
1

LID Assignment In InfiniBand Networks
Wickus Nienaber, Xin Yuan, Member, IEEE and Zhenhai Duan, Member, IEEE

Abstract— To realize a path in an InfiniBand network, an
address, known as Local IDentifier (LID) in the InfiniBand
specification, must be assigned to the destination of the path and
used in the forwarding tables of intermediate switches to direct
the traffic following the path. Hence, routing in InfiniBand has
two components: (1) computing all paths, and (2) assigning LIDs
to destinations and using them in intermediate switches to realize
the paths. We refer to the task of computing paths as path com-
putation and the task of assigning LIDs as LID assignment. This
paper focuses on the LID assignment component, whose major
issue is to minimize the number of LIDs required to support
a given set of paths. We prove that the problem of realizing
a given set of paths with a minimum number of LIDs is NP-
complete, develop an integer linear programming formulation for
this problem, design a number of heuristics that are effective and
efficient in practical cases, and evaluate the performance of the
heuristics through simulation. The experimental results indicate
that the performance of our best performing heuristic is very
close to optimal. We further demonstrate that by separating path
computation from LID assignment and using the schemes that
are known to achieve good performance for path computation
and LID assignment separately, more effective routing schemes
than existing ones can be developed.

Index Terms— InfiniBand, LID Assignment, NP-Complete

I. INTRODUCTION

The InfiniBand architecture (IBA) is an industry standard
architecture for interconnecting processing nodes and I/O devices
[10]. It is designed around a switch-based interconnect technology
with high-speed links. IBA offers high bandwidth and low latency
communication and can be used to build many different types
of networks including I/O interconnects, system area networks,
storage area networks, and local area networks.

An InfiniBand network is composed of one or more subnets
connected by InfiniBand routers. Each subnet consists of process-
ing nodes and I/O devices connected by InfiniBand switches. We
will use the general term machines to refer to processing nodes
and I/O devices at the edge of a network. This paper considers
the communications within a subnet. A subnet is managed by a
subnet manager (SM). By exchanging subnet management packets
(SMPs) with the subnet management agents (SMAs) that reside
in every InfiniBand device in a subnet, the SM discovers the
subnet topology (and topology changes), computes the paths
between each pair of machines based on the topology information,
configures the network devices, and maintains the subnet.

InfiniBand requires the paths between all pairs of machines
to be dead-lock free and deterministic. These paths are realized
with a destination based routing scheme. Specifically, machines
are addressed by local identifiers (LIDs). Each InfiniBand packet
contains in its header the source LID (SLID) and destination LID
(DLID) fields. Each switch maintains a forwarding table that maps
the DLID to one output port. When a switch receives a packet, it

W. Nienaber, X. Yuan, and Z. Duan are with the Department of Computer
Science, Florida State University, Tallahassee, FL 32306. Email: {nienaber,
xyuan, duan}@cs.fsu.edu

parses the packet header and performs a table lookup using the
DLID field to find the output port for this packet. The fact that
one DLID is associated with one output port in the forwarding
table implies that (1) the routing is deterministic; and (2) each
DLID can only direct traffic in one direction in a switch.

Destination based routing limits the paths that can be realized.
Consider the paths from nodes 4 and 5 to node 0 in Fig. 1.
Assuming that node 0 is associated with only one LID, the paths
4 → 3 → 1 → 0 and 5 → 3 → 2 → 0 cannot be supported
simultaneously: with one LID for node 0, the traffic toward node
0 in node 3 can only follow one direction. To overcome this
problem and allow more flexible routes, IBA introduces a concept
called LID Mask Control (LMC) [10], which allows multiple
LIDs to be associated with each machine. Using LMC, each
machine can be assigned a range of LIDs (from BASELID to
BASELID + 2LMC − 1). Since LMC is represented by three
bits, at most 2LMC = 27 = 128 LIDs can be assigned to each
machine. By associating multiple LIDs with one machine, the
paths that can be supported by the network are more flexible.
For example, the two paths in Fig. 1 can be realized by having
two LIDs associated with node 0, one for each path. Nonetheless,
since the number of LIDs that can be allocated (to a node or in a
subnet) is limited, the paths that can be used in a subnet are still
constrained, especially for medium or large sized subnets.

0

1 2

3

4 5

Fig. 1. An example

The use of destination based routing with multiple LIDs for
each machine complicates the routing in InfiniBand networks. In
addition to finding the paths between machines, the SM must
assign LIDs to machines and compute the forwarding tables that
realize the paths. Hence, the routing in an InfiniBand network
is logically composed of two tasks: the first task is to compute
the dead-lock free deterministic paths for each pair of machines;
and the second task is to assign LIDs to machines and compute
the forwarding tables for realizing the paths determined in the
first task. We will use the terms path computation and LID
assignment to refer to these two tasks. The performance of a
path computation scheme is commonly evaluated by the link
load and load balancing characteristics; the performance of a
LID assignment scheme can be evaluated by the number of LIDs
needed for a given set of paths; and the performance of a routing
scheme, which consists of the two components, can be evaluated
with a combination of the two metrics.

2

Since the IBA specification [10] does not specify the routing al-
gorithms, this area is open to research and many routing schemes
have been proposed. Existing routing schemes [1], [2], [3], [8],
[13], [14], [15] are all based on the Up*/Down* routing [16],
which is originally an adaptive dead-lock free routing scheme.
Moreover, all of these schemes integrate the Up*/Down* routing,
path selection (selecting deterministic paths among potential paths
allowed by the Up*/Down* routing), and LID assignment in one
phase. While these schemes provide practical solutions, there are
some notable limitations. First, since Up*/Down* routing, path
selection, and LID assignment are integrated, these schemes can-
not be directly applied to other dead-lock free routing schemes,
such as L-turn [6], that may have better load balance properties.
Second, the quality of the paths selected by these schemes may
not be the best. In fact, the load balancing property of the paths
is often compromised by the LID assignment requirement. For
example, the fully explicit routing [3] restricts the paths to each
destination such that all paths to a destination can be realized
by one LID (avoiding the LID assignment problem). Notice that
load balancing is one of the most important parameters that
determine the performance of a routing system and is extremely
critical for achieving high performance in an InfiniBand network.
Third, the performance of LID assignment in these schemes is
not clear. Since LID assignment is integrated with routing and
path selection, the LID assignment problem itself is not well
understood.

We propose to separate path computation from LID assignment,
which may alleviate the limitations discussed in the previous para-
graph: the separation allows path computation to focus on finding
paths with good load balancing properties and LID assignment to
focus on its own issues. Among the two tasks, path computation in
system area networks that require dead-lock free and deterministic
paths has been extensively studied and is fairly well understood.
There exist dead-lock free adaptive routing schemes, such as
Up*/Down* routing [16] and L-turn routing [6], that can be used
to identify a set of candidate paths. Path selection algorithms
that can select dead-lock free deterministic paths with good
load balancing properties from candidate paths have also been
developed [12]. Applying these algorithms in InfiniBand networks
can potentially result in better paths being selected than those
selected by the existing routing schemes developed for InfiniBand.
However, in order to apply these path computation schemes, LID
assignment, which has not been studied independently from other
routing components before, must be investigated. This is the focus
in this paper. Note that both path computation and LID assignment
are still performed in the topology discovery phase: separating
path computation and LID assignment does not mean that LID
assignment is done in a later time.

LIDs are limited resources. The number of LIDs that can be
assigned to each node must be no more than 128. In addition,
the 16-bit SLID and DLID fields in the packet header limit the
total number of LIDs in a subnet to be no more than 216 = 64K.
For a large cluster with a few thousand machines, the number of
LIDs that can be assigned to each machine is small. For a given
set of paths, one can always use a different LID to realize each
path. Hence, the number of LIDs needed to realize a routing is
no more than the number of paths. However, using this simple
LID assignment approach, a system with more than 130 machines
cannot be built: it would require more than 129 LIDs to be
assigned to a machine in order to realize the (more than 129)

paths from other machines to this machine. Hence, the major issue
in LID assignment is to minimize the number of LIDs required
to realize a given set of paths. Minimizing the number of LIDs
enables (1) larger subnets to be built, and/or (2) more paths to
be supported in a subnet. Supporting more paths is particularly
important when multi-path routing [18] or randomized routing is
used. In the rest of this paper, we use the term LID assignment
problem to refer to the problem of realizing a set of paths with a
minimum number of LIDs.

We prove that the LID assignment problem is NP-complete,
develop an integer linear programming (ILP) formulation for this
problem so that existing highly optimized ILP solvers can be
used to obtain solutions for reasonably large systems. We also
design various heuristics that are effective in practical cases.
These heuristics allow existing methods for finding load balance
dead-lock free deterministic paths to be applied to InfiniBand
networks. We evaluate the proposed heuristics through simulation.
The results indicate that our best performing heuristic achieves
near optimal performance: the optimal solution is less than 3%
better in all cases that we studied. We further demonstrate that
by separating path computation from LID assignment and using
the schemes that are known to achieve good performance for
path computation and LID assignment separately, more effective
routing methods than existing ones can be developed.

