relay messages. We prove the lemma by induction on N .

Base case: N = 2. With one message, at most one process can send its data to the other

process, and at most one process can compute a0 ⊕a1, which cannot complete the all-reduce

operation. Hence, at least 1 + 1 = 2 = 2 × (N − 1) communications are needed.

Induction case: The induction hypothesis is that the minimum number of partial results to

be communicated in order to complete a one-item all-reduce operation on N processes is at

least 2×(N−1). Using this hypothesis, we will prove that the minimum number of messages

required to complete the operation on N + 1 processes is at least 2 × ((N + 1) − 1) = 2N .

Let the N +1 processes be p0, p1, ..., pN with pi having initial item ai before the operation.

Let the minimum number of messages required to complete the operation on the N + 1

processes be X+1, the ordered sequence of messages be E1, E2, ..., EX , EX+1, where Ej =

(sj → dj, prj), 1 ≤ j ≤ X + 1, and the state of process pi, 0 ≤ i ≤ N , before message Ej be

S
Ej

i . S
EX+2

i denotes the state after EX+1 (the last message). We have r = a0⊕a1⊕.....⊕aN ∈

COV ER(S
EX+2

i), 0 ≤ i ≤ N .

We will prove X + 1 ≥ 2N by constructing a sequence of at most X − 1 messages that

allows the all-reduce operation on N processes to be completed, which requires at least

2N − 2 messages (induction hypothesis). Let us assume that pN is the process that receives

the last message (this assumption is valid since ⊕ is associative and commutative). The new

7

sequence is constructed from the X-message sequence E1, E2, ..., EX , in two steps.

In the first step, we construct a sequence F of X messages as follows. For each Ej =

(sj → dj, prj), 1 ≤ j ≤ X, there is a corresponding message Fj = (sj → dj, prj 	 aN).

Message sequence F is exactly the same as the message sequence E except that the effect

of aN is removed. Note that some messages in sequence F may contain the empty partial

result (⊥). Such empty messages will be removed in the next step. Let the state of process

pi, 0 ≤ i ≤ N , before message Fj be S
Fj

i (sequence F is applied from the initial condition of

the operation). By induction on j, it is straight-forward to show that

1. Message sequence F is valid, that is, prj 	 aN ∈ COV ER(S
Fj
sj), 1 ≤ j ≤ X.

2. If pr ∈ COV ER(S
Ej

i), 1 ≤ j ≤ X + 1 and 0 ≤ i ≤ N , pr 	 aN ∈ COV ER(S
Fj

i).

Using the message sequence E, before the last message (EX+1), the final result r = a0 ⊕

a1 ⊕ ⊕ aN must be in the coverage set of each of p0, ..., pN−1 since these processes

do not receive the last message and their states do not change after the message. Hence,

r = a0 ⊕a1 ⊕ ...⊕aN ∈ COV ER(S
EX+1

i), 0 ≤ i ≤ N − 1, and r	aN = a0 ⊕a1 ⊕ ...⊕aN−1 ∈

COV ER(S
FX+1

i), 0 ≤ i ≤ N − 1: the reduction result of the N processes (p0, p1, ..., pN−1)

are in all of the N processes after the X messages in sequence F . Next, we will construct

from sequence F a sequence of at most X − 1 messages that allows the all-reduce operation

on N processes p0, p1, ..., pN−1 to complete. There are two cases.

Case (a): In message sequence F , if there is any message whose content is ⊥ (empty

message), this message can be removed and we obtain a sequence of at most X − 1 messages

that allows the all-reduce operation on N processes to complete.

Case (b): If there are no such messages in sequence F , each message in F contains a

real partial result. Since r = a0 ⊕ ... ⊕ aN is in the coverage set of all processes p0, p1, ...,

pN−1 after messages E1, E2, ..., EX , process pN must be the sender of at least one of these

messages so that the effect of aN can be distributed to other processes. Since we do not

8

change senders and receivers from sequence E to sequence F , process pN also must be the

sender at least once in sequence F .

