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Scheduler with Proportional and Worst-Case
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Abstract— Round robin based packet schedulers generally have
a low complexity and provide long-term fairness. The main
limitation of such schemes is that they do not support short-
term fairness. In this paper, we propose a new low complexity
round robin scheduler, called Fair Round Robin (FRR), that
overcomes this limitation. FRR has similar complexity and long-
term fairness properties as the stratified round robin scheduler,
a recently proposed scheme that arguably provides the best
quality-of-service properties among all existing round robin based
low complexity packet schedulers. FRR offers better short-term
fairness than stratified round robin and other existing round
robin schedulers.

Index Terms— Packet scheduling, proportional fairness, worst-
case fairness, round robin scheduler

I. INTRODUCTION

An ideal packet scheduler should have a low complexity, prefer-
ably O(1) with respect to the number of flows serviced, while
providing fairness among the flows. While the definition of the
complexity of a packet scheduling algorithm is well understood,
the concept of fairness needs further elaboration. Many fairness
criteria for packet schedulers have been proposed [10]. In this
paper, we will use two well established fairness criteria to evaluate
packet schedulers, the proportional fairness that was defined by
Golestani in [6] and the worst-case fairness that was defined by
Bennett and Zhang in [2].

Let Si,s(t1, t2) be the amount of data of flow fi sent during
time period [t1, t2) using scheduler s. Let fi and fj be any
two flows that are backlogged during an arbitrary time period
[t1, t2). The proportional fairness of scheduler s is measured by
the difference between the normalized services received by the
two flows, |Si,s(t1,t2)

ri
−

Sj,s(t1,t2)
rj

|. We will say that a scheduler
has a good proportional fairness property if the difference is
bounded by a constant number of packets in each flow, that is,
|
Si,s(t1,t2)

ri
−

Sj,s(t1,t2)
rj

| ≤ c1
LM

ri
+ c2

LM

rj
, where c1 and c2 are

constants and LM is the maximum packet size. One example
scheduler with a good proportional fairness property is the Deficit
Round Robin scheduler [17].

A scheduler with a good proportional fairness property guaran-
tees long-term fairness: for any (long) period of time, the services
given to any two continuously backlogged flows are roughly
proportional to their weights. However, proportional fairness does
not imply short-term fairness. Consider for example a scheduler
with a good proportional fairness property serving packets from
one 1Mbps flow and 1000 1Kbps flows. With a good proportional
fairness property, each of the 1000 1Kbps flows can send a
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constant number of packets ahead of the packet that is supposed
to be sent by the 1Mbps flow. Hence, during the period when
the scheduler sends the few thousand packets from the 1Kbps
flows, the 1Mbps flow is under-served: a scheduler with a good
proportional fairness property can be short-term unfair to a flow.
To better measure the short-term fairness property of a scheduler,
worst case fairness is introduced in [2].

A scheduler, s, is worst-case fair to flow fi if and only if the
delay of a packet arriving at time t on flow fi is bounded by
Qi,s(t)

ri
+Ci,s, where Qi,s(t) is the queue size of fi at t, ri is the

guaranteed rate of fi, and Ci,s is a constant independent of the
queues of other flows. A scheduler is worst-case fair if it is worst-
case fair to all flows in the system. If a scheduler, s, is worst-case
fair, the fairness of the scheduler is measured by the normalized
worst-case fair index [2]. Let R be the total link bandwidth. The
normalized worst-case fair index for the scheduler, cs, is defined
as cs = maxi{

riCi,s

R }. We will say that a scheduler has a good
worst-case fairness property if it has a constant (with respect
to the number of flows) normalized worst-case fair index. One
example scheduler with a good worst-case fairness property is
the WF 2Q scheduler [1], [2]. A scheduler with both a good
proportional fairness property and a good worst-case fairness
property provides both long-term and short-term fairness to all
flows.

Packet schedulers can be broadly classified into two types:
timestamp based schemes [1], [2], [5], [6], [12] and round-
robin algorithms [7], [8], [13], [17]. Timestamp based schemes
have good fairness properties with a relatively high complexity,
O(log N), where N is the number of flows. Round-robin based
algorithms have an O(1) or quasi-O(1) (O(1) under practical
assumptions [13]) complexity, but in general do not have good
fairness properties. Round robin schemes including Deficit Round
Robin (DRR) [17], Smoothed Round Robin (SRR) [7], and
STratified Round Robin (STRR) [13] all have good proportional
fairness properties. However, none of the existing round-robin
schemes is known to have a normalized worst-case fair index
that is less than O(N). We will give an example in Section III-A,
showing that the normalized worst-case fair index of STRR [13],
a recently proposed round-robin based algorithm that arguably
provides the best quality-of-service properties among all existing
round-robin based schemes, is Ω(N). It can be shown that the
normalized worst-case fair indexes of other round robin schemes,
such as Smoothed Round Robin (SRR) [7] and Deficit Round
Robin (DRR) [17], are also Ω(N). Not having a constant worst-
case fair index means that the short-term service rate of a flow
may significantly deviate from its fair rate, which can cause rate
oscillation for a flow [2].

We propose Fair Round-Robin (FRR), a round robin based
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low complexity packet scheduling scheme that overcomes the
limitation of not being able to guarantee short-term fairness.
Like STRR, FRR employs a two-level scheduling structure
and combines the ideas in timestamp based and round-robin
schemes. FRR has a similar complexity as STRR: both have
a low quasi-O(1) complexity. However, unlike STRR and other
existing round robin based low complexity packet schedulers that
only have a good proportional fairness property, FRR not only
has a good proportional fairness property, but also maintains a
quasi-O(1) normalized worst-case fair index (O(1) under practical
assumptions). To the best of our knowledge, FRR is the only
round robin based scheduler with a similar complexity that has
such capability.

The rest of the paper is structured as follows. Section II presents
related work. Section III gives a motivating example and intro-
duces the background of this work. Section IV describes FRR.
Section V discusses the QoS properties of FRR. Section VI
reports the results of the simulation study of FRR. Finally,
Section VII concludes the paper.

II. RELATED WORK

We will briefly discuss timestamp based and round-robin packet
scheduling schemes since both relate to FRR. Some timestamp
based schedulers, such as Weighted Fair Queuing (WFQ) [12]
and Worst-case Fair Weighted Fair Queuing (WF 2Q) [1], [2],
closely approximate the Generalized Processor Sharing (GPS)
[5], [12]. These schedulers compute a timestamp for each packet
by emulating the progress of a reference GPS server and trans-
mit packets in the increasing order of their timestamps. Other
timestamp based approaches, such as Self-Clocked Fair Queuing
(SCFQ) [6] and Virtual Clock [22], compute timestamps without
referring to a reference GPS server. These methods still need
to sort packets according to their timestamps and still have an
O(log N) per packet processing complexity. The Leap Forward
Virtual Clock [18] reduces the sorting complexity by coarsening
timestamp values and has an O(loglog N) complexity. This
scheme requires complex data structures and is not suitable for
hardware implementation.