The rest of the paper is organized as follows. In Section II, we
introduce the notations and formally define the LID assignment
problem. The NP-completeness of the LID assignment problem
is proven in Section III. Section IV gives the integer linear
programming formulation for this problem. Section V describes
the proposed heuristics. The performance of the heuristics is study
in Section VI. Finally, Section VII concludes the paper.

II. PROBLEM DEFINITION

An InfiniBand subnet consists of machines connected by
switches. A node refers to either a switch or a machine. InfiniBand
allows both regular and irregular topologies. The techniques de-
veloped in this paper are mainly for irregular topologies. The links
are bidirectional; a machine can have multiple ports connecting
to one or more switches; and multiple links are allowed between
two nodes. We model an InfiniBand network as a directed multi-
graph, G = (V, E), where E is the set of directed edges and V is
the set of switches and machines. Let M be the set of machines
and S be the set of switches. V = M ∪S. Let there exist n links
between two nodes u and v. The links are numbered from 1 to n.
The n links are modeled by 2n direct edges ((u, v), i) (or u

i
→ v)

and ((v, u), i) (or v
i
→ u), 1 ≤ i ≤ n. The i-th link between

nodes u and v is modeled by two direct edges ((u, v), i) and
((v, u), i). An example InfiniBand topology is shown in Fig. 2.
In this example, switches s0 and s1 are connected by two links;
machine m3 is connected to two switches s1 and s2.

A path p = u
i0→ a1

i1→ a2
i2→ ...

in−1

→ an
in→ v consists of a set

of directed edges {u
i0
→ a1, a1

i1
→ a2, ..., an

in
→ v}. NODE(p) =

{u, a1, a2, ..., an, v} is the set of nodes that the path p = u
i0→

a1
i1→ a2

i2→ ...
in−1

→ an
in→ v goes through. SRC(p) = u is the

source of path p and DST (p) = v is the destination of path p. A
path p = u

i0
→ a1

i1
→ a2

i2
→ ...

in−1

→ an
in
→ v is end-to-end when

SRC(p) = u ∈ M and DST (p) = v ∈ M . In this case, path p

is said to be an end-to-end path. For example, the dark line in
Fig. 2 shows an end-to-end path m0

1
→ s0

2
→ s1

1
→ s2

1
→ m4.

3

The path computation of a routing scheme determines a set of
end-to-end paths, R = {p1, p2, ...}, that must be realized by LID
assignment.

1m0

m1

m2

m3

m4

((s0, s1), 1)

((s1, s0), 2)

1

23

0 1

2
3

0

1
2

3

s1

s2

s0
0

4

(4, 3)

(5, 3)

(4, 3)

forwarding
tables

(4, 2)

(5, 3)

Fig. 2. An InfiniBand network topology (LIDs 4 and 5 are assigned to m4)

InfiniBand realizes each path through destination based routing.
In Fig. 2, we show the entries in the forwarding tables that
realize two paths m0

1
→ s0

2
→ s1

1
→ s2

1
→ m4 (the solid

dark line) and m1
1
→ s0

1
→ s2

1
→ m4 (the dotted dark

line). This example assumes that LIDs 4 and 5 are assigned
to machine m4 and the entries are illustrated with a random
forwarding table format: each forwarding table entry is of the
form (DLID, output port), forwarding packets with destination
address DLID to port output port. As shown in the example,
path m0

1
→ s0

2
→ s1

1
→ s2

1
→ m4 is realized by having

entry (DLID = 4, output port = 2) in the forwarding table in
switch s0, (DLID = 4, output port = 3) in s1, and (DLID =

4, output port = 3) in s2. Once the forwarding tables are
installed, machine m0 can send packets to m4 following this
path by making DLID = 4 in the packet header. Note that the
physical installation of the forwarding table in different switches
is performed by the SM in the path distribution phase, which is
beyond the scope of this paper.

To realize a path p towards a destination v, a LID LIDv that
is associated with the node v must be used and an entry in the
form of (LIDv, output port) must be installed in each of the
intermediate switches along the path. Once LIDv is associated
with one output port in a switch, it cannot be used to realize
other paths that use different output ports in the same switch. We
will use the term assigning LIDv to path p to denote the use
of LIDv to realize path p. In the example in Fig. 2, LID 4 is
assigned to path m0

1
→ s0

2
→ s1

1
→ s2

1
→ m4 and LID 5 is

assigned to path m1
1
→ s0

1
→ s2

1
→ m4.

Since different destinations are assigned non-overlapping
ranges of LIDs in InfiniBand networks, the number of LIDs
required for realizing a routing is equal to the sum of the number
of LIDs required for each destination. In other words, the LID
assignment problem for realizing a set of end-to-end paths can
be reduced to the LID assignment problem for each individual
destination in the set of paths. Let R = {p1, p2, ...} be the set
of end-to-end paths and D = {d|∃pi ∈ R, DST (pi) = d} be
the set of destinations in R. Let d ∈ D be a destination node
in some paths in R, Rd be the set of all paths with destination

d in R, {p|p ∈ R and DST (p) = d}. We have R = ∪d∈DRd.
Let the minimum number of LIDs needed for realizing Rd be Ld

and the minimum number of LIDs needed for realizing R be L.
Since LIDs for different destination nodes are independent of one
another,

L =
∑

d∈D

Ld.

We will call LID assignment for each Rd the single destination
LID assignment problem. In the rest of the paper, we will focus
on the single destination problem. Unless specified otherwise, all
paths are assumed to have the same destination. Next, we will
introduce concepts and lemmas that lead to the formal definition
of the single destination LID assignment problem.
Definition 1: Two paths p1 and p2 (with the same destination)
are said to have a split if there exists a node a ∈ NODE(p1) ∩

NODE(p2), a
i
→ b ∈ p1 and a

j
→ c ∈ p2, such that either i 6= j

or b 6= c.
Basically, two paths have a split when (1) both paths share an

intermediate node, and (2) the outgoing links from the intermedi-
ate node are different. Fig. 3 (a) shows the case when two paths
have a split.
Lemma 1: When two paths p1 and p2 have a split, they must be
assigned different LIDs. When p1 and p2 do not have any split,
they can share the same LID (be assigned the same LID).
Proof: We will first prove the first proposition in this lemma:
when two paths p1 and p2 have a split, they must be assigned
different LIDs. Let p1 and p2 be the two paths that have a
split. From Definition 1, there exists a node a ∈ NODE(p1) ∩

NODE(p2), a
i
→ b ∈ p1 and a

j
→ c ∈ p2, such that either i 6= j

or b 6= c. Consider the forwarding table in node a. When either
i 6= j or b 6= c, a

i
→ b ∈ p1 uses a different port from a

j
→ c ∈ p2.

Since one LID can only be associated with one output port in
the forwarding table, two LIDs are needed in switch a to realize
the two directions. Hence, p1 and p2 must be assigned different
LIDs.

Now consider the second proposition: when two paths p1 and
p2 do not have any split, they can share the same LID (be assigned
the same LID). Let p1 and p2 be the two paths that do not have a
split. There are two cases. The first case, shown in Fig. 3 (b) (1),
is when the two paths do not share any intermediate nodes. The
second case, shown in Fig. 3 (b) (2), is when two paths share
intermediate nodes, but do not split after they join. In both cases,
each switch in the network needs to identify at most one outgoing
port to realize both paths. Hence, at most one LID is needed in
all switches to realize both paths. In other words, The two paths
can be assigned the same LIDs. 2

It must be noted that the statements “p1 can share a LID with
p2” and “p1 can share a LID with p3” do not imply that “p2 can
share a LID with p3”. Consider paths p1 = m2 → s1 → s2 →

m4, p2 = m0 → s0 → s1 → s2 → m4, and p3 = m1 → s0 →

s2 → m4 in Fig. 2. Clearly, p1 can share a LID with p2 and p1

can share a LID with p3, but p2 and p3 have a split at switch s0

and cannot share a LID. The following concept of configuration
defines a set of paths that can share one LID.
Definition 2: A configuration is a set of paths (with the same
destination) C = {p1, p2, ...} such that no two paths in the set
have a split.
Lemma 2: All paths in a configuration can be realized by one
LID.