Let the first message in sequence F with pN as the sender be Fk = (sk → dk, prk 	 aN),

sk = pN . We create a new message sequence from sequence F as follows: (1) for every

message whose sender and receiver are not pN , keep the message intact; (2) if the receiver

is pN , change the receiver to dk; (3) if the sender is pN and the message is not Fk, change

the sender to dk (if the receiver is also dk, then remove this message); (4) remove the Fk

from the sequence. Basically, in the new sequence, dk receives all the messages sent to pN in

sequence F , and sends out anything that pN used to send out in sequence F . Since the effect

of aN has been removed in sequence F , this new sequence is valid. Each of the processes

other than dk and pN receives exactly the same messages in the new sequence as in sequence

F . Hence, the state of process pi, 0 ≤ i ≤ N − 1 and pi 6= dk, is exactly the same after

these two message sequences. Now consider process dk. For the messages that it does not

receive (from pN) in the new sequence, it should be able to compute the partial results in the

messages since dk receives everything that pN receives in sequence F : the state of dk after

the new sequence is a superset of its state after the sequence F . Since a0 ⊕ ... ⊕ aN−1 is in

the coverage set of processes p0, p1, ..., pN−1 after the sequence F , it should also be in the

coverage set of all these processes after the new sequence which has at most X − 1 messages

(Fk is removed). Thus, X − 1 messages are sufficient to complete the all-reduce operation

on N processes. From the induction hypothesis, X − 1 ≥ 2N − 2 and X + 1 ≥ 2N . This

concludes the induction case. 2

Combining Lemma 1 and Lemma 2, we obtain the lower bound result in the following

lemma. Note that while we prove the lower bound for the case when the reduce operator

is commutative, the bound also applies when the reduce operator is non-commutative since

the set of all all-reduce algorithms with a non-commutative reduce operator is a subset of

the set of all all-reduce algorithms with a commutative reduce operator.

9

Lemma 3: The minimum number of partial results to be communicated to complete a

one-item all-reduce operation on N processes over all algorithms is 2 × (N − 1). 2

Lemma 4: Assume that (1) data are not compressed during the all-reduce operation; and

(2) initial items are independent of one another. To perform an all-reduce operation on X

items with itsize bytes item size on N processes, there exists at least one process that must

communicate a total of at least d2 × N−1
N

× Xe × itsize bytes data assuming the minimum

unit for communication is an item.

Proof: Since the minimum number of items to be communicated in order to complete a

one-item all-reduce operation is 2 × (N − 1) (Lemma 3), the minimum number of items to

be communicated to complete an X item all-reduce operation is X × 2 × (N − 1). Since

there are N processes that carry out the operation collectively, the communications can

be distributed among the N processes. Hence, at least one process needs to communicate

d2×(N−1)×X

N
e = d2 × N−1

N
× Xe items and d2 × N−1

N
× Xe × itsize byte data. 2

Lemma 5: Under the assumptions stated in Lemma 4, the minimum time for the all-reduce

operation is at least T (d2 × N−1
N

× Xe × itsize). 2

Let msize = X × itsize be the total data size in the operation. Using the linear commu-

nication model, T (d2× N−1
N

×Xe× itsize) ≈ 2T (msize). This indicates that the best of any

all-reduce algorithm can do is to achieve roughly 2 times the time to send the msize-byte

data.

4 A ring-based bandwidth optimal algorithm

We will describe a ring-based bandwidth optimal all-reduce algorithm for tree topologies,

and show how such an algorithm can be applied to high-end clusters. The tree topology by

itself is not particularly interesting. We develop bandwidth optimal algorithms for the tree

topology only because tree provides the minimum connectivity and most networks have tree

embeddings: our bandwidth optimal all-reduce algorithm for trees can be applied to any

10

topology with a tree embedding. Note that since our algorithm achieves bandwidth opti-

mality, no algorithms can have a better theoretical performance on any topology, assuming

that each node has one network port.

4.1 Bandwidth optimal algorithm for tree topologies

Our proposed bandwidth optimal all-reduce algorithm combines three existing ideas: (1)

realizing the all-reduce operation by a reduce-scatter operation followed by an all-gather

operation [22], (2) realizing both the reduce-scatter operation and the all-gather operation

using logical ring based algorithms [7, 25], and (3) constructing a contention-free logical ring

on the tree topology [7]. Our contribution lies in combining these three components in an

all-reduce algorithm and in showing that the resulting all-reduce algorithm is bandwidth

optimal.