Deficit Round Robin (DRR) [17] is one of the round-robin
algorithms that enjoy a good proportional fairness property. A
number of methods have recently been proposed to improve delay
and burstiness properties of DRR [7], [8], [13]. The Smoothed
Round Robin (SRR) scheme [7] improves the delay and burstiness
properties by spreading the data of a flow to be transmitted in
a round over the entire round using a weight spread sequence.
Aliquem [8], [9] allows the quantum of a flow to be scaled
down, which results in better delay and burstiness properties.
The Stratified Round Robin (STRR) [13] scheme bundles flows
with similar rate requirements, scheduling the bundles through a
sorted-priority mechanism, and using a round robin strategy to
select flows in each bundle. STRR guarantees that all flows get
their fair share of slots. It enjoys a single packet delay bound that
is independent of the number of flows in the system. However,
as will be shown in the next section, the normalized worst-case
fairness index for STRR is Ω(N). FRR is similar to STRR in
many aspects: FRR uses exactly the same way to bundle the
flows and has the same two-level scheduling structure. FRR

differs from STRR in that it uses a different sorted-priority
strategy to arbitrate among bundles, and a different round robin
scheme to schedule flows within each bundle. The end result is

N the number of flows in the system
n the number of classes in the system
R total link bandwidth
ri guaranteed bandwidth for flow fi

wi = ri

R the weight associated with flow fi

LM maximum packet size
Si,s(t1, t2) the amount of work received by session i

during [t1, t2) under the s server
Si,s(t) the amount of work received by session i

during [0, t) under the s server
F k

i,s the departure time of the kth packet of
flow fi under the s server

F p
s the departure time of packet p under

the s server
Qi,s(t) the queue size of flow fi at time t under

the s server
pk

i the kth packet on flow fi

TABLE I
NOTATION USED IN THIS PAPER

that FRR has a similar complexity and a similar proportional
fairness property, but a much better worst-case fairness property.
Bin Sort Fair Queuing (BSFQ) [4] uses an approximate bin sort
mechanism to schedule packets. The worst-case single packet
delay of BSFQ is proportional to the number of flows. Hybrid
scheduling schemes [14], [15] have also been proposed. While
the algorithm components of these schemes are similar to those
of FRR and STRR, the QoS properties of these schemes are not
clear. A recently proposed group round robin scheme [3] uses a
two-level scheduling scheme similar to that in [15]. While group
round robin is conceptually similar to FRR, it cannot maintain the
fairness in cases when not all flows are backlogged continuously.

III. BACKGROUND

Some notations used in this paper are summarized in Table I.
There are N flows f1, f2, ..., fN sharing a link of bandwidth
R. Each flow fi has a minimum guaranteed rate of ri. We will
assume that

∑N
i=1 ri ≤ R. The weight wi of flow fi is defined

as its guaranteed rate normalized with respect to the total rate of
the link, i.e., wi = ri

R . Thus, we have
∑N

i=1 wi ≤ 1.

A. A motivating example

The development of FRR is motivated by STRR [13], a
recently proposed round-robin algorithm. In terms of the QoS
properties of scheduling results, STRR is arguably the best
scheduler among all existing round-robin based low complexity
schedulers. We will show that the normalized worst-case fair
index of STRR is Ω(N).

Let N + 1 flows, f0, f1, ..., fN , share an output link of
bandwidth 2N . The bandwidth of f0 is N and the bandwidth
of each flow fi, 1 ≤ i ≤ N , is 1. We will use R to denote the
bandwidth of the output link, and ri to denote the bandwidth
of flow fi, 0 ≤ i ≤ N . R = 2N , r0 = N , and ri = 1,
1 ≤ i ≤ N . Let the maximum packet size be LM = 1000 bits.
Packets in f0 are of size LM = 1000 bits. Flows f1, f2, ...,
fN are continuously backlogged with packets whose sizes repeat
the pattern: LM

2 = 500 bits, LM = 1000 bits, LM

2 = 500 bits,
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500 bits, 1000 bits, 500 bits, and so on. Figure 1 (a) shows the
packet arrival pattern assuming N = 4. In STRR, these flows
are grouped into two classes: one class containing only f0 and
the other having flows f1, ..., fN . The bandwidth is allocated in
the unit of slots. Let us assume that each of the flows has the
minimum weight in its class and the credit assigned to each of
the flows in a slot is LM = 1000 bits. STRR guarantees that slots
are allocated fairly among all flows: f0 is allocated one slot every
two slots and each of the flows f1, f2, ..., fN gets one slot every
2N slots. We will use the DRR concept of round to describe
the scheduling results of STRR. In each round, all backlogged
flows have a chance to send packets. In the example, each round
contains N slots from f0 and one slot from each of the flows fi,
1 ≤ i ≤ N . Due to the differences in packet sizes, the sizes of
slots are different. For f0, each slot contains exactly one packet
of size LM and the size of each slot is LM . For fi, 1 ≤ i ≤ N ,
the size of the first slot is LM

2 = 500 bits since the second packet
(size LM ) cannot be included in this slot. This results in 500-
bit credits being passed to the next slot. Hence, the second slot
for fi contains 2 packets (1500-bit data). This pattern is then
repeated: the size for an evenly numbered slot for fi, 1 ≤ i ≤ N ,
is 500 bits and the size of an oddly numbered slot is 1500 bits.
The STRR scheduling result is shown in Figure 1 (b), where
the rate allocated to flow f0 oscillates between 4

3N and 4
5N for

the alternating rounds. Note that since the size for each round
depends on N , the duration of a round depends on N and can be
large.

Now consider the normalized worst-case fair index of STRR,
cSTRR. Let us assume that in the example the last f0 packet in
round 1, which is the 2N − 1-th packet of f0, p2N−1

0 , arrives at
time a2N−1

0 right before the starting of round 1 (after the last f0

packet in round 0 departs). At a2N−1
0 , the queue length in f0 is

Q(a2N−1
0 ) = N × LM . Following the scheduling results shown

in Figure 1 (b), (N − 1) ×LM data in f0 and (N − 1)× (LM +
LM

2 ) data in flows fi, 1 ≤ i ≤ N , in round 1 are scheduled
before p2N−1

0 . Let d2N−1
0 be the departure time of p2N−1

0 . We
have d2N−1

0 − a2N−1
0 =

(N−1)(LM+1 1
2
LM )+LM

R . C0,STRR ≥

d2N−1
0 −a2N−1

0 −
Q(a2N−1

0
)

r0
=

(N−1)(LM+1 1
2

LM )+LM

R − N×LM

r0

= 0.25×N×LM

r0
−0.75LM

r0 . Hence, cSTRR ≥ c0,STRR
r0

R = 0.25×

N × LM

R − 0.75LM

R = Ω(N).
While we only show the normalized worst-case fair index of

STRR in this section, one can easily show that the normalized
worst-case fair indexes of other round robin schedulers such as
smoothed round robin [7] and deficit round robin [17] are Ω(N):
not having a good bound on worst-case fairness is a common
problem with all of these low complexity round robin packet
schedulers. FRR overcomes this limitation and grants a much
better a short-term fairness property while maintaining a low
complexity. The scheduling results of FRR for the example in
Figure 1 are shown in Figure 1 (c). As can be seen from the
figure, the short-term behavior of f0 is much better than that in
Figure 1 (b): counting from the beginning of round 0, for every
2000 bits data sent, exactly 1000 bits are from f0.