4

a

p1 p2

p1 and p2 split at node a.

d

p1 p2

(1) p1 and p2 do not
share intermediate nodes

(2) p1 and p2 share
intermediate nodes, but do
not split after they joint.

p1 p2

segment

d d

(a) The case when two LIDs are needed

(b) the cases when one LID can be shared

Fig. 3. The cases when a LID can and cannot be shared between two paths

Proof: Let l be a LID. Consider any switch, s, in the system. This
switch can either be used by some paths in the configuration
or not used by any path. If s is used by some paths, by the
definition of configuration, all paths that pass through s must
follow one outgoing port, port, (otherwise, the paths have a split
at s and the set of paths is not a configuration). Hence, the entry
(DLID = l, output port = port) can be shared by all paths
using s. If s is not used by any paths in the configuration, no
entry is needed in the forwarding table to realize the paths in the
configuration. Hence, LID l can be used in the switches along all
paths in configuration to realize all of the paths. 2

Definition 3 (Single destination LID assignment problem
(SD(G, d, Rd)): Let the network be modeled by the multi-graph
G, d be a node in G, Rd = {p1, p2, ...} be a single destination
routing (for all pi ∈ Rd, DST (pi) = d). The single destination
LID assignment problem is to find a function c : Rd →

{1, 2, ..., k} such that (1) c(pi) 6= c(pj) for every pair of paths
pi and pj that have a split, and (2) k is minimum.

Let c : Rd → {1, 2, ..., k} be a solution to SD(G, d, Rd).
Let Ri

d = {pj |c(pj) = i}, 1 ≤ i ≤ k. By definition, Ri
d is

a configuration; Rd = ∪k
i=1Ri

d; and Ri
d ∩ R

j
d

= φ, i 6= j.
Thus, SD(G, d, Rd) is equivalent to the problem of partitioning
Rd into k disjoint sets R1

d, R2
d, ..., Rk

d such that (1) each Ri
d

is a configuration, and (2) k is minimum. When the disjoint
configurations R1

d, R2
d, ..., Rk

d are found, the routing Rd can be
realized by k LIDs with one LID assigned to all paths in Ri

d,
1 ≤ i ≤ k.

SD(G, d, Rd) states the optimization version of this problem.
The corresponding decision problem, denoted as SD(G, d,Rd, k),
decides whether there exists a function c : Rd → {1, 2, ..., k} such
that c(pi) 6= c(pj) for every pair of paths pi and pj that have a
split.

Since InfiniBand realizes multiple LIDs for each destination
using the LID Mask Control (LMC) mechanism, the actual

number of LIDs assigned to each destination must be a power
of two, up to 128. Hence, if the solution to SD(G, d,Rd) is k,
the actual number of LIDs assigned to d is 2dlg(k)e . For example,
when k = 4, 2dlg(k)e = 4; when k = 5, 2dlg(k)e = 8.

III. NP-COMPLETENESS

Theorem 1: SD(G, d, Rd, k) is NP-complete.
Proof: We first show that SD(G, d, Rd, k) belongs to NP prob-
lems. Suppose that we have a solution for SD(G, d, Rd, k),
the verification algorithm first affirms the solution function c :

Rd → {1, 2, ..., k}. It then checks for each pair of paths p1

and p2, c(p1) = c(p2), that they do not have a split. It is
straightforward to perform this verification in polynomial time.
Thus, SD(G, d, Rd, k) is an NP problem.

We prove that SD(G, d, Rd, k) is NP-complete by showing
that the graph coloring problem, which is a known NP-complete
problem, can be reduced to this problem in polynomial time. The
graph-coloring problem is to determine the minimum number of
colors needed to color a graph. The k-coloring problem is the
decision version of the graph coloring problem. A k-coloring of
an undirected graph G = (V, E) is a function c : V → {1, 2, ..., k}

such that c(u) 6= c(v) for every edge (u, v) ∈ E. In other words,
the numbers 1, 2, ..., k represent the k colors, and adjacent
vertexes must have different colors.

The reduction algorithm takes an instance < G, k > of
the k-coloring problem as input. It computes the instance
SD(G′, d, Rd, k) as follows. Let G = (V, E) and G′ = (V ′, E′).
The following vertexes are in V ′.

• The destination node d ∈ V ′.
• For each u ∈ V , two nodes nu, nu′ ∈ V ′.
• For each (u, v) ∈ E, a node nu,v ∈ V ′. Since G is an

undirected graph, (u, v) is the same as (v, u) and there is
only one node for each (u, v) ∈ E (node nu,v is the same
as node nv,u).

The edges in G′ are as follows. For each nu, let nodes nu,i1 ,
nu,i2 , ..., nu,im

be the nodes corresponding to all node u’s adja-
cent edges in G. The following edges: (nu, nu,i1), (nu,i1 , nu,i2),
..., (nu,im−1

, nu,im
), (nu,im

, nu′), (nu′ , d) are in E′. Basically,
for each node u ∈ G, there is a path in G′ that goes from nu,
through each of the nodes in corresponding to the edges adjacent
to u in G, then through nu′ to node d.

Each node u ∈ V corresponds to a path pu in Rd. pu starts from
node nu, it goes through every node in G′ that corresponds to an
edge adjacent to u in G, and then goes to node nu′ , and then d.
Specifically, let nu,i1 , nu,i2 , ..., nu,im

be the nodes corresponding
to all node u’s adjacent edges in G, pu = nu

1
→ nu,i1

1
→

nu,i2 ...
1
→ nu,im

1
→ nu′

1
→ d.

From the construction of pu, we can see that if nodes u and v

are adjacent in G ((u, v) ∈ E), both pu and pv go through node
nu,v and have a split at this node. If u and v are not adjacent,
pu and pv do not share any intermediate node, and thus, do not
have a split. Hence, pu, pv ∈ Rd have a split if and only if u and
v are adjacent nodes.

Fig. 4 shows an example of the construction of G′, d and Rd.
For the example G in Fig. 4 (a), we first create the destination
node d in G′. The second and fourth rows of nodes in Fig. 4 (b)
correspond to the two nodes nu′ and nu for each node u ∈ V . The
third row of nodes corresponds to the edges in G. Each node u in
G corresponds to a path pu in Rd, Rd = {p0, p1, p2, p3}, where

5

p0 = n0
1
→ n0,1

1
→ n0,2

1
→ n0′

1
→ d, p1 = n1

1
→ n0,1

1
→ n1,2

1
→

n1,3
1
→ n1′

1
→ d, p2 = n2

1
→ n0,2

1
→ n1,2

1
→ n2,3

1
→ n2′

1
→ d,

and p3 = n3
1
→ n1,3

1
→ n2,3

1
→ n3′

1
→ d. The path p0 that

corresponds to node 0 in Fig. 4 (a) is depicted in Fig. 4 (b). It
can easily see that in this example, pu, pv ∈ Rd have a split if
and only if u and v are adjacent nodes.

2 3

10

0’ 1’ 2’ 3’

(0, 1) (0, 2) (1, 2) (1, 3) (2, 3)

0 1 2 3

(a) An example graph for graph coloring

p

d

0

(b) The corresponding graph for LID assignment

Fig. 4. An example of mapping G to G′

To complete the proof, we must show that this transformation
is indeed a reduction: the graph G can be k-colored if and only
if SD(G′, d, Rd, k) has a solution.

First, we will show the sufficient condition: if G can be k-
colored, SD(G′, d, Rd, k) has a solution. Let c : V → {1, 2, ..., k}

be the solution to the k-coloring problem. We can partition Rd

into Ri
d = {pu|c(u) = i}. Let pu, pv ∈ Ri

d. Since c(u) = c(v),
nodes u and v are not adjacent in G. From the construction of
G′, d, and Rd, pu and pv do not have split. By definition, Ri

d is a
configuration. Hence, Rd can be partitioned into k configurations
R1

d, R2
d, ..., Rk

d and SD(G′, d, Rd, k) has a solution.
Now, we will show the necessary condition: if SD(G′, d, Rd, k)

has a solution, G can be k-colored. Since SD(G′, d, Rd, k) has a
solution, Rd can be partitioned into k configurations R1

d, R2
d, ...,

and Rk
d . Let pu, pv ∈ Ri

d, 1 ≤ i ≤ k. Since Ri
d is a configuration,

pu does not have split with pv in G′. From the construction of
G′, d, Rd, u and v are not adjacent in G. Hence, all nodes in
each configuration can be colored with the same color and the
mapping function c : V → {1, 2, ..., k} can be defined as c(u) = i

if pu ∈ Ri
d, 1 ≤ i ≤ k. Hence, if SD(G′, d, Rd, k) has a solution,

G can be k-colored. 2

IV. INTEGER LINEAR PROGRAMMING FORMULATION

Since some highly optimized ILP solvers have been developed,
a common approach to handle an NP-complete problem is to
develop an ILP formulation for this problem so that existing
ILP solvers can be used to obtain solutions for reasonably sized
problems. In this section, we will give a 0-1 ILP formulation for
the single destination LID assignment problem.