To achieve bandwidth optimality using the reduce-scatter followed by all-gather algorithm

[22], both the reduce-scatter and the all-gather operations must be bandwidth optimal, which

means that: (1) each process should communicate the minimum amount of data required to

realize the operations; and (2) the network contention must be avoided. The optimality is

achieved by using logical ring based reduce-scatter and all-gather algorithms, and by finding

a contention-free logical ring on the tree topology. The logical ring all-gather algorithm

is described in [25] and the technique to compute a contention-free logical ring on a tree

topology can be found in [7]. Next, we will describe the logical ring reduce-scatter scheme.

Let the N processes be p0, p1, ..., pN−1. Let F : {0, ..., N − 1} → {0, ..., N − 1} be a

one-to-one mapping. Thus, pF (0), pF (1), ..., pF (N−1) is a permutation of p0, p1, ..., pN−1. The

logical ring pattern contains the following communications:

pF (0) → pF (1) → pF (2) → ... → pF (N−1) → pF (0)

Using the logical ring pattern, the reduce-scatter operation is performed as follows. First,

the msize source data in each process is partitioned into N segments, all segments having

11

dmsize
N

e bytes of data except the last segment, which has a segment size of msize − (N −

1)dmsize
N

e. Let us number the segments by SEG0, SEG1, ..., SEGN−1. The reduce-scatter

operation is carried out by performing the logical ring pattern N − 1 iterations. In the

first iteration (iteration 1), process pF (i) sends segment SEG(i−1) mod N to pF ((i+1) mod N).

After each process receives the data, it performs a reduction operation on the received

data segment with its corresponding data segment (the segment with the same segment

index), and replaces its own data with the (partial) reduction results. For each remaining

iteration j : 2 ≤ j ≤ N − 1, each process pF (i) sends the newly computed SEG(i−j) mod N

to pF ((i+1) mod N). After receiving the data communicated in each iteration, each process

performs the reduction operation on the data received with the corresponding segment in

the local array and replaces the partial reduction results in the array. At the end of the N−1

iterations, pF (i) holds the reduction results in SEGi, 0 ≤ i ≤ N − 1. Figure 1 shows the

logical ring implementation of reduce-scatter on four processes. As shown in the figure, in

the first iteration, nF (0) sends SEG3 to nF (1); nF (1) sends SEG0 to nF (2); nF (2) sends SEG1

to nF (3); and nF (3) sends SEG2 to nF (0). After the communication, the reduction operation

is performed: nF (0) on SEG2, nF (1) on SEG3, nF (2) on SEG0, and nF (0) on SEG1. After

three iterations, nF (0) has SEG0 results, nF (1) has SEG1 results, nF (2) has SEG2 results,

and nF (3) has SEG3 results.

PF(0)

�����������
�����������
�����������

�����������
�����������
�����������

�������������
�������������
�������������

�������������
�������������
�������������

�����������
�����������
�����������

�����������
�����������
�����������

�������������
�������������
�������������

�����������
�����������
�����������

SEG 0 SEG2SEG1 SEG3

Iteration 2

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�����������
�����������
�����������

�����������
�����������
�����������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�������������
�������������
�������������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

 � � � � �
 � � � � �
 � � � � �

!�!�!�!�!�!�!
!�!�!�!�!�!�!
!�!�!�!�!�!�!

"�"�"�"�"�"
"�"�"�"�"�"
"�"�"�"�"�" #�#�#�#�#�#�#

#�#�#�#�#�#�#
#�#�#�#�#�#�#

$�$�$�$�$�$
$�$�$�$�$�$
$�$�$�$�$�$

P

P

P

F(1)

F(2)

F(3)

Iteration 1

SEG 0 SEG2SEG1 SEG3 SEG 0 SEG2SEG1 SEG3

Iteration 3

communicated segment: final results:

Figure 1: Logical ring reduce-scatter algorithm

Put it all together, the proposed algorithm first finds a contention-free logical ring on the

12

tree topology. It then performs the all-reduce operation over the contention-free logical ring

by using logical ring algorithms to carry out a reduce-scatter operation followed by an all-

gather operation. Both the ring based reduce-scatter and all-gather algorithms perform the

communications in N − 1 rounds with each node sending dmsize
N

e bytes data in each round.

Theorem 1: Consider an all-reduce operation on X items with the size of each item being

itsize (msize = X×itsize). When X is divisible by N , the proposed algorithm is bandwidth

optimal.