B. Deficit Round Robin (DRR)

Since FRR is built over Deficit Round Robin (DRR) [17], we
will briefly discuss DRR. Like an ordinary round robin scheme,
DRR works in rounds. Within each round, each backlogged flow
has an opportunity to send packets. Each flow fi is associated

with a quantity Qi and a variable DCi (deficit counter). The
quantity Qi is assigned based on the guaranteed rate for fi and
specifies the target amount of data that fi should send in each
round. When flow fi cannot send exactly Qi data in a round,
DCi records the quantum that is not used in a round so that the
unused quantum can be passed to the next round. To ensure that
each backlogged flow can send at least one packet in a round,
Qi ≥ LM . Some related properties of DRR are summarized in
the following lemmas.
Lemma 1: Assuming that flow fi is continuously backlogged
during [t1, t2). Let X be the smallest number of continuous DRR

rounds that completely enclose [t1, t2). The service received by
fi during this period, Si,DRR(t1, t2), is bounded by (X−3)Qi ≤

Si,DRR(t1, t2) ≤ (X + 1)Qi.
Proof: See appendix. 2

Lemma 2: Let f1, ..., fN be the N flows in the system with
guaranteed rates r1, ...,rN .

∑N
i=1 ri ≤ R. Let rmin = mini{ri}

and rmax = maxi{ri}. Let rmax = D ∗ rmin. Assume that D is
a constant with respect to N and that DRR is used to schedule
the flows with Qi = LM ∗ ri

rmin
. The following statements are

true. All constants in this lemma are with respect to N .
1) Let packet p arrive at the head of the queue for fi at time

t. There exists a constant c1 (c1 = O(D2)) such that packet
p will be serviced before t + c1 × LM

ri
.

2) The normalized worst-case fair index of DRR is a constant
c1 (c1 = O(D2)).

3) Let fi and fj be continuously backlogged during any given
time period [t1, t2), there exists two constants c1 and c2
(c1 = O(D) and c2 = O(D)) such that |

Si,DRR(t1,t2)
ri

−
Sj,DRR(t1,t2)

rj
| ≤ c1

LM

ri
+ c2

LM

rj
.

Proof: See appendix. 2

We will call D = rmax

rmin
, the maximum weight difference factor.

Lemma 2 shows that when D is a constant with respect to N ,
DRR is an excellent scheduler with both a good worst case
fairness property and a good proportional fairness property. The
problem is that when the weights of the flows differ significantly
(D is a large number), which is common in practice, the QoS
performance bounds, which are functions of D, become very
large.

FRR extends DRR such that the QoS properties in Lemma 2
hold for any weight distribution, while maintaining a low quasi-
O(1) complexity. The basic idea is as follows. FRR chooses
a constant C (e.g. C = 2) that is independent of D and N .
FRR groups flows whose weights differ by at most a factor of
C into classes and uses a variation of DRR to schedule packets
within each class. From Lemma 2, DRR can achieve good QoS
properties for flows in each class. Thus, the challenge is to isolate
the classes so that flows in different classes, which are flows with
significantly different weights, do not affect each other too much.
FRR uses a timestamp based scheduler to isolate the classes. As
a result, FRR schedules packets in two levels, a timestamp based
inter-class scheduling and a DRR based intra-class scheduling.

IV. FRR: A FAIR ROUND ROBIN SCHEDULER

Like stratified round robin (STRR) [13], FRR groups flows
into a number of classes with each class containing flows with
similar weights. For k ≥ 1, class Fk is defined as

Fk = {fi :
1

Ck
≤ wi <

1

Ck−1
},
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Fig. 1. A motivating example

where C is a constant independent of D and N . Let r be the
smallest unit of bandwidth that can be allocated to a flow. The
number of classes is n = dlogC(R

r )e. In practice, n is usually a
small constant. For example, consider an extreme case with R =

1Tbps, r = 1Kbps (D = 109). When C = 8, n = dlog8(109)e =

10. Like [13], we will consider the practical assumption that n

is an O(1) constant. However, since n = dlogC(R
r )e in theory,

we will derive the bounds on QoS properties and complexity in
terms of n.

It must be noted that the constant C in FRR is very different
from the constant weight difference factor D in Lemma 2. D

specifies a limit on the type of flows that can be supported in
the system. C is an algorithm parameter that can be selected by
the scheduler designer and does not put a limit on the weights of
the flows in the system. Consider the case when R = 1Tbps and
r = 1kbps. D = 1012

103 = 109. Using DRR to schedule packets
may result in extremely poor QoS bounds since O(D2) can be
huge numbers. With FRR, one can select a small number C (e.g.
C = 2) and obtain QoS bounds that are linear functions of C and
n.

FRR has two scheduling components, intra-class scheduling
that determines the order of the packets within each class and the
weight of the class, and inter-class scheduling that determines the
class, and thus, the packet within the class, to be transmitted over
the link. The concept of weight will be used in different contexts.
A weight is associated with each flow. In intra-class scheduling,
the packet stream within a class is partitioned into frames. A
frame, which is a logical unit that is similar to a round in DRR,
contains a set of packets that are scheduled with the same weight
in the inter-class scheduling. Notice that a frame in this paper is
not the transmission unit in the Medium Access Control (MAC)
layer. A weight that represents the aggregate weight for all active
flows in a frame is assigned to the frame. The weight of a frame is
then used in inter-class scheduling to decide which class is to be
served. In the inter-class scheduling, we will also call the weight
of current frame in a class the weight of the class. We will use
notion wi to denote the weight of a flow fi and Wk to denote
the weight of a class Fk .

A. Intra-class scheduling

Assuming that the inter-class scheduling scheme can provide
fairness among classes based on their weights, the intra-class
scheduler must be able to transfer the fairness at the class level
to that at the flow level. To focus on the intra-class scheduling
issues, we will assume that GPS is the inter-class scheduling
scheme in this sub-section.

The intra-class scheduling scheme in FRR, called Lookahead
Deficit Round Robin with Weight Adjustment (LDRRWA), is a
variation of DRR with two extensions: a lookahead operation and
a weight adjustment operation. To understand the needs for the
two extensions, let us examine the issues when a vanilla DRR

scheme is used in intra-class scheduling. In DRR, the packet
stream within a class is partitioned into rounds. Each of active
flows is allocated a quantum for sending data in a round. To offset
the weight differences among the flows, each flow fi ∈ Fk = {fi :
1

Ck ≤ wi < 1
Ck−1 } is assigned a quantum of Qi = CkwiLM .

Since 1
Ck ≤ wi < 1

Ck−1 , LM ≤ Qi < C × LM .
Since inter-class scheduling in FRR is based on based on

weights, it is crucial to assign weights to each class such that
flows in all classes are treated fairly. In DRR, different flows can
be active in different rounds. Since the weight assigned to a class
must reflect the weights of all active flows, it is natural to assign a
different weight to a different round. One simple approach, which
is adopted in the group round robin scheme [3], is to assign the
sum of weights of all active flows in a round as the weight of
the round. This simple approach, however, does not yield a fair
scheduler. Consider the case when two flows, f1 and f2, of the
same weight w1 = w2 = 1

Ck are in a class Fk . Q1 = Q2 = LM .
Flow f1 is continuously backlogged and sends LM data in each
round. Flow f2 is active and sends Q2

2 = LM

2 data in each round.
The simple approach will assign weight w1 + w2 = 2w1 to each
round, which results in the guaranteed service rate under GPS

for this class to be 2r1. Since 2
3 of the service is used to serve

packets in f1, the guaranteed rate for f1 is artificially inflated to
2r1 × 2

3 = 4
3r1, which is unfair to flows in other classes.