Let SD(G, d, Rd, k) be the decision version of the single
destination LID assignment problem. The 0-1 ILP formulation

for this problem is as follows. For each p ∈ Rd and i, 1 ≤ i ≤ k,
a variable Xp,i is created. The value of the solution for Xp,i

is either 0 or 1. Xp,i = 1 indicates that p is in configuration
Ri

d and Xp,i = 0 indicates that p is not in configuration Ri
d. The

ILP formulation does not have an optimization objective function,
instead, it tries to determine whether there exists any solution
under the following constraints.

First, the values for Xp,i must be either 0 or 1:
For any p ∈ Rd and 1 ≤ i ≤ k, 0 ≤ Xp,i ≤ 1 and Xp,i is an integer.

Second, each p ∈ Rd must be assigned to exactly one
configuration:

For any p ∈ Rd,
∑k

i=1 Xp,i = 1.
Third, for any two paths p, q ∈ Rd that have a split, they cannot

be assigned to the same configuration:
For any p, q ∈ Rd that have a split, Xp,i + Xq,i ≤ 1, 1 ≤ i ≤ k.

A solution to this formulation for a given k indicates that at
most k LIDs are needed for the problem. To solve the optimization
version of the problem (finding the minimum k), one can first use
a heuristic (e.g. any one described in the next section) to find an
initial k, and then repeatedly solve the ILPs for SD(G, d, Rd, k−

1), SD(G, d, Rd, k − 2), and so on. Let m be the value for the
first instance that SD(G, d, Rd, m) does not have a solution, the
minimum k is m + 1.

Consider the ILP formulation for realizing Rm0 =

{p1, p2, p3, p4} in Fig. 5, where p1 = m1
1
→ s4

1
→ s1

1
→

s0
1
→ m0, p2 = m2

1
→ s4

1
→ s3

1
→ s2

1
→ s0

1
→ m0,

p3 = m4
1
→ s5

1
→ s2

1
→ s0

1
→ m0, and p4 = m3

1
→ s5

1
→

s3
1
→ s1

1
→ s0

1
→ m0. Assuming k = 2, there are eight variables

in the ILP: Xp1,1, Xp1,2, Xp2,1, Xp2,2, Xp3,1, Xp3,2, Xp4,1, and
Xp4,2. The constraints are as follows.

s4 s5

s0

m0

s2s1

s3

p1 p3p2
p4

m1 m2 m3 m4

Fig. 5. An example of LID assignment

First, the solutions for the eight variables must be 0 and 1,
which is enforced by the following in-equations and requiring
the solutions to be integers:

0 ≤ Xp1,1 ≤ 1, 0 ≤ Xp1 ,2 ≤ 1,
0 ≤ Xp2,1 ≤ 1, 0 ≤ Xp2 ,2 ≤ 1,
0 ≤ Xp3,1 ≤ 1, 0 ≤ Xp3 ,2 ≤ 1,
0 ≤ Xp4,1 ≤ 1, 0 ≤ Xp4,2 ≤ 1

Second, the following constraints enforce that each path is
assigned one LID:

Xp1,1 + Xp1,2 = 1, Xp2,1 + Xp2,2 = 1,
Xp3,1 + Xp3,2 = 1, Xp4,1 + Xp4,2 = 1

6

Finally, among the four paths, p1 has a split with p2, p2 has
a split with p4, and p4 has split with p3. To ensure that paths
that have splits are not assigned the same LID, the following
constraints are added.

Xp1,1 + Xp2,1 ≤ 1, Xp1,2 + Xp2,2 ≤ 1,
Xp2,1 + Xp4,1 ≤ 1, Xp2,2 + Xp4,2 ≤ 1,
Xp3,1 + Xp4,1 ≤ 1, Xp3,2 + Xp4,2 ≤ 1

This ILP formulation has the solution: Xp1,1 = 1, Xp1 ,2 = 0,
Xp2,1 = 0, Xp2,2 = 1, Xp3,1 = 0, Xp3,2 = 1, Xp4,1 = 1,
Xp4,2 = 0. This means that p1 and p4 are realized with one LID
and that p2 and p3 are realized with another LID.

V. LID ASSIGNMENT HEURISTICS

The ILP formulation allows the problem for a reasonable
sized system to be solved with existing ILP solvers. We develop
heuristic algorithms so that problems for large networks can be
solved. All of the proposed heuristics are oblivious to routing.
They do not make any assumption about the routes to be assigned
LIDs. As a result, they can be applied to any routing scheme,
including multipath routing and schemes that can yield duplicate
routes. All of our heuristics are based on the concept of minimal
configuration set, which is defined next.
Definition 4: Given a single destination routing Rd = {p1, p2, ...},
the set of configurations MC = {C1, C2, ..., Ck} is a minimal
configuration set for Rd if and only if all of the following
conditions are met:

• each Ci ∈ MC, 1 ≤ i ≤ k, is a configuration;
• each pi ∈ Rd is in exactly one configuration in MC;
• for each pair of configuration Ci and Cj ∈ MC, i 6= j, there

exist px ∈ Ci and py ∈ Cj such that px and py have a split.
The configuration set is minimal in that there do not exist

two configurations in the set that can be further merged. From
Lemma 2, all paths in one configuration can be realized by 1
LID. Hence, assuming that MC = {C1, C2, ..., Ck} is a minimal
configuration set for routing Rd, the routing Rd can be realized
by k LIDs. All of the heuristics attempt to minimize the number
of LIDs needed by finding a minimal configuration set.

A. Greedy heuristic

For a given Rd, the greedy LID assignment algorithm creates
configurations one by one, trying to put as many paths into each
configuration as possible to minimize the number of configura-
tions needed. This heuristic repeats the following process until
all paths are in the configurations: create an empty configuration
(current configuration), check each of the paths in Rd that has
not been included in a configuration whether it has a split with
the paths in the current configuration, and greedily put the path
in the configuration (when the path does not split with any paths
in the configuration). The algorithm is shown in Fig. 6. Each
configuration (or path) can be represented as an array of size |V |

that stores for each node the outgoing link from the node (in a
configuration or a path, there can be at most one outgoing link
from each node). Using this data structure, checking whether a
path has a split with any path in a configuration takes O(|V |)

time (line (5) in Fig. 6); and adding a path in a configuration
also takes O(|V |) time (line (6)). The loop at line (4) runs for at
most |Rd| iterations and the loop at line (2) runs for at most k

iterations, where k is the number of LIDs allocated. Hence, the
complexity of the algorithm is O(k × |Rd| × |V |), where k is the

number of LIDs allocated, Rd is the set of paths, and V is the
set of nodes in the network.

(1) MC = φ, k = 1
(2) repeat
(3) Ck = φ

(4) for each p ∈ Rd

(5) if p does not split with any path in Ck then
(6) Ck = Ck

⋃
{ p }, Rd = Rd− { p }

(7) end if
(8) end for
(9) MC = MC

⋃
{ Ck }, k = k + 1

(10) until Rd = φ

Fig. 6. The greedy heuristic

We will use an example to show how the greedy heuristic algo-
rithm works and how its solution may be sub-optimal. Consider
realizing Rm0 = {p1, p2, p3, p4} in Fig. 5 in the previous section.
The greedy algorithm first creates a configuration and puts p1

in the configuration. After that, the algorithm tries to put other
paths into this configuration. The algorithm considers p2 next.
Since p1 and p2 split at switch s4, p2 cannot be included in this
configuration. Now, consider p3. Since p3 and p1 do not have any
joint intermediate nodes, p3 can be included in the configuration.
After that, since p4 splits with p3 at switch s5, it cannot be
included in this configuration. Thus, the first configuration will
contain paths p1 and p3. Since we have two paths p2 and p4 left
unassigned, new configurations are created for these two paths.
Since p2 and p4 split at switch s3, they cannot be included in
one configuration. Hence, the greedy algorithm realizes Rm0 with
three configurations: C1 = {p1, p3}, C2 = {p2}, and C3 = {p4}.
Thus, 3 LIDs are needed to realize the routing with the greedy
heuristic. Clearly, this is a sub-optimal solution since solving the
ILP formulation in the previous section requires only 2 LIDs.