Proof: Both the reduce-scatter operation and the all-gather operation are performed in

N − 1 steps with each process sending and receiving X×itsize
N

data in each step. Since

there is no contention on the logical ring, both operations take (N − 1) × T (X×itsize
N

) time.

Hence, the total communication time is 2 × (N − 1) × T (X×itsize
N

). Under the linear model,

2×(N−1)×T (X×itsize
N

) = T (2× N−1
N

×X× itsize), which is the theoretical optimal (Lemma

5). Hence, our all-reduce algorithm is bandwidth optimal. 2

When X is not divisible by N , the total data size sent by each node is 2× (N −1)×dX
N
e×

itsize, which may be much more than the theoretical optimal of d2× N−1
N

×Xe× itsize when

N is large. In addition, in order for 2×(N−1)×T (msize
N

) to approximate T (2× N−1
N

×msize),

msize
N

needs to be sufficiently large: if msize
N

is close to infinity, the performance of the proposed

algorithm will be close to optimal. The exact threshold when the proposed algorithm is better

than other algorithms is system dependent.

The proposed algorithm requires additional dX
N
e× itsize working memory, which is better

than the dX
2
e×itsize working memory required by the butterfly-liked algorithm. The results

in all processors will be the same after the ring-based algorithm. Hence, the algorithm meets

the minimum MPI quality requirement [23]. However, the bracketing for computing the

results is not the same for different data items.

13

4.2 Algorithm for high-end clusters

A high-end SMP/Multi-core cluster is typically formed by SMP and/or multi-core nodes

connected by a high speed interconnect. The interconnect is usually a single cross-bar

switch for small clusters and a fat-tree for large clusters, whose performance is close to

a cross-bar switch. The communication between processors in different SMP nodes (inter-

node communication) goes through the interconnect while the intra-node communication is

performed within an SMP node, typically through memory operations. For the common case

when one network interface card is equipped in each node, the system can be approximated

by a two-level tree topology as shown in Figure 2.

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

	�		�	
	�	

�

�

�
 ������

���

������
���

�

�

�

������
���

���

���

������
������
������
������
������
������
���

������
������
������
������
������
������
���

��

��

interconnect s

s1 s s

0

2 N

0 1p p N/M−1

a node

p pN/M pN/M+1 p2*N/M−1
p(M−1)*N/M

pN−1

Figure 2: The two-level tree model for SMP clusters

The algorithm described in the previous subsection can be applied when the tree topology

is determined. In a high-end SMP cluster, even though the system can be approximated

with a two-level tree, the exact tree topology is unknown until the SMP nodes are allocated.

Hence, this algorithm cannot be directly used in a high-end SMP cluster since we need to

develop the all-reduce routine before it can be used in programs running on a particular

platform. However, by default, many SMP clusters assign MPI processes with consecutive

ranks to processors (or cores) in each SMP node. For example, in a system with 4-core SMP

nodes, n0, n1, n2, and n3 are assigned one SMP node (one process per core); n4, n5, n6, and

n7 are assigned to another SMP node; and so on. For such clusters, using the 2-level tree

representation, a contention-free logical ring for the default process assignment scheme can

be built without knowing the exact topology as shown in the following lemma, which can be

proved by examining the topology in Figure 2.

14

Lemma 6: Under the assumption that MPI processes with consecutive ranks are assigned

to processors (or cores) in each SMP node, logical ring pattern, p0 → p1 → p2 → ... →

pN−1 → p0, is contention free. 2

5 Experiments

Based on the algorithms described in the previous section, we implement all-reduce routines

in two forms. For high-end SMP/multi-core clusters, we implement a stand-alone all-reduce

routine based on Lemma 6. For clusters with a physical tree topology, we develop a routine

generator that takes the tree topology information as input and automatically produces an

all-reduce routine that uses the topology specific algorithm for the topology. The routine

generator reads a topology description file that describes the connectivity among machines

and switches, determines the order of the machines that realizes a contention-free ring, and

produces the code that realizes the operations using the contention-free ring communication

pattern. The generated routines are written in C and are based on MPICH point-to-point

primitives.