What is the fair weight for a round in class Fk? In each round,
each active flow fi ∈ Fk with a rate ri is given a quantum of
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Qi. The targeted finishing time for fi is thus Qi

ri
= CkLM

R . From
Lemma 1, we can see that for a flow fi that is continuously
backlogged in X rounds, the amount of data sent is at most a few
packets from X × Qi. Hence, if the weights for all rounds are
assigned such that the service time for each round is Qi

ri
= CkLM

R
using the guaranteed service rate, all continuously backlogged
flows in the X rounds obtain their fair share of the bandwidth with
a small error margin: the fairness at the class level is transferred
to the fairness at the flow level. Hence, the fair weight for a
round in class Fk should be one that results in the targeted
finishing time of Qi

ri
= CkLM

R .
Let flows f1, ..., fm (in a class) be active in a round. Let the

data sizes of fi, 1 ≤ i ≤ m, in the round be si. The size of the
round is round size = s1+s2+...+sm. Let w′ be the fair weight
for the round and r′ be the corresponding guaranteed service rate,
w′ = r′

R . We have round size
r′ = round size

w′R = CkLM

R . Solving
the equation, we obtain

w′ = round size
CkLM

= s1+s2+...+sm

CkLM
.

s1+s2+...+sm

CkLM
= s1

CkLM
+ s2

CkLM
+...+ sm

CkLM
= s1

Q1
w1+ s2

Q2
w2+

...+ sm

Qm
wm: the fair weight for a round can also be interpreted as

the sum of the normalized weights of active flows, si

Qi
wi: in order

to obtain the fair weight for a round, the weight of each active
flow fi must be adjusted from wi to si

Qi
wi before the adjusted

weights are aggregated.
Although the weight adjustment results in the fair weight for a

round w′ = round size
CkLM

, w′ may sometimes be more than the sum
of the weights of all flows in the class. For example, if a class
has only one flow f1 and Q1 = LM , f1 may send 0.5LM in one
round and 1.5LM in another round. Using weight adjustment, the
weight for the class is 0.5w1 in one round and 1.5w1 in the other
round. This temporary raising of weights to 1.5w1 may violate
the assumption that the sum of the weights for all classes is less
than 1, which is essential for guaranteeing services. LDRRWA

uses the lookahead operation to deal with this problem. The
lookahead operation moves some currently backlogged packets
that are supposed to send in the next round under DRR into
the current around. By using the lookahead operation, the size of
each round (now called frame to be differentiated from the DRR

round) is no more than the sum of the quota of all active flows in
the round. This guarantees that the fair weight assigned to each
frame to be less than the sum of the weights of all active flows
in the frame.

Lookahead Deficit Round Robin with Weight Adjustment
(LDRRWA)

In LDRRWA, an active flow fi ∈ Fk = {fi : 1
Ck ≤ wi <

1
Ck−1 } is assigned a quantum of

Qi = 2CkwiLM .
Since 1

Ck ≤ wi < 1
Ck−1 , 2LM ≤ Qi < 2C × LM . Qi in

LDRRWA is two times the value in DRR. The reason is that the
deficit counter may be negative in LDRRWA, Qi = 2CkwiLM

ensures that a backlogged flow can at least send one packet in a
frame. Since Qi = 2CkwiLM , Qi

ri
= 2CkLM

R and the fair weight
for a frame of size framsize is

Wk = framesize
2CkLM

.
Let f1, f2, ..., fm be the flows in class Fk. Wk = framesize

2CkLM
=

framesize∑
m

i=1
Qi

∑m
i=1 wi. LDRRWA employs the lookahead oper-

variable explanation
deficitcounti the deficit count for flow fi

remaindeficit the sum of quantum not used in
the DRR round

lastingflowlist the flows that last to the next frame
framesize the size of the frame
frameweight the weight for the frame
remainsize size of the part of a packet that

belongs to current frame
TABLE II

MAJOR VARIABLES USED IN THE FRAME CALCULATION ALGORITHM

ation to ensure that framesize ≤
∑m

i=1 Qi, which results in
Wk ≤

∑m
i=1 wi. A frame in LDRRWA has two parts: the first

part includes all packets that are supposed to be sent using DRR;
the second part includes packets from the lookahead operation.
In the lookahead operation, packets from flows that do not use
up their quanta and are still backlogged after the current DRR

round are sent in the current frame. Notice that in order for a
flow to be considered as backlogged after the DRR round, the
flow must have at least one currently backlogged packet after
the DRR round. Let us denote this packet as the lookahead
packet for the backlogged flow. Clearly, the size of the lookahead
packet is larger than the remaining quota for the flow; and the
total remaining credits for the class at the end of the DRR round
are no more than the sum of the sizes of all lookahead packets
of all backlogged flows. Hence, each flow with a lookahead
packet may contribute the lookahead packet in the frame until all
remaining credits are consumed. Note that after a flow contributes
its packet in the lookahead operation, the deficit counter for this
flow has a negative value. The lookahead operation ensures that
the aggregate deficit (the sum of the deficits) of all the backlogged
flows in every frame is exactly 0 at frame boundaries. In other
words, no credit is passed over frame boundaries at the frame
level. As a result, the size of each frame is less than or equal
to the total credits generated in that frame, which is at most∑m

i=1 Qi. Note that the frame boundary may not align with packet
boundary: a packet may belong to two frames. Note also that
while the aggregate deficit of all backlogged flows is 0 at frame
boundaries, each individual flow may have a positive, zero, or
negative deficit counter. Allowing a flow to have a negative deficit
may potentially cause problems: a flow may steal credits by over
sending in a frame (and having a negative deficit at the frame
boundary), becoming inactive for a short period of time (so that
the negative deficit can be reset), and over sending again. To
handle this situation, LDRRWA keeps the negative deficit for
one frame when the flow becomes inactive before it resets the
negative deficit counter for the flow.

Each frame is decided at the time it starts. Packets arrive during
the current frame are sent in later frames. Note that delaying a
packet for one frame does not affect the fairness of the scheduler.
Next, we will describe the high level logical view of LDRRWA.
A detailed packet-by-packet implementation of LDRRWA is
given in [21].