B. Split-merge heuristics

For a given Rd, the greedy algorithm tries to share LIDs as
much as possible by considering each path in Rd: the minimal
configuration set is created by merging individual paths into
configurations. The split-merge heuristics use a different approach
to find the paths that share LIDs. This class of heuristics has
two phases: in the first phase, Rd is split into configurations;
in the second phase, the greedy heuristic is used to merge the
resulting configurations into a minimal configuration set, which
is the final LID assignment. In the split phase, the working set
initially contains one item Rd. In each iteration, a node is selected.
Each item (a set of paths) in the working set is partitioned into
a number of items such that each of the resulting items does
not contain paths that split in the node selected (the paths that
split in the selected node are put in different items). After all
nodes are selected, the resulting items in the working set are
guaranteed to be configurations: paths in one item do not split in
any of the nodes. In the worst case, each resulting configuration
contains one path at the end of the split phase and the split-merge
heuristic is degenerated into the greedy algorithm. In general
cases, however, the split phase will produce configurations that
include multiple paths. It is hoped that the split phase will allow
a better starting point for merging than individual paths. The
heuristic is shown in Fig. 7. Using a linked list to represent a set

7

and the data structure used in the greedy algorithm to represent a
path, the operations in the loop from line (4) to (7) can be done in
O(|Rd||V |) operations: going through all |Rd| paths and updating
the resulting set that contains each path with O(|V |) operations.
Hence, the worst case time complexity for the whole algorithm
is O(|V |2|Rd| + k|V ||Rd|).

/* splitting */
(1) S = {Rd}, ND = V

(2) repeat
(3) Select a node, a, in ND;
(4) for each Si ∈ S do
(5) partition paths in Si that splits at node a into

multiple sets S1
i , S2

i , ...,Sj
i

(6) S = (S − {Si}) ∪ S1
i ∪ ... ∪ Sj

i ;ND = ND − {a}

(7) end for
(8) until ND = φ

/* merging */
(9) apply the greedy heuristic on S.

Fig. 7. The split-merge heuristic.

Depending on the order of the nodes selected in the split phase,
there are variations of this split-merge heuristic. We consider two
heuristics in our evaluation, the split-merge/S heuristic that selects
the node used by the smallest number of paths first, and the split-
merge/L heuristic that selects the node used by the largest number
of paths first.

C. Graph coloring heuristics

This heuristic converts the LID assignment problem into a
graph coloring problem. First, a split graph is built. For all paths
pi ∈ Rd, there exists a node npi in the split graph. If pi and pj

have a split with each other, an edge (npi , npj) is added in the
split graph. It can be easily shown that if the split graph can be
colored with k colors, Rd can be realized with k LIDs: the nodes
assigned the same color correspond to the nodes assigned the
same LID. This conversion allows heuristics that are designed
for graph coloring to be applied to solve the LID assignment
problem. Consider the example in Fig. 5. The corresponding split
graph is shown in Fig. 8. Node p1 has an edge with node p2 as
they split at s4, node p2 has an additional edge with p4 as they
split at s3. Finally, p3 has an edge with p4 as they split with each
other at s5.

p1 p2

p4p3

Fig. 8. The split graph for Fig. 5

While many graph coloring algorithms can be applied to color
the split graph, we use a simple coloring heuristic in this paper. In
our heuristic, the graph is colored by applying the colors one-by-
one. Fig. 9 shows one of the graph coloring algorithms that we
consider: the most split path first heuristic (color/L). The heuristic

works as follows. Starting from the split graph, a node with the
largest degree is selected and assigned a color. After that, this
node and all other nodes that are adjacent to it are removed from
the working graph: all remaining nodes can be assigned the same
color. Hence, we can use the same heuristic to select the next
node to assign the same color. This process is repeated until the
working graph becomes empty. In one such iteration, all nodes
that are assigned the one color are found. In the next iteration,
the same process is applied to all nodes that are not colored. This
process repeats until each node is assigned a color.

(1) Compute the split graph for the problem.
(2) workinggraph = split graph;color=1;
(3) repeat
(4) repeat
(5) Select a node in workinggraph with the

largest degree
(6) Assign color to the node
(7) Remove the node and all adjacent nodes

from workinggraph

(8) until no more nodes in workinggraph

(9) workinggraph = all nodes without colors plus the
edges between them

(10) color ++;
(11) until workinggraph is empty (all nodes are colored)

Fig. 9. Most split path first heuristic (color/L).

Consider the example in Fig. 8. In the first iteration (assigning
color 1), nodes p2 and p4 have the largest degree and could
be chosen. Let us assume that p2 is selected first and assigned
color 1. After that, nodes p1 and p4 are removed since they are
adjacent to p2. Thus, node p3 is selected and assigned color 1.
In the second iteration (assigning color 2), the working graph
contains node p1 and p4 with no edges. Hence, both nodes are
assigned color 2. The algorithm results in two configurations:
C1 = {p2, p3} and C2 = {p1, p4}.

The heuristic is embedded in the selection of a node to color in
Line (5). We consider two coloring based heuristics in this paper:
the most split path first heuristic (color/L) showed in Fig. 9 and
the least split path first heuristic (color/S) when the node in the
split graph with the smallest nodal degree is selected (node p1 or
node p3 in Fig. 8). The worst case time complexity for computing
the split graph is O(|Rd|

2|V |): it takes O(|V |) time to decide
whether an edge exists between two nodes; and there are at most
O(|Rd|

2) edges in the split graph. After the graph is created, in
all iterations of the loop in Lines (4) to (8) in Fig. 9, O(|Rd|

2)

edges are removed from workinggraph in the worst case. Using a
priority queue to maintain the sorted order for the nodes based on
the nodal degree, each remove operation requires O(lg(|Rd|

2) =

O(lg(|Rd|) operations in the worst case. The outer loop (lines
(3) to (11)) runs k times. Hence, the complexity for coloring
is O(k × |Rd|

2lg(|Rd|)) and the total time for this heuristic is
O(|Rd|

2|V | + k × |Rd|
2lg(|Rd|)).

VI. PERFORMANCE STUDY

We carry out simulations to investigate various aspects of the
proposed heuristics and different routing schemes. The study
consists of four parts: (1) investigating the relative performance of
the proposed LID assignment heuristics and identifying the most

8

effective heuristic, (2) investigating the absolute performance of
the heuristics by comparing their solutions with the optimal
solutions obtained using the ILP formulation, (3) probing the
performance on regular and near regular topologies, and (4)
studying the performance of various routing schemes.

For random irregular topologies, we report results on systems
with 16, 32, and 64 switches and 64, 128, 192, 256, and 512
machines. We will use the notion X/Y to represent the system
configuration with X machines and Y switches. For example,
128/16 denotes the configuration with 128 machines and 16
switches. Each random irregular topology is generated as follows.
First, a random switch topology is generated using the Georgia
Tech Internetwork Topology Models (GT-ITM) [19]. The average
nodal degree is 8 for all three cases (16, 32, and 64 switches).
After the switch topology is generated, the machines are ran-
domly distributed among the switches with a uniform probability
distribution. Note that the topologies generated by GT-ITM are
not limited to Internet-like topologies, this package can generate
random topologies whose connectivity follows many different
probability distribution. Note also that the average number of
ports in a switch in the evaluated configurations ranges from 10
to 48, which covers the common types of practical InfiniBand
switches. The average nodal degree in the switch topology is 8,
and machines are also attached to switches.

Our LID assignment schemes do not make any assumption
about path computation and can work with any routing schemes
including multi-path routing, non dead-lock free routing, and
other path computation schemes such as the recently developed
layered routing scheme [11]. However, the paths computed with
different schemes may exhibit different characteristics, which may
affect the effectiveness of the LID assignment heuristics. In the
evaluation, we consider two Up*/Down routing based schemes
that guarantee to produce deadlock free routes. The first scheme
is called the Shortest Widest scheme. In this scheme, the routing
between each pair of machines is determined as follows. First,
Up*/Down* routing (the root node is randomly selected to build
the tree for Up*/Down* routing) is applied to limit the paths
that can be used between each pair of machines. After that, a
shortest-widest heuristic is used to determine the path between
machines. This heuristic determines the paths between machines
one by one. At the beginning, all links are assigned a weight
of 1. When a path is selected, the weight on each link in the
path is increased by 1. For a given graph with weights, the
shortest-widest heuristic tries to select the shortest path between
two nodes (among all paths allowed by the Up*/Down* routing).
When there are multiple such paths, the one with the smallest
weight is selected. The second routing scheme is called the Path
Selection scheme. In this scheme, the paths are determined as
follows. First, Up*/Down* routing is applied to limit the paths
that can be used between each pair of machines. After that, a k-
shortest path routing algorithms [17] is used to find a maximum
of 16 shortest paths (following the Up*/Down* routing rules)
between each pair of nodes. Note that some pairs may not have
16 different shortest paths. After all paths are computed, a path
selection algorithm [12] is applied to select one path for each
pair of machines. The path selection algorithm follows the most
loaded link first heuristic [12], which repeatedly removing paths
that use the most loaded link in the network until only one path for
each pair remains. It has been shown in [12] that the most loaded
link first heuristic is effective in producing load balancing paths.

Both the shortest widest scheme and the path selection scheme
compute one path for each pair of machines. Paths computed with
these two different schemes exhibit very different characteristics,
which allows us to thoroughly investigate the effectiveness of the
proposed LID assignment heuristics.