Three clusters are used in the experiments: the NCSA Teragrid IA-64 Linux cluster [19],

the Draco cluster at the Department of Computer Science, Florida State University, and an

Ethernet switched cluster. The NCSA Teragrid IA-64 Linux cluster is a Myrinet cluster with

dual 1.5GHz Intel Itantium 2 SMP nodes and 4GB memory per node. The system runs the

Linux 2.4.21-SMP operating system and uses the mpich-gm-1.2.6..14b library. The Draco

cluster is an InfiniBand cluster with Dell PowerEdge 1950 nodes, each node having two dual-

core Xeon E5345 processors (2.33GHz, 4 cores per processor, 8 cores per node) and 8GB

memory. The nodes are connected with a 20Gbps double data rate InfiniBand switch. The

cluster runs the Linux 2.6.9-42.ELsmp kernel and uses the mvapich2.1.0.2p1 library. The

Ethernet switched cluster consists of 32 compute nodes connected by Dell Powerconnect

2724 Gigabit Ethernet switches. The nodes are Dell Dimension 2400, each with a 2.8GHz

15

P4 processor and 640MB memory. All nodes run Linux (Fedora) with the 2.6.5-358 kernel.

The latest OPENMPI 1.2.5 [20] and MPICH 2.1.0.6p1 [10] are installed on this cluster.

The performance of the algorithms is measured using the Mpptest approach [11]. We

compare the proposed algorithms with native MPI implementations on these clusters. In

addition, the traditional butterfly-like algorithm [22, 23, 27], denote as butterfly, that is

theoretically both latency and bandwidth optimal when the network contention is not a

problem is also compared. For high-end SMP/multi-core clusters, we also compare the pro-

posed scheme with two SMP specific implementations. One SMP specific implementation is

based on algorithms recently developed for SMP clusters [26]. The implementation, denoted

as SMP-binomial, has four logical phases: (1) an intra-node reduce operation for each SMP

node using a binomial tree, (2) an inter-node reduce operation with a binomial tree to obtain

the reduction results in one node, (3) an inter-node broadcast operation with a binomial tree

to distribute the results to each SMP node, and (4) an intra-node broadcast to distribute

the results to each processor. While this algorithm does not cause network contention, the

inter-node communication is not bandwidth optimal: there exists a node that communicates

O(log(N) ∗msize) data. We enhance this algorithm by using the butterfly-like algorithm to

perform inter-node all-reduce operation. This algorithm is denoted as SMP-butterfly. Notice

that the main competitor of the proposed algorithm is butterfly whose main problem is that

the communication pattern cannot be embedded in an SMP cluster without causing link

contention. SMP-butterfly can be considered as an improvement over butterfly: eliminating

the network contention by grouping intra-node communications together.

NCSA Teragrid IA-64 Linux cluster results

Figure 3 shows the performance of different all-reduce algorithms on the NCSA Teragrid

cluster with 128 processors (64 nodes). All programs are compiled with the ’mpicc -lm’

command with no other flag (mpicc invokes the Intel compiler in the system). The native

MPI library uses the butterfly algorithm and as a result, its performance is very close to that

16

of our implementation of butterfly. As shown in the figure, native (butterfly) performs the

best when the data size is small. However, as the data size increases, the network contention

degrades the performance: the performance of native (butterfly) is not as good as the pro-

posed algorithm when the data size is larger than 256KB. SMP-butterfly eliminates network

contention by performing the operation in three phases. However, using this algorithm, the

total amount of inter-node and intra-node data communicated is still larger than what is

needed. As a result, using this method to eliminate network contention is not effective in

such a high-end cluster as shown in the figure. It is not surprising that SMP-binomial per-

forms poorly when the data size is large since there exists one process that communicates

O(log(N) ∗ msize) data in this algorithm. The proposed algorithm outperforms butterfly

when the data size is larger than 256KB. Notice that 256KB
128

= 2KB: the threshold value

of msize
N

for our bandwidth optimal algorithm to be more efficient is around 2KB on this

cluster. As the data size increases, the performance difference is more significant: the net-

work contention problem is more severe as the data size increases. This experiment shows

that the break-even point for the proposed ring-based algorithm is 256KB when N = 128.

When N is larger, however, the break-even point can be much larger since the number of

communication rounds in the ring-based algorithm is O(N).