Figure 2 shows the logic for computing each LDRRWA frame
and its weight. Table II summarizes the major variables in the
algorithm. Like DRR, deficitcounti is associated with flow fi

to maintain the credits to be passed over to the next DRR round
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Algorithm for computing the next frame for class Fk

(1) remaindeficit = framesize = 0

(2) lastingflowlist = NULL

(3) if (remainsize > 0) then
/*The partial packet belongs to this frame */

(4) framesize = framesize + remainsize

(5) end if
/* forming the DRR round */

(6) for each active flow fi do
(7) deficitcounti = deficitcounti + quantumi

(8) while (deficitcounti > 0) and (fi not empty) do
(9) pktsize = size(head(fi))

(10) if (pktsize < deficitcounti) then
(11) remove head from fi and put it in the frame
(12) framesize = framesize + pktsize

(13) deficitcounti = deficitcounti − pktsize

(14) else break
(15) end if
(16) end while
(17) if (fi is empty ) then
(18) deficitcounti = 0

(19) else
(20) remaindeficit = remaindeficit + deficitcounti
(21) insert fi to lastingflowlist

(22) end if
(23) end for

/* lookahead operation */
(24) fi = head(lastingflowlist)
(25) while (fi 6= NULL) and (remaindeficit > 0) do
(26) pktsize = size(head(fi))

(27) if (pktsize < remaindeficit) then
(28) remove head from fi and put it in the frame
(29) framesize = framesize + pktsize

(30) remaindeficit = remaindeficit − pktsize

(31) deficitcounti = deficitcounti − pktsize

(32) else break
(33) end if
(34) fi = nextflow(fi)

(35) end while
(36) if (fi 6= NULL) then
(37) pktsize = size(head(fi))

(38) remove head from fi and put it in the frame
(39) framesize = framesize + remaindeficit

(40) remainsize = pktsize − remaindeficit

(41) deficitcounti = deficitcounti − pktsize

(42) end if
/* computing the weight */

(43) frameweight = framesize
2CkLM

(44) if (frameweight < 1
Ck ) frameweight = 1

Ck

Fig. 2. The algorithm for computing the next frame for class Fk

and decide the amount of data to be sent in one round. After each
DRR round, remaindeficit maintains the sum of the quanta
not used in the current DRR round, that is, the quanta that
cannot be used since the size of the next backlogged packet is
larger than the remaining quanta for a flow. In traditional DRR,
these unused quanta will be passed to the next DRR round.
In LDRRWA, in addition to passing the unused quanta to the
next DRR round, some packets that would be sent in the next
DRR round are placed in the current LDRRWA frame so that
at frame boundaries remaindeficit is always equal to 0. This is
the lookahead operation. The lastingflowlist contains the list of
flows that are backlogged at the end of the current DRR round.
Flows in lastingflowlist are candidates to supply packets for the
lookahead operation. Frameweight is the weight to be used by
inter-class scheduling for the current frame. Variable framesize

records the size of the current frame. Since FRR needs to enforce
that remaindeficit = 0 at frame boundaries, frame boundaries
may not align with packet boundaries and a packet may belong
to two frames. Variable remainsize is the size of the part of the
last packet in the frame that belongs to the next frame, and thus,
should be counted in the framesize for the next frame.

Let us now examine the algorithm in Figure 2. In the initial-
ization phase, line (1) to line (5), variables are initialized and
remainsize is added to framesize, which effectively includes
the partial packet in the frame to be computed. After the initializa-
tion, there are three main components in the algorithm: forming
a DRR round, lookahead operation, and weight calculation. In
the first component, line (6) to line (23), the algorithm puts all
packets in the current DRR round that have not been served into
the current frame. In the second component, line (24) to line
(42), the algorithm performs the lookahead operation by moving
some packets in the next DRR round into the current frame
so that remaindeficit = 0 at the frame boundary. Notice that
each backlogged flow can contribute at most one packet in the
lookahead operation. Notice also that while a class as a whole
does not pass credits between frames, an individual flow can
pass credits from one frame to the next: deficitcounti may have
negative, 0, or positive values at frame boundaries. Finally, lines
(43) and (44) compute the weight for the frame.

The complexity of the algorithm in Figure 2 is O(M), where
M is the number of packets in a frame. Clearly, this high level
algorithm cannot be directly used in a scheduler to determine
the next frame and frame weight. Otherwise, it will introduce
an O(M) processing complexity, which is larger than O(N).
The operations in LDRRWA can be realized in the packet-by-
packet operations when packets arrive and depart. By distributing
the O(M) operations for determining a frame into O(M) packet
arrivals and departures in a frame, LDDRWA only introduces
O(1) per packet processing overheads.

A detailed description of the packet-by-packet operations of
LDRRWA is given in [21]. While the detailed packet-by-
packet operations are rather tedious, the idea is straight-forward.
LDRRWA maintains active flows in different queues. To de-
termine a frame and its weight, our scheme determines (1) the
total size of the frame, and (2) for each active flow in the frame
the size of the data in that flow that belong to the frame. Such
information is obtained by maintaining the following information
at each packet arrival and departure: the size of the remaining
current frame, the size of the next frame, the size of the partial
packet in the current frame, the starting time of the current frame,
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the deficit counter for each flow, the size of the data for each flow
in the current frame, the size of the data for each flow in the next
frame, the size of all backlogged data in a flow, and the last time
that a flow is serviced. Clearly, bookkeeping for all these variables
takes O(1) operations. With such information, the computation of
the next frame, as well as the whole LDRRWA can be realized
in O(1) operations.

Properties of LDRRWA

Lemma 3: Assuming that flow fi is continuously backlogged
during [t1, t2). Let X be the smallest number of continuous
LDRRWA frames that completely enclose [t1, t2). The service
received by fi during this period, denoted as Si,LDRRWA(t1, t2),
is bounded by

(X − 3)Qi ≤ Si,LDRRWA(t1, t2) ≤ (X + 1)Qi.
Proof: See appendix. 2

Comparing Lemma 3 and Lemma 1, we can see the similarity
between DRR and LDRRWA: in both schemes, the amount of
data sent from a flow fi that is continuously backlogged for X

frames (rounds) is a few packets from X × Qi.
Lemma 4: In LDRRWA, the weight for a frame is less than or
equal to the sum of the weights of all flows in the class.
Proof: Obvious from the previous discussion. 2

At any given time, let Wk, 1 ≤ k ≤ n be the weights for the
n classes. Lemma 4 establishes that

∑n
i=1 Wk ≤

∑N
i=1 wi ≤ 1.

Thus, under GPS, the bandwidth allocated to class k is given by
Wk∑
n

i=1
Wk

R ≥ R×Wk. We will call R×Wk the GPS guaranteed

rate.
Lemma 5: Under GPS, the time to serve each LDRRWA frame
in class Fk is at most 2CkLM

R .
Proof: Normally, the frame weight is computed as Wk =
framesize

2CkLM
(line (43) in Figure 2). In cases when framesize

2CkLM
is

less than the smallest weight for a flow in a class, the weight is
increased (line (44) in Figure 2) to the smallest weight.

When Wk = framesize
2CkLM

, the GPS guaranteed rate is
R framesize

2CkLM
and the total time to serve the frame is at most

framesize

R framesize

2CkLM

= 2CkLM

R . If Wk is increased, the conclusion still

holds. 2

Lemma 6: Under GPS, the time to service X bytes of data in
class Fk is at most XCk

R .
Proof: The minimum weight assigned to a backlogged class Fk is
1

Ck . Thus, the GPS guaranteed rate for class Fk is at least R
Ck .

Thus, the time to serve a queue of size X bytes in class Fk is at
most X

R

Ck

= XCk

R . 2

Lemma 7: For a class Fk frame of size no smaller than 2LM ,
the service time for the frame is exactly 2Ck LM

R using the GPS

guaranteed rate.
Proof: When framesize ≥ 2LM , Wk = framesize

2CkLM
≥ 1

Ck .
Thus, the GPS guaranteed rate for the frame is R framesize

2CkLM

and the service time for the frame with the guaranteed rate is
framesize

R framesize

2CkLM

= 2CkLM

R . 2

Lemma 8: Let a class Fk frame contain packets of a continuously
backlogged flow fi, the size of frame is no smaller than 2LM .
Proof: Straight-forward from the fact that no credit is passed from
the previous frame and to the next frame and that Qi ≥ 2LM . 2

Lemma 9: Let fi ∈ Fk and fj ∈ Fm be continuously backlogged
during [t1, t2). k ≥ m. Let Xk and Xm be the smallest numbers

of Fk and Fm frames that completely enclose [t1, t2). Assume
that classes Fk and Fm are served with the GPS guaranteed rate,

(Xk − 1)Ck−m ≤ Xm ≤ XkCk−m + 1.