In computing the LIDs allocated for each node, LID mask
control is taken into consideration. Each node is assigned a power
of 2 LIDs: when k LIDs are required for destination d, the number
of LIDs for d is counted as 2dlg(k)e .

A. Relative performance of LID assignment heuristics

The LID assignment heuristics evaluated include greedy, split-
merge/L where the node used by the largest number of paths
is selected first in the split phase, split-merge/S where the node
used by the smallest number of paths is selected first, color/L
that is the most split path first heuristic (paths that split with the
largest number of other paths are colored first), and color/S that
is the least split path first heuristic (paths that split with the least
number of other paths are colored first). To save space, we will
use notion s-m/L to represent split-merge/L and s-m/S to represent
split-merge/S.

Table I depicts the performance of the heuristics when they are
applied to the paths computed using the shortest widest scheme.
The table shows the average of the total number of LIDs assigned
to all machines. Each number in the table is the average of 32
random instances. We obtain the following observations from
the experiments. First, the performance differences among the
heuristics for the 16-switch configurations are very small. The
performance difference between the best and the worst heuristics
is less than 1%. The fact that five different heuristics compute
minimal configuration sets in very different ways and yield similar
performance suggests that other LID assignment schemes will
probably have similar performance for the paths computed by
the shortest-widest scheme on networks with a small number
of switches. When the network is small, there are not many
different shortest paths between each pair of nodes. Paths to the
same destination tend to follow the same links with this path
computation scheme. Hence, there are not many optimization
opportunities in LID assignment. This observation is confirmed
in the study of the absolute performance in the next sub-section:
the performance of these heuristics for the paths computed with
the shortest widest scheme is very close to optimal. Second,
as the subnet becomes larger, the performance difference also
becomes larger. For example, on the 64-switch configurations, the
performance differences between the best and the worst heuristics
are 8.4% for 128 machines, 5.5% for 256 machines, and 4.9%
for 512 machines. When the network becomes larger, there are
more different shortest paths between two nodes, which creates
more optimization opportunities in LID assignment.

Among the proposed heuristics, the split-merge approach has
a very similar performance to the greedy algorithm. Thus, the
higher complexity in the split-merge approach cannot be justified.
The most split path first heuristic (color/L) is consistently better
than all other heuristics while the least split path first (color/S)
is consistently worse than other heuristics. This indicates that
color/L is effective for this problem while color/S is not. The
trend is also observed when the path selection scheme is used to
compute paths.

Table II shows the results for the paths computed by the path
selection scheme. Each number in the table is the average (over

9

Conf. Greedy S-m/S S-m/L Color/S Color/L
128/16 478.7 478.9 477.3 479.3 476.4
256/16 1044.3 1045.4 1041.5 1047.7 1039.2
512/16 2218.3 2220.1 2211.8 2220.4 2208.5
128/32 451.5 453.9 452.9 461.3 443.0
256/32 1078.8 1084.7 1079.0 1100.0 1062.4
512/32 2428.7 2440.2 2425.8 2461.0 2392.1
128/64 422.8 427.7 427.0 441.5 407.4
256/64 1015.5 1022.2 1019.3 1044.6 990.6
512/64 2325.8 2338.4 2330.1 2385.1 2274.4

TABLE I
THE AVERAGE OF THE TOTAL NUMBER OF LIDS ALLOCATED (SHORTEST

WIDEST)

Conf. Greedy S-m/S S-m/L Color/S Color/L
128/16 520.9 524.2 514.0 581.2 466.0
256/16 951.3 952.7 935.0 1062.6 851.2
512/16 1829.2 1852.8 1823.0 2038.7 1653.2
128/32 540.3 546.7 539.3 611.3 466.0
256/32 1006.7 1018.2 1002.2 1130.8 887.2
512/32 1904.0 1920.3 1895.7 2115.8 1688.7
128/64 528.0 541.1 530.5 599.4 460.5
256/64 1054.9 1092.9 1068.1 1197.9 921.4
512/64 2019.9 2075.4 2043.4 2278.6 1786.6

TABLE II
THE AVERAGE OF THE TOTAL NUMBER OF LIDS ALLOCATED (PATH

SELECTION)

32 random instances) of the total number of LIDs allocated to
all machines for each configuration. There are several interesting
observations. First, the performance differences among different
heuristics are much larger than the cases with the shortest widest
scheme. On the 16-switch configurations, the performance differ-
ences between the best and the worst heuristics are 24.7% for 128
machines, 24.8% for 256 machines, and 23.3% for 512 machines.
For larger networks, the differences are more significant. On the
64-switch configurations, the performance differences are 30.1%
for 128 machines, 30.0% for 256 machines, and 27.5% for 512
machines. This indicates that for the paths computed with the path
selection scheme, which are more diverse than those computed
by the shortest-widest scheme, a good LID assignment heuristic
significantly reduces the number of LIDs needed. The good news
is that color/L consistently achieves the best performance in all
cases, which indicates that this is a robust heuristic that performs
well for different situations. Second, comparing the results for
paths computed by the shortest widest routing (Table I) with
those computed by path selection (Table II), we can see that
when the number of machines is small (128 machines with 32
and 64 switches), the paths computed by the shortest widest
scheme requires less LIDs to realize than the paths computed
by the path selection scheme assuming the same LID assignment
heuristic. However, when the number of machines is larger (256
and 512), the paths computed from the shortest-widest scheme
requires more LIDs. This shows that path computation can have
a significant impact on the LID requirement.

In summary, depending on the path computation method, LID
assignment heuristics can make a significant difference in the

number of LIDs required. The color/L heuristic consistently
achieves high performance in different situations. The results also
indicate that path computation methods have a significant impact
on the LID requirement.

B. Absolute performance of the LID assignment heuristics

The previous section shows that the color/L heuristic is more
effective than other heuristics. However, it is not clear how well
the heuristic performs in comparison to optimal solutions. In
this section, we compare the performance of the heuristics with
optimal solution. The optimal solutions are obtained using the
ILP formulation in Section IV. We use the open source ILP
solver lp solve version 5.5.0.11 [9] in the experiments. Due to
the complexity in solving the ILPs, we consider smaller networks
than those in the previous section: the systems we considered in
this section consists of 16, 32, and 64 switches, and 64, 128,
and 192 machines. Lp solve is not able to give definitive answers
in a reasonable amount of time for some problems. To limit the
amount of time in the experiments, we set the time-out parameter
for lp solve to four hours for each ILP instance. The experiments
are done on a cluster of Dell Poweredge 1950’s, each with
two 2.33GHz Intel quad-core Xeon E5345 processors and 8GB
memory. If lp solve cannot obtain solutions for an ILP in four
hours, we ignore the topology and replace it with another random
topology. The results for all of the schemes compared are obtained
using the same set of topologies. Notice that for a topology with
X machines, X solutions for SD(G, d, Rd)’s must be obtained
to decide the LID requirement for the topology. The solution
for each SD(G, d, Rd) determines the LID requirement for one
destination d. To obtain the solution for each SD(G, d, Rd), we
first use color/L to obtain the initial k and then try to solve
SD(G, d,Rd, k − 1), SD(G, d, Rd, k − 2), and so on, until the
solver decides that there is no solution for SD(G, d, Rd, m). The
answer to SD(G, d, Rd) is then m + 1. Since the performance
of color/L is very close to optimal, in the majority of the
cases, only one or two ILPs are solved to obtain the solution
for SD(G, d, Rd). For each case, the results are the average of
32 random topologies, which are not the same topologies as the
ones in the previous subsection since lp solve cannot handle some
topologies in the previous subsection. We compare the results for
the greedy heuristic, the simplest among all proposed heuristics,
and color/L, our best performing heuristic. Similar to the study
in the previous sub-section, we consider paths computed by the
shortest-widest scheme and the path selection scheme.