Draco cluster results

Figure 4 shows the results on the Draco cluster. The native MPI library also uses butterfly

when the data size is larger than 32KB. In this cluster, the trend for the relative performance

of SMP-binomial, SMP-butterfly, and the proposed algorithm is similar to that in the NCSA

cluster. The proposed algorithm performs better than native (butterfly) significantly for

data sizes 64KB, 128KB, 256KB, 2MB and 4MB. However, for data sizes 512KB and 1MB,

the performance of the proposed algorithm is slightly worse. We believe this is mainly due

to the interaction between memory references and network contention, which results in the

abnormal performance results for the 512KB and 1MB data points. Nonetheless, the figure

17

 0

 2

 4

 6

 8

 10

 12

 14

 16

128K64K32K16K8K

T
im

e
(m

s)

Message size (Byte)

SMP-binomial
SMP-butterfly

Butterfly
Native

Ours

(a) Medium sized data

 0

 20

 40

 60

 80

 100

2M1M512K256K128K

T
im

e
(m

s)

Message size (Byte)

SMP-binomial
SMP-butterfly

Butterfly
Native

Ours

(b) Large sized data

Figure 3: Results on the NCSA Teragrid IA-64 cluster (128 processors, Myrinet)

shows the trend of the relative performance of native (butterfly) and the proposed algorithm:

the proposed algorithm is more effective as the data size becomes larger.

 0

 0.5

 1

 1.5

 2

 2.5

 3

128K64K32K16K8K

T
im

e
(m

s)

Message size (Byte)

SMP-binomial
SMP-butterfly

Butterfly
Native

Ours

(a) Medium sized data

 0

 10

 20

 30

 40

 50

 60

 70

4M2M1M512K256K128K

T
im

e
(m

s)

Message size (Byte)

SMP-binomial
SMP-butterfly

Butterfly
Native

Ours

(b) Large sized data

Figure 4: Results on the Draco cluster (128 cores, InfiniBand (20Gbps))

Ethernet switched cluster results

For the Ethernet switched cluster, we show the results on 32-node clusters with the topol-

ogy shown in Figure 5. We performed experiments on other topologies with multiple switches

and the trend is similar. Figure 6 show the results for the Ethernet cluster. On this cluster,

18

the proposed algorithm is more efficient than both Open MPI and MPICH2 when the data

size is larger than 256KB. Hence, the threshold value of msize
N

for the proposed algorithm to

be more efficient is 256KB
32

= 8KB, which is much larger than the 2KB in the high-end NCSA

cluster. This reflects the fact that on an Ethernet switched cluster with Gigabit switches, the

communication start-up overhead is much larger than that in high-end clusters. Thus, even

for reasonably large data sizes (e.g. 128KB), it is still more important to reduce the com-

munication start-up overheads. However, when the data size is larger, network contention

and bandwidth efficiency become a problem and our bandwidth optimal algorithm is more

efficient.

n0 n1 n15 n16 n17 n31

S0 S1

Figure 5: Ethernet Topologies used in the experiments

 0

 2

 4

 6

 8

 10

 12

 14

 16

128K64K32K16K8K

T
im

e
(m

s)

Message size (Byte)

MPICH2
Open MPI

Ours

(a) Medium sized message

 0

 20

 40

 60

 80

 100

 120

 140

 160

2M1M512K256K128K

T
im

e
(m

s)

Message size (Byte)

MPICH2
Open MPI

Ours

(b) Large sized message

Figure 6: Results for the Ethernet switched cluster (32 single-core nodes)

19

6 Related Work

The all-reduce operation has been extensive studied. The one-item all-reduce operation has

been studied under different names such as census function [2], global combine [3, 5, 6, 27],

and gossip [16]. The lower bound for the communication time under various communication

models has been established [2, 3, 5, 16]. In [16], it is shown that to complete a one-item all-

reduce operation under the telephone model, at least 2N−4 connections must be established

when N > 4. In [2, 3, 5], the lower bounds for the number of rounds of communications and

for the number of data item to be communicated in sequence in various postal models are

established. However, to the best of our knowledge, the lower bound on the total number of

data items to be communicated to complete the operation has not been established.