Proof: Since fi ∈ Fk and fj ∈ Fm are continuously backlogged
during [t1, t2), the sizes of all frames during this period are no
smaller than 2LM (Lemma 8). From Lemma 7, using the GPS

guaranteed rate, the time to service a class Fk frame is exactly
2CkLM

R and the time for a class Fm frame is exactly 2CmLM

R .
Since Xk and Xm are the smallest numbers of Fk and Fm frames
that completely enclose [t1, t2), we have

t2 − t1 ≤ Xk
2CkLM

R ≤ t2 − t1 + 2CkLM

R

t2 − t1 ≤ Xm
2CmLM

R ≤ t2 − t1 + 2CmLM

R

Hence, (Xk − 1)Ck−m ≤ Xm ≤ XkCk−m + 1. 2

Lemma 10: Let fi ∈ Fk and fj ∈ Fm be continuously
backlogged during [t1, t2). k ≥ m. Let Xk and Xm be the
smallest numbers of Fk and Fm frames that completely enclose
[t1, t2). Assume that the inter-class scheduler is GPS,

(Xk − 1)Ck−m ≤ Xm ≤ XkCk−m + 1.

Proof: See appendix. 2

f
1

f
2

f
3

Class
1

F

Class F
2

Class
1

F

�������
�
�������
�

�������
�
�������
�

Class F
2

		



���
�

���
�

���
�

��
�
��
�

������
���
������
���

���������������������������������������������������������������

���������������������������������������������������������������

���������������������������������������������������������������

���������������������������������������������������������������

��
��
��
��
�

��
��
��
��
�

��
��
��
��
�

������
���
��
�

������
���
��
�

  
  
  
  
 

4

Frames

weight = 1/2

1 Frames 1 22

weight = 2.01/8

Fig. 3. An example

We will use an example to illustrate how LDRRWA interacts
with inter-class scheduling to deliver fairness among flows in
different classes. Let us assume that GPS is the inter-class
scheduling algorithm. Consider scheduling for a link with 4 units
of bandwidth with the following settings. C = 2 and there are two
classes where F1 = {fi : 1

2 ≤ wi < 1} and F2 = {fi : 1
4 ≤ wi <

1
2}. Three flows, f1, f2 and f3, with rates r1 = 2 and r2 = r3 = 1

are in the system. w1 = 1/2, w2 = 1/4, and w3 = 1/4. Thus,
f1 is in F1, and f2 and f3 are in F2. Let LM be the maximum
packet size. The quantum for each of the three flows is 2LM .
All packets in f1 are of size LM , all packets in f2 are of size
0.99LM and all packets in f3 are of size 0.01LM . Flows f1 and
f2 are always backlogged. Flow f3 is not always backlogged, its
packets arrive in such a way that exactly one packet arrives before
a new frame is to be formed. Thus, each F2 frame contains one
packet from f3. The example is depicted in Figure 3. As shown
in the figure, each F1 frame contains exactly two packets from
f1. For F2, the lookahead operation always moves part of the f2

packet in the next DRR round into the current frame, and thus,
the frame boundaries are not aligned with packet boundaries.

The weight for F1 is always 1/2. For F2, the lookahead
operation ensures that the size of f2 data in a frame is 2LM , and
thus, the size of each F2 frame is 2LM +0.01LM = 2.01LM . The
weight of F2 is computed as W2 = framesize

2CkLM
= 2.01LM

8LM
= 2.01

8 .
Hence, F1 (and thus f1) is allocated a bandwidth of 4∗

1
2

1
2
+ 2.01

8

=

16
6.01 > 2. F2 is allocated a bandwidth of 4 ∗

2.01
8

1
2
+ 2.01

8

. For each
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F2 frame of size 2.01LM , 2LM belongs to f2. Thus, the rate
allocated to f2 is 4 ∗

2.01
8

1
2
+ 2.01

8

∗ 2LM

2.01LM
= 8

6.01 > 1. The rates
allocated to f1 and f2 are larger than their guaranteed rates and
the worst-case fairness is honored. The ratio of the rates allocated
to f1 and f2 is equal to

16
6.01
8

6.01

= 2, which is equal to the ratio of
their weights. Thus, the proportional fairness is also honored.

B. Inter-class scheduling

LDRRWA assigns different weights for different frames in
a class. Moreover, the weight of a frame is decided only after
the last packet in the previous frame is sent. Hence, the inter-
class scheduling must be able to handle these situations while
achieving fair sharing of bandwidth. Although GPS can achieve
fair sharing, none of the existing timestamp based schemes can
closely approximate GPS under such conditions. We develop a
new scheme called Dynamic Weight Worst-case Fair weighted
Fair Queuing (DW 2F 2Q). DW 2F 2Q has the same scheduling
result as WF 2Q [2] when the weights do not change. Theorems
presented later show that the difference between the packet
departure times under DW 2F 2Q and GPS is at most (n−1)LM ,
where n is the number of classes. This bound is sufficient for
FRR to achieve its QoS performance bounds.

DW 2F 2Q uses the virtual time concept in [12] to track the
GPS progress up to the point that it can accurately track, and
schedules packets based on their virtual starting/finishing times.
Let us denote an event in the system the following: (1) the arrival
of a packet to the GPS server, (2) the departure of a packet from
the GPS server, and (3) the weight change of a class (LDRRWA

may change weight within a packet). Let tj be the time at which
the jth event occurs. Let the time of the first arrival of a busy
period be denoted as t1 = 0. For each j = 2, 3, ..., the set of
classes that are busy in the interval [tj−1, tj) is denoted as Bj−1.
Let us denote Wk,j−1 the weight for class Fk during the interval
[tj−1, tj), which is a fixed value. Virtual time V (t) is defined to
be zero for all times when the system is idle. Assuming that each
busy period begins with time 0, V (t) evolves as follows:

V (0) = 0

V (tj−1 + τ ) = V (tj−1) + τ∑
k∈Bj−1

Wk,j−1

,

0 < τ ≤ tj − tj−1, j = 2, 3, ...