Table III depicts the results of the heuristics and optimal
solutions when the shortest widest scheme is used to compute the
paths. For all cases, the optimal solutions are on average less than
5% better than the greedy algorithm and less than 1% better than
color/L. This confirms our speculation that different heuristics
make little difference on the LID assignment performance when
the shortest widest routing algorithm is used to compute paths.
This is because there are not many shortest paths between two
nodes and the paths computed using this method tend to use the
same links and do not have too many splits, which limits the
optimization opportunities. As the number of switches increases,
the performance of the greedy algorithm become worse compared
to the optimal solution: for the 128 machine cases, the difference
between the greedy heuristic and the optimal algorithm increases
from 0.41% to 4.82% when the number of switches increases from
16 to 64. On the other hand, color/L shows much stable relative

10

Conf. ILP Greedy Color/L ILP over ILP over
greedy color/L

64/16 210.8 212.1 211.0 0.59% 0.06%
128/16 455.2 457.1 455.5 0.41% 0.06%
192/16 701.0 704.0 715.5 0.44% 0.08%
64/32 177.6 182.7 178.4 2.85% 0.42%
128/32 448.3 457.4 449.0 2.05% 0.17%
192/32 714.9 727.9 716.0 1.82% 0.15%
64/64 159.6 166.5 159.9 4.35% 0.24%
128/64 406.2 425.8 407.7 4.82% 0.37%
192/64 690.3 711.9 692.8 3.13% 0.37%

TABLE III
THE AVERAGE OF TOTAL LIDS ALLOCATED (SHORTEST WIDEST)

Conf. ILP Greedy Color/L ILP over ILP over
greedy color/L

64/16 215.1 244.5 219.8 13.69% 2.18%
128/16 400.7 451.1 407.0 12.56% 1.56%
192/16 575.7 647.1 582.6 12.41% 1.19%
64/32 225.2 263.4 231.1 16.96% 2.61%
128/32 436.2 510.3 447.3 16.98% 2.54%
192/32 617.7 723.7 634.6 17.15% 2.73%
64/64 222.2 256.3 226.6 15.36% 1.97%
128/64 437.5 509.4 448.1 16.43% 2.43%
192/64 646.4 754.8 664.6 16.76% 2.80%

TABLE IV
THE AVERAGE OF TOTAL LIDS ALLOCATED (PATH SELECTION)

performance in different situations. For example, for the 128
machine cases, the difference between color/L and the optimal
algorithm increases from 0.06% to 0.37% when the number of
switches increases from 16 to 64. This shows that the performance
of color/L is very close to optimal.

Table IV shows the results for the heuristics and ILP when
the path selection scheme is used to compute the paths. The
performance difference between ILP and greedy is considerably
larger than the cases with the shortest widest scheme. The optimal
solution is much better than the greedy heuristic, the differences
range from 12% in smaller configurations (64/16) to 17% for the
larger configurations (128/32 and 64/32). Again, color/L shows
much better performance. The optimal solution is only less than
3% better than color/L in all the configurations considered. This
indicates that there is not much room to further improve color/L.

Color/L consistently performs well with very little room for
further improvement: less than 1% when the widest-shortest
scheme is used and less than 3% when the path selection scheme
is used. Different path computation schemes may affect the
effectiveness of different LID assignment heuristics, yet color/L
consistently achieves close to optimal results for different system
configurations regardless of the path computation method.

Since we discard the topologies that cannot be handled by
lp solve, the topologies are not totally random and the evaluation
may not be fair. Next, we will examine the impacts of using
such topologies. We compare key statistics on the ILP selected
random topologies, which are the first 32 topologies that lp solve
gives exact solutions, with those on purely random topologies,
which are the first 32 random topologies generated. Table V
shows the average number of LIDs needed and the improvement

of color/L over greedy with different routing schemes for various
configurations. Two important observations are obtained. First, the
ILP selected topologies tend to use a smaller number of LIDs.
This means that lp solve tends to give exact solutions to cases with
a smaller number of LIDs. Second, the ILP selected topologies
do not bias against the heuristics, as evidenced by the similar
performance improvement ratio between color/L and greedy for
both types of random topologies. For shortest widest routing, the
average of the improvement ratio between color/L and greedy
over all the nine configurations in Table IV is 2.01% for purely
random topologies and 2.05% for ILP selected topologies. For
path selection, the ratio is 13.3% for purely random topologies
and 12.9% for ILP selected topologies.

C. Performance of the heuristics on regular and near regular
topologies

In this section, we examine the heuristics on regular topologies
as well as regular topologies with a few broken links (near regular
topologies). Three types of topologies and their variations are
considered: two dimensional tori, three dimensional tori, and fat-
trees. For the torus topologies, we assume that one machine
is attached to each switch. The base routing algorithm is the
dimension-order routing [4]. In a torus topology with broken
links, all paths that are not affected by the broken links remain
the same. For the paths that use one or more of the broken links,
alternative paths are computed using the shortest widest algorithm
without the Up*/Down* routing constraint. The broken links are
randomly selected. We study the cases with 0, 1, 2, 3, and 4
broken links. For the fat-tree topology, we consider m-port n-
tree [7]. The base routing algorithm for the fat-tree topology is a
recently developed deterministic routing algorithm in [5]. Similar
to the torus case, in a fat-tree topology with broken links, all paths
computed by the base routing scheme that are not affected by the
broken links remain the same. Alternative paths are computed
using the shortest widest algorithm for the affected paths.

Fig. 10 shows the performance of the heuristics on the torus
topology with zero and more broken links. Fig. 10 (a) contains
the results for a two dimensional 16 × 8 torus, and Fig. 10 (b)
contains the results for a three dimensional 8×4×4 torus. Using
the dimensional order routing, only one LID is needed to realize
all paths to each destination in the tori (without broken links):
there is no split in all paths, and all heuristics yield the same
optimal results. As more links are broken, alternative paths yield
more splits and more LIDs are needed to realize paths. In the
2D torus with broken links, the performance of color/L is very
close to the optimal while the greedy heuristic is significantly
worse. For the 3D torus, both greedy and coloring have similar
performance as the optimal algorithm in all cases. The main
reason for this difference is that in 2D torus, the average path
length is much larger. A long path can potentially have many splits
with other paths, which increases the optimization opportunities in
LID assignment. As a result, color/L is much more effective than
greedy. On the other hand, for the 3D torus, the path lengths are
much shorter, which presents fewer optimization opportunities in
LID assignment, resulting in both greedy and color/L performing
similarly to the optimal scheme. The performance results for an
8-port 3-tree, which has 128 machines and 80 switches, are shown
in Fig. 11: the results are similar to those on the 3D torus for the
similar reason: the path length in the fat-tree is also short.

11

Conf. Topo. type Shortest widest Path selection
Greedy Color/L Improvement Greedy Color/L Improvement

64/16 random 214.0 213.0 0.50% 246.5 224.4 9.83%
ILP selected 212.1 211.0 0.53% 244.5 219.8 11.26%

128/32 random 466.6 457.3 2.02% 556.9 483.8 15.13%
ILP selected 457.4 449.0 1.88% 510.3 447.3 14.09%

192/64 random 739.3 720.3 2.63% 842.9 729.6 15.52%
ILP selected 711.9 692.8 2.75% 754.8 664.6 13.57%

TABLE V
ILP SELECTED RANDOM TOPOLOGIES VERSUS PURELY RANDOM TOPOLOGIES

 0

 50

 100

 150

 200

 4 3 2 1 0

A
ve

ra
ge

 n
um

be
r

of
 L

ID
s

of broken links

Greedy
Color/L

ILP

(a) two dimensional 16 × 8 torus

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 4 3 2 1 0

A
ve

ra
ge

 n
um

be
r

of
 L

ID
s

of broken links

Greedy
Color/L

ILP

(b) three dimensional 8 × 4 × 4 torus

Fig. 10. Performance on torus topologies with zero or more broken links

 0

 50

 100

 150

 200

 250

 300

 4 3 2 1 0

A
ve

ra
ge

 n
um

be
r

of
 L

ID
s

of broken links

Greedy
Color/L

ILP

Fig. 11. Performance on a fat-tree topology (8-port 3-tree) with zero or more
broken links

We have performed studies on other 2D and 3D tori and fat-
trees, the results have a similar trend. These results indicate that
the color/L heuristic is effective for regular and near regular
topologies: its performance is consistently close to the optimal.

D. Overall performance of various path computation methods

We compare a new routing scheme that separates path compu-
tation from LID assignment with existing schemes for InfiniBand
including destination renaming [8] and the SRD routing scheme
[14]. The new routing scheme, called separate, uses the path
selection scheme for path computation and color/L for LID
assignment. SRD [14] selects paths such that one LID is sufficient
to realize all paths to a destination. Hence, at the expense of
the load balancing property of the paths computed, this method
requires the least number of LIDs among all path computation
schemes. Note that fully explicit routing [3] is a variation of
SRD. The destination renaming [8] scheme uses a shortest path
algorithm to select paths that follow Up*/Down* routing rules.
It assigns LIDs as the paths are computed. All three schemes
compute one path for each pair of machines.

We evaluate the performance of the routing methods with two
parameters: (1) the number of LIDs required, and (2) the load
balancing property of the paths. We measure the load balancing
property as follows. We assume that the traffic between each pair
of machines is the same and measure the maximum link load
under such a traffic condition. In computing the maximum link
load, we normalize the amount of data that each machine sends
to all other machines to be 1. Under our assumption, the load
of a link is proportional to the number of paths using that link.
A good load balance routing should distribute traffic among all
possible links and should have small maximum link load values
in the evaluation.