The all-reduce operation is one of the collective operations supported in the MPI standard

[18], and thus, all MPI libraries support this operation. Many efficient platform indepen-

dent algorithms for this operation have been proposed [22, 23, 25, 27]. In [22], Rabenseifner

proposed to realize the all-reduce operation by a reduce-scatter operation followed by an

all-gather operation and gave various algorithms for the reduce-scatter and all-gather opera-

tions. The butterfly-like algorithm has been developed some times ago [22, 27] and has been

extended to handle non-power-of-two numbers of processes [23]. Various architecture specific

all-reduce schemes have also been developed [1, 4, 12, 17, 26]. An all-reduce algorithm was

designed for BlueGene/L systems in [1]. In [12], an all-reduce scheme that takes advantage

of remote DMA (RDMA) capability was developed for VIA-based clusters. The work in [17]

investigated an adaptive all-reduce algorithm in an InfiniBand cluster that deals with the

situation when not all nodes arrive at the call site at the same time. A study on the all-reduce

operation over WAN can be found in [4]. All-reduce algorithms were developed specifically

for SMP clusters in [26]. Among all these algorithms, the butterfly-like algorithm [22, 23, 27]

is widely used. The limitation of this algorithm is that it is difficult to realize the butterfly

communication pattern without incurring network contention in contemporary SMP/multi-

20

core clusters. Many all-gather [7, 24, 25] and reduce-scatter [13, 24, 25] algorithms, which are

parts of the proposed all-reduce algorithm, have been developed. The technique for finding

contention-free logical ring on tree topologies was developed in [7]. In this paper, we use

the existing results in various papers (e.g. [7, 22, 25]) as the components of our proposed

algorithm. Our contribution lies in showing that putting these existing components in the

particular way yields a contention-free bandwidth optimal all-reduce algorithm for the tree

topology. Like other architecture dependent collective algorithms [8, 7, 15, 21] that work well

in some situations, the proposed scheme can be used in advanced communication systems

[9, 14, 28].

7 Conclusions

We investigate efficient implementations of the all-reduce operation with large data sizes

under the assumption that the reduce operator is both associative and commutative. We

derive a theoretical lower bound on the communication time of this operation and develop

a bandwidth optimal all-reduce algorithm on tree topologies. This algorithm only requires

tree connectivity to achieve bandwidth optimality and can be applied to contemporary clus-

ters. We demonstrate the effectiveness of the proposed algorithm on various contempo-

rary clusters, including high-end clusters with SMP and/or multi-core nodes connected by

high-speed interconnects, and low-end Ethernet switched clusters. While our algorithm is

contention-free and bandwidth optimal, it is not optimal in the latency term: the number

of communication rounds is proportional to the number of processes.

Acknowledgment

This work is supported in part by National Science Foundation (NSF) grants: CCF-0342540,

CCF-0541096, and CCF-0551555. Experiments are also performed on resources sponsored

through an NSF Teragrid grant CCF-050010T.

21

References

[1] G. Almasi, et.al., “Optimization of MPI Collective Communication on BlueGene/L Systems,”

International Conference on Supercomputing (ICS), pages 253-262, 2005.

[2] A. Bar-Noy, S. Kipnis, and B. Schieber, “Optimal Computation of Census Functions in the

Postal Model,” Discrete Applied Mathematics, 58:213-222, April 1995.

[3] A. Bar-Noy, J. Bruck, C-T. Ho, S. Kipnis, and B. Schieber, “Computing Global Combine

Operstions in the Multiport Postal Model,” IEEE Trans. on Parallel and Distributed Systems,

6(8):896-900, August 1995.

[4] L. Bongo, O. Anshus, J. Bjorndalen, and T. Larsen, “Extending Collective Operations With

Application Semantics for Improving Multi-cluster Performance,” Proceedings of the Third

International Symposium on Parallel and Distributed Computing/Third International Work-

shop on Algorithms, Models, and Tools for Parallel Computing on Heterogeneous Networks

(ISPDC/HeteroPar, pages 320-327, 2004.

[5] J. Bruck, C.-T. Ho, “Efficient Global Combine Operations in Multi-port Message-Passing

Systems,” Parallel Processing Letters, 3(4):335-346, 1993.

[6] J. Bruck, L. D. Coster, N. Dewulf, C.-T. Ho, and R. Lauwereins, “On the Design and

Implementation of Broadcast and Global Combine Operations Using the Postal Model,”

IEEE Transactions on Parallel and distributed Systems, 7(2):256-265, March 1996.

[7] A. Faraj, P. Patarasuk and X. Yuan, “Bandwidth Efficient All-to-all Broadcast on Switched

Clusters,” International Journal of Parallel Programming, 36(4)426-453, August 2008.