As discussed in [12], the rate of change of V , ∂V (tj+τ)
∂τ , is

1∑
k∈Bj

Wk,j

, and each backlogged class Fk receives service at

rate Wk,j
∂V (tj+τ)

∂τ . Let us denote the virtual starting time, virtual
finishing time, real arrival time, and size of the i-th packet P i

k

in Fk as V start(P i
k), V finish(P i

k), arrive(P i
k), and size(P i

k),
respectively. Let Wk be the weight for the frame that includes
P i

k . We have

V start(P i
k) = max(V finish(P i−1

k ), V (arrive(P i
k)))

V finish(P i
k) = V start(P i

k) +
size(P i

k)
Wk

DW 2F 2Q keeps track of Bj in order to track the progress of
the virtual time. When the last packet in a frame is sent later than
its virtual finishing time (the packet departed under GPS, but not
under DW 2F 2Q), the weight of the class after the frame virtual
finishing time is unknown (until the last packet is sent). Hence,
DW 2F 2Q cannot always track the virtual time up to the current
time. Before each scheduling decision is made, DW 2F 2Q tracks

the virtual time either to the earliest time when there is a class
with an unknown weight or to the current time when the weights
of all classes are known up to the current time. We will denote
this time (the latest time that DW 2F 2Q can track GPS progress
accurately) T and the corresponding virtual time V (T ). Hence,
either T is the current time, or there exists one class Fk whose
current frame virtual finishing time is V (T ) and the last packet in
that frame has not been sent. DW 2F 2Q only deals with n classes.
As a result, it can afford to recompute timestamps for the first
packets in all classes in every scheduling step without introducing
excessive overheads (O(n) = O(1) under our assumption). To
ease composition, we will ignore the issue related to the timing to
assign the timestamps to the packets since the timestamps can be
recomputed before each scheduling decision is made. DW 2F 2Q

has exactly the same criteria as WF 2Q for scheduling packets:
(1) only packets whose virtual starting times are earlier than
the current virtual time are eligible; and (2) among all eligible
packets, the one with the smallest virtual finishing time is selected.

There are potentially two problems in DW 2F 2Q. First, deter-
mining the virtual finishing time for the last packet in a frame can
be a problem when only a part of the packet belongs to the current
frame. The weight for the part of the packet in the next frame
is unknown until the packet is scheduled. DW 2F 2Q assigns the
frame virtual finishing time as the packet virtual finishing time
for this type of packets. Although this creates some inaccuracy,
the scheduling results are still sufficiently good as will be shown
later.

The other problem is that T may not be the current time and the
virtual time corresponding to the current time is unknown. In this
case, there must exist one class Fk whose current frame virtual
finishing time is V (T ) and the last packet in that frame, P , has
not been sent. The virtual finishing time (and the virtual starting
time) of P must be less than or equal to V (T ). Since DW 2F 2Q

has accurate virtual time up to time T , the timestamps for all
packets with finishing times less than V (T ) are available. All
unknown virtual finishing times for packets must be larger than
V (T ). In this case, the packet to be scheduled must have a virtual
finishing time less than or equal to V (T ). Hence, DW 2F 2Q can
simply assign a large timestamp as the virtual finishing time for
packets with unknown virtual finishing times (to prevent these
packets to be scheduled) and only consider packets whose virtual
finishing time is less than or equal to V(T) when T is less than
the current time. Not being able to tracking virtual time up to
the current time does not prevent DW 2F 2Q from selecting the
right packet for transmission. Note that when T equals the current
time, DW 2F 2Q schedules packets exactly like WF 2Q.

The packet-by-packet operations of DW 2F 2Q are given in
[21], where we show that the worst-case per packet scheduling
complexity is O(nlg(n)). In practical cases, n = O(1) and
hence, the per packet complexity of DW 2F 2Q is also O(1). The
following theorems shows properties of DW 2F 2Q.
Theorem 1: DW 2F 2Q is work conserving.
Proof: See appendix. 2

Since both GPS and DW 2F 2Q are work-conserving dis-
ciplines, their busy periods coincide. We will consider packet
scheduling within one busy period. Let F k

i,s be the departure time
of the kth packet in class i under server s in a busy period.
Lemma 11: If F k

i,GPS ≤ F m
j,GPS , F k

i,DW 2F 2Q < F m+1
j,DW 2F 2Q

.
Proof: Let pl

i be the packet at the head of class i at time t when
pm+1

j is at the head of class j and is eligible to be transmitted.
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Let the timestamp assigned to pm+1
j be V T , we have V T >

V (F m
j,GPS). This applies even when pm+1

j is the last packet in a
frame and is assigned an inaccurate timestamp.

If l > k, we have F k
i,DW 2F 2Q < F m+1

j,DW 2F 2Q
and the lemma

is proved. If l ≤ k, F l
i,GPS < F l+1

i,GPS < ... < F k
i,GPS ≤

Fm
j,GPS and V (F l

i,GPS) < V (F l+1
i,GPS) < ... < V (F k

i,GPS) ≤

V (F m
j,GPS) < V T . For a packet pX

i that is in the frame boundary,
its timestamp is less than or equal to V (F X

i,GPS). Since at time
t, pm+1

j is eligible for scheduling, V (t) ≥ V (F m
j,GPS) and

the accurate virtual times for these packets are available, all of
these packets have smaller virtual starting and finishing times
than pm+1

j and will depart before pm+1
j under DW 2F 2Q. Thus,

F k
i,DW 2F 2Q < F m+1

j,DW 2F 2Q
. 2

Lemma 11 indicates that DW 2F 2Q can at most introduce
one packet difference between any two classes in comparison to
GPS. This leads to the following theory that states that under
the assumption that n is a small constant, DW 2F 2Q closely
approximates GPS. Let F p

s be the time packet p departs under
server s.
Theorem 2: Let n be the number of classes in the system,

F p
DW 2F 2Q

− F p
GPS ≤ (n − 1)LM

R .

Proof: Consider any busy period and let the time that it begins
be time zero. Let pk be the kth packet of size sk to depart
under GPS. We have F pk

GPS ≥ s1+s2+...+sk

R . Now consider
the departure time of pk under DW 2F 2Q. From Lemma 11,
each class can have at most one packet whose GPS finishing
time is after packet pk and whose DW 2F 2Q finishing time
is before packet pk . Hence, there are at most n − 1 packets
(from the n− 1 other classes) that depart before packet pk under
DW 2F 2Q and have a GPS finishing time after F pk

GPS . Let the
n − 1 packets be e1, e2, ..., en−1 with sizes se1, se2, ..., sen−1.
All other packets depart before pk under DW 2F 2Q must have
GPS finishing times earlier than F pk

GPS . We have F pk

DW 2F 2Q
≤

s1+...+sk+se1+...+sen−1

R . Thus, F pk

DW 2F 2Q
−F pk

GPS ≤ (n−1)LM

R .
2

V. PROPERTIES OF FRR
This session formally analyzes the QoS properties of FRR.

We will prove that the three statements in Lemma 2 hold for
FRR with an arbitrary weight distribution.
Theorem 3 (single packet delay bound): Let packet p arrives
at the head of flow fi ∈ Fk at time t. Using FRR, there exists
a constant c1 (c1 = O(C + n)), such that p will depart before
t + c1 ∗ LM

ri
.

Proof: If class Fk is idle under GPS at time t, a new frame that
includes packet p will be formed at time t. From Lemma 5, under
GPS, the frame will be served at most at time t+2Ck LM

R ≤ t+

2C LM

ri
. Hence, from Theorem 2, the frame will be served under

DW 2F 2Q before t+2C LM

ri
+(n−1)LM

R ≤ t+(2C +n−1)LM

ri
,

where n is the number of classes in the system. Thus, there exists
c1 = 2C + n − 1 = O(C + n) such that packet departs before
t + c1 ∗ LM

ri
.