Table VI shows the results for the three schemes on different
configurations. The results are the average of 32 random instances
for each configuration. As can be seen from the table, SRD uses
one LID for each machine, and thus, it requires a smallest number
of LIDs. However, it puts significant constraints on the paths
that can be used and the load balancing property is the worst
among the three schemes: the maximum link load of the SRD
scheme is much higher than other schemes. For example, on
128/16, the maximum link load with SRD is 17% higher than that
with Separate; on 512/64, it is 19% higher. Destination renaming,
which is more comparable to our proposed new scheme, has a
better load balancing property than SRD. Our proposed scheme,
Separate, has the best load balancing property in all cases,
which can be attributed to the effectiveness of the path selection
algorithm [12]. Moreover, for reasonably large networks (256 and

12

conf. SRD Renaming Separate
load LIDs load LIDs load LIDs

128/16 4.34 128 3.84 477.8 3.70 466.0
256/16 8.65 256 7.52 1044.9 7.35 851.2
512/16 17.95 512 15.46 2213.3 14.91 1653.2
128/32 3.29 128 3.01 448.1 2.75 466.0
256/32 6.89 256 6.26 1079.2 5.8 887.2
512/32 14.71 512 13.24 2422.8 12.37 1688.7
128/64 3.29 128 3.01 420.0 2.75 460.5
256/64 6.15 256 5.72 1011.8 5.13 921.4
512/64 11.36 512 10.55 2323.4 9.54 1786.6

TABLE VI
THE MAXIMUM LINK LOAD AND THE NUMBER OF LIDS REQUIRED

512 machines), separate also uses a smaller number of LIDs
than destination renaming. For the 512 machines/64 switches
case, in comparison to destination renaming, the separate scheme
reduces the maximum link load by 10.6% while decreasing the
number of LIDs needed by 25.4%. This indicates that separate
has much better overall performance than destination renaming:
it reduces the maximum link load and uses a smaller number
of LIDs simultaneously. This demonstrates the effectiveness of
separating path computation from LID assignment, as well as the
effectiveness of the color/L LID assignment heuristic.

VII. CONCLUSION

We investigate the LID assignment problem in InfiniBand
networks. We show that this problem is NP-complete and develop
an integer linear programming formulation for it. We further
design LID assignment heuristics and show that the color/L
heuristic is consistently the most effective heuristic among all
proposed schemes in different situations. Moreover, depending on
the path computation method, color/L, whose performance is very
close to optimal, can be effective in reducing the number of LIDs
required. We demonstrate that the techniques developed in this
paper can be used with the existing schemes for finding dead-lock
free and deterministic paths with good load balancing properties
to obtain efficient routing schemes for InfiniBand networks. We
must note that our proposed routing scheme, which separates path
computation from LID assignment, is difficult to be applied in an
incremental fashion. It is more suitable to be used to compute
the initial network configuration than to deal with incremental
network changes. In particular, our scheme is not as efficient
in dealing with incremental network changes as other schemes
designed for that purpose [3].

ACKNOWLEDGMENT

This work is supported in part by National Science Foundation
(NSF) grants: CCF-0342540, CCF-0541096, and CCF-0551555.

REFERENCES

[1] A. Bermudez, R. Casado, F. J. Quiles, T.M. Pinkston, and J. Duato,
“Evaluation of a Subnet Management Mechanism for InfiniBand Net-
works.” Proc. of the 2003 IEEE International Conference on Parallel
Processing (ICPP), pages 117–124, Oct. 2003.

[2] A. Bermudez, R. Casado, F. J. Quiles, and J. Duato, “Use of Provisional
Routes to Speed-up Change Assimilation in InfiniBand Netrworks.”
Proc. of the 2004 IEEE International Workshop on Communication
Architecture for Clusters (CAC’04), page 186, April 2004.

[3] A. Bermudez, R. Casado, F. J. Quiles, and J. Duato, “Fast Routing
Computation on InfiniBand Networks.” IEEE Trans. on Parallel and
Distributed Systems, 17(3):215-226, March 2006.

[4] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks, an
Engineering Approach, Morgan Kaufmann Publishers, 2003.

[5] C. Gomez, F. Gilabert, M.E. Gomez, P. Lopez, and J. Duato, “Deter-
ministic versus Adaptive Routing in Fat-Trees,” the IPDPS Workshop on
Communication Architecture for Clusters (CAC), pages 1-8, April 2007.

[6] M.Koibuchi, A. Funahashi, A. Jouraku, and H. Amano, “L-turn Routing:
An Adaptive Routing in Irregular Networks.” Proc. of the 2001 Interna-
tional Conference on Parallel Processing (ICPP), pages 383-392, Sept.
2001.

[7] X. Lin, Y. Chung, and T. Huang, “A Multiple LID Routing Scheme for
Fat-Tree-Based Infiniband Networks.” Proceedings of the 18th IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS’04),
p. 11a, April 2004.

[8] P. Lopez, J. Flich, and J. Duato, “Deadlock-Free Routing in InfiniBand
through Destination Renaming.” Proc. of the 2001 International Con-
ference on Parallel Processing (ICPP), pages 427-434, Sept. 2001.

[9] lp solve reference guide, http://lpsolve.sourceforge.net/5.5/
[10] InfiniBandTM Trade Association, InfiniBand TM Architecture Specifi-

cation, Release 1.2, October 2004.
[11] O. Lysne, T. Skeie, S. Reinemo, I. Theiss, “Layered Routing in Irregular

Networks,” IEEE Trans. on Parallel and Distributed Systems, 17(1):51-
65, January 2006.

[12] M. Koibuchi, A. Jouraku and H. Amano, “Path Selection Algorithm: The
Stretegy for Designing Deterministic Routing from Alternative Paths.”
Parallel Computing, 31(1):117-130, 2005.

[13] J. C. Sancho, A. Robles, and J. Duato, “A New Methodology to Compute
Deadlock-Free Routing Tables for Irregular Networks.” Proc. of the
4th Workshop on Communication Architecture and Applications for
Network-Based Parallel Computing, Jan. 2000.

[14] J. C. Sancho, A. Robles, and J. Duato, “Effective Strategy to Computing
Forwarding Tables for InfiniBand Networks.” Proc. of the International
Conference on Parallel Processing (ICPP), pages 48-57, Sept. 2001.

[15] J. C. Sancho, A. Robles, and J. Duato, “Effective Methodology for
Deadlock-Free Minimal Routing in InfiniBand Networks.” Proc. of the
2002 International Conference on Parallel Processing (ICPP), pages
409-418, 2002.

[16] M. D. Schroeder, A. D. Birrell, M. Burrow, H. Murray, R. M. Needham,
T. L. Rodeheffer, “Autonet: a High-speed Self-configuring Local Area
Network Using Point-to-Point Links.” IEEE JSAC, 9(8): 1318-1335,
1991.

[17] J. Y. Yen. “Finding the k shortest loopless paths in a network.”
Management Science, 17(11), July 1971.

[18] X. Yuan, W. Nienaber, Z. Duan, and R. Melhem, “Oblivious Routing for
Fat-Tree Based System Area Networks with Uncertain Traffic Demands.”
ACM Sigmetrics, pages 337-348, June 2007.

[19] E. W. Zegura, K. Calvert and S. Bhattacharjee, “How to Model an
Internetwork.” IEEE Infocom ’96, pages 594-602, April 1996.

PLACE
PHOTO
HERE

Wickus Nienaber Wickus Nienaber obtained the
B.S. and M.S. degrees in Computer Science from
Florida State University in 2005 and 2007, respec-
tively. He is currently a PhD student in the Computer
Science Department at Florida State University. His
research is in the area of parallel computer archi-
tectures in general with a focus on system area
networks and interconnects.

13

PLACE
PHOTO
HERE

Xin Yuan Xin Yuan received his B.S. and M.S
degrees in Computer Science from Shanghai Jiao-
tong University in 1989 and 1992, respectively.
He obtained his PH.D degree in Computer Science
from the University of Pittsburgh in 1998. He is
currently an associate professor at the Department
of Computer Science, Florida State University. His
research interests include networking and parallel
and distributed systems. He is a member of IEEE
and ACM.

PLACE
PHOTO
HERE

Zhenhai Duan Zhenhai Duan received the B.S.
degree from Shandong University, China, in 1994,
the M.S. degree from Beijing University, China, in
1997, and the Ph.D. degree from the University of
Minnesota, in 2003, all in Computer Science. He
is currently an Assistant Professor in the Computer
Science Department at the Florida State University.
His research interests include computer networks
and multimedia communications, especially Inter-
net routing protocols and service architectures, the
scalable network resource control and management

in the Internet, and networking security. Dr. Duan is a co-recipient of the
2002 IEEE International Conference on Network Protocols (ICNP) Best Paper
Award. He is a member of IEEE and ACM.