[8] A. Faraj, X. Yuan, and Pitch Patarasuk, “A Message Scheduling Scheme for All-to-all Per-

sonalized Communication on Ethernet Switched Clusters,” IEEE Transactions on Parallel

and Distributed Systems, 18(2):264-276, Feb. 2007.

[9] A. Faraj, P. Patarasuk, and X. Yuan, “A Study of Process Arrival Patterns for MPI Collective

Operations,” International Journal of Parallel Programming, accepted for publication.

22

[10] W. Gropp, E. L. Lusk, N. E. Doss, A. Skjellum, “A High-Performance, Portable Implemen-

tation of the MPI Message Passing Interface Standard,” Parallel Computing, 22(6):789-828,

1996.

[11] W. Gropp and E. L. Lusk, “Reproducible Measurements of MPI Performance Characteris-

tics,”Proceedings of PVMMPI, pages 11-18, 1999.

[12] R. Gupta, P. Balaji, D. K. Panda, and J. Nieplocha, “Efficient collective operations using

remote memory operations on VIA-based clusters,” In Proceedings of the 17th International

Symposium on Parallel and Distributed Processing(IPDPS), pages 46, April 2003.

[13] G. Iannello, “Efficient Algorithms for the Reduce-Scatter Operation in LogGP,” IEEE Trans.

on Parallel and Distributed Systems, 8(9):970-982, Sept. 1997.

[14] A. Karwande, X. Yuan, and D. K. Lowenthal, “An MPI Prototype for Compiled Commu-

nication on Ethernet Switched Clusters,” Journal of Parallel and Distributed Computing,

65(10):1123-1133, October 2005.

[15] R. G. Lane, S. Daniels and X. Yuan, “An Empirical Study of Reliable Multicast Protocols

over Ethernet-Connected Networks,” Performance Evaluation Journal, 64(3):210-228, March

2007.

[16] W. Knodel, “New Gossips and Telephones,” Discrete Math., 3(1):95, 1975.

[17] A. Mamidala, J. Liu, D. Panda, “Efficient Barrier and Allreduce on InfiniBand Clusters using

Hardware Multicast and Adaptive Algorithms,” In Proceedings of the 2006 IEEE Interna-

tional Conference on Cluster Computing, pages 135-144, 2004.

[18] The MPI Forum. MPI: A Message-Passing Interface Standard, Version 1.3, May 2008.

Available at http://www.mpi-forum.org/docs/mpi-1.3/mpi-report-1.3-2008-05-30.pdf.

[19] NCSA Teragrid IA-64 Linux Cluster. http://www.ncsa.uiuc.edu/UserInfo/Resources /Hard-

ware/TGIA64LinuxCluster.

[20] Open MPI: Open Source High Performance Computing. http://www.open-mpi.org/.

23

[21] P. Patarasuk, X. Yuan, A. Faraj, “Techniques for Pipelined Broadcast on Ethernet Switched

Clusters,” Journal of Parallel and Distributed Computing, 68(6):809-824, June 2008.

[22] R. Rabenseifner, “Optimization of Collective Reduction Operations,” International Confer-

ence on Computational Science, LNCS 3036, pages 1-9, 2004.

[23] R. Rabenseifner and J. L. Traff, “More Efficient Reduction Algorithms for Non-power-of-two

Number of Processors in Message-Passing Parallel Systems,” EuroPVM/MPI, LNCS 3241,

pages 36-46, 2004.

[24] W. B. Tan and P. Strazdins, “The Analysis and Optimization of Collective Communica-

tions on a Beowulf Cluster,” Proc. of the Ninth International Conference on Parallel and

Distributed Systems (ICPADS’02), page 659, 2002.

[25] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimizing of Collective Communication Op-

erations in MPICH,” International Journal of High Performance Computing Applications,

19(1):49-66, Spring 2005.

[26] V. Tipparaju, J. Nieplocha, and D. Panda, “Fast Collective Operation Using Shared and

Remote Memory Access Protocols on Clusters,” In Proceedings of the 17th International

Symposium on Parallel and Distributed Processing (IPDPS), page 84, 2003.

[27] R. van de Geijn, “On Global Combine Operations,” Journal of Parallel and Distributed

Computing, 22(2):324-328, 1994.

[28] X. Yuan, R. Melhem and R. Gupta, “Algorithms for Supporting Compiled Communication,”

IEEE Transactions on Parallel and Distributed Systems, 14(2):107-118, Feb. 2003.

24