If class Fk is busy under GPS at time t, packet p will be
included in the next frame. From Lemma 5, F p

GPS ≤ t + 2 ∗
2LM Ck

R ≤ t+ 4CLM

ri
. From Theorem 2, the frame will be served

under DW 2F 2Q before t + 4C LM

ri
+ (n − 1)LM

R ≤ t + (4C +

n− 1)LM

ri
. Thus, there exists c1 = 4C + n− 1 = O(C + n) such

that packet p departs before t + c1 ∗ LM

ri
. 2

Theorem 4 (worst-case fairness): FRR has a constant (O(C +

n)) normalized worst-case fairness index.
Proof: Let a packet belonging to flow fi ∈ Fk arrive at time t,
creating a total backlog of qi bytes in fi’s queue. Let packet p1

be the first packet in the backlog. From the proof of Theorem
3, we have F p1

GPS ≤ t + 4C LM

ri
. After the first packet is served

under GPS, from Lemma 3, at most d qi

Qi
e + 3 ≤ qi

Qi
+ 4 frames

will be needed to drain the queue. From Lemma 5, under GPS,
servicing the qi

Qi
+ 4 frames will take at most

( qi

Qi
+ 4) ∗ 2Ck LM

R = qi

CkwiLM

CkLM

R + 8Ck LM

R ≤ qi

ri
+ 8C LM

ri

Thus, under GPS, the queue will be drained before t + qi

ri
+

4C LM

ri
+ 8C LM

ri
. From Theorem 2, under DW 2F 2Q, the queue

will be drained before t+ qi

ri
+12C LM

ri
+(n−1)LM

R . Thus, there
exists a constant d = 12C + n − 1 = O(C + n) such that the
queue will be drained before t + qi

ri
+ dLM

ri
and the normalized

worst-case fair index for FRR is maxi{
ri∗d

LM
ri

R } = dLM

R . 2

The normalized worst-case fair index for FRR is (12C + n −

1)LM

R , which significantly improves that for STRR (Ω(N)). Next
we will consider FRR’s proportional fairness.
Lemma 12: Assuming that fi ∈ Fk and fj ∈ Fm are continuously
backlogged during [t1, t2), k ≥ m. Assume that the inter-class
scheduler is GPS and the intra-class scheduler is LDRRWA.
Let Si(t1, t2) be the services given to flow fi during [t1, t2) and
Sj(t1, t2) be the services given to flow fj during [t1, t2). There
exists two constants c1 and c2 (c1 ≤ O(C) and c2 ≤ O(C)) such
that

|
Si(t1, t2)

ri
−

Sj(t1, t2)

rj
| ≤

c1 ∗ LM

ri
+

c2 ∗ LM

rj
.

Proof: Let Xk and Xm be the smallest numbers of Fk and
Fm frames that completely enclose [t1, t2). Since fi and fj are
continuously backlogged during the [t1, t2) period, from Lemma
3, the services given to fi and fj during this period satisfy:

(Xk − 3)Qi ≤ Si(t1, t2) ≤ (Xk + 1)Qi and
(Xm − 3)Qj ≤ Sj(t1, t2) ≤ (Xm + 1)Qj .

The conclusion follows by manipulating these in-equations and
applying Lemma 10, which gives the relation between Xk and
Xm, (Xk − 1)Ck−m ≤ Xm ≤ XkCk−m + 1.

In the following, we will derive the bound for Si(t1,t2)
ri

−
Sj(t1,t2)

rj
.

Si(t1,t2)
ri

−
Sj(t1,t2)

rj

≤
(Xk+1)Qi

ri
−

(Xm−3)Qj

rj
≤ QiXk

ri
−

QjXm

rj
+ Qi

ri
+

3Qj

rj

≤ QiXk

ri
−

Qj(Xk−1)Ck−m

rj
+ 2CLM

ri
+ 6CLM

rj

= QiXk

ri
−

Qj(Xk)Ck−m

rj
+

QjCk−m

rj
+ 2CLM

ri
+ 6CLM

rj

We have QjCk−m

rj
=

CmwjLM Ck−m

wjR ≤ C∗LM

ri
and QiXk

ri
−

Qj(Xk)Ck−m

rj
= CkwiLMXk

wiR
−

CmwjLM XkCk−m

wjR = 0. Thus,
Si(t1,t2)

ri
−

Sj(t1,t2)
rj

≤ 3CLM

ri
+ 6CLM

rj
. The bound for Sj(t1,t2)

rj

−
Si(t1,t2)

ri
can be derived in a similar fashion. Hence, there exists

two constants c1 and c2, c1 = O(C) and c2 = O(C), such that
|
Si(t1,t2)

ri
−

Sj(t1,t2)
rj

| ≤ c1∗LM

ri
+ c2∗LM

rj
.2

Lemma 12 shows that if GPS is used as the inter-class
scheduling algorithm, a proportional fairness property is provided.
Since DW 2F 2Q closely approximates GPS (Theorem 2), we
will show in the next theorem that FRR, which uses DW 2F 2Q
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as the inter-class scheduling algorithm, also supports proportional
fairness.
Theorem 5 (proportional fairness): In any time period [t1, t2)

during which flows fi ∈ Fk and fj ∈ Fm are continuously
backlogged in FRR. There exists two constants c1 = O(C)

and c2 = O(C) such that |
Si,F RR(t1,t2)

ri
−

Sj,F RR(t1,t2)
rj

| ≤
c1∗LM

ri
+ c2∗LM

rj
.

Proof: See appendix. 2

VI. SIMULATION EXPERIMENTS

We compare FRR with two recently proposed deficit round
robin (DRR) based schemes, Smoothed Round Robin (SRR) [7]
and STratified Round Robin (STRR) [13]. For reference, we also
show the results for two timestamp-based scheduling schemes:
WFQ and and WF 2Q. All experiments are performed using ns-
2 [11], to which we added STRR and FRR queuing classes.
Figure 4 shows the network topology used in the experiments.
All links have a bandwidth of 2Mbps and a propagation delay
of 1ms. In all experiments, CBR flows have a fixed packet size
of 210 bytes, and all other background flows have a fixed packet
size uniformly chosen between 128 and 1024 bytes. Except for
the experiment summarized in Figure 8 where only CBR and
deterministic flows are considered, for all other experiments, we
report the results using the confidence interval with a 99% confi-
dence level. The confidence intervals are obtained by running each
simulation 50 times with different random seeds and computing
from the 50 samples.

S0 N1

S1 S2

R1

R0N2 N3

R2

Fig. 4. Simulated network.

Figure 5 shows the average end-to-end delays for flows with
different rates. Figure 6 shows the worst-case end-to-end delays.
In the experiment, there are 10 CBR flows from S0 to R0 with
average rates of 10Kbps, 20Kbps, 40Kbps, 60Kbps, 80Kbps,
100Kbps, 120Kbps, 160Kbps, 200Kbps, and 260Kbps. The
average packet delays of these CBR flows are measured. The
background traffic in the system is as follows. There are five
exponential on/off flows from S1 to R1 with rates 60Kbps,
80Kbps, 100Kbps, 120Kbps, and 160Kbps. The on-time and the
off-time are 0.5 second. There are five Pareto on/off flows from
S2 to R2 with rates 60Kbps, 80Kbps, 100Kbps, 120Kbps, and
160Kbps. The on-time and the off-time are 0.5 second. The shape
parameter of the Pareto flows is 1.5. Two 7.8Kbps FTP flows with
infinite traffic are also in the system, one from S1 to R1 and the
other one from S2 to R2.

In this experiment, all of the three deficit round-robin based
schemes, SRR, STRR, and FRR, give reasonable approximation
of the timestamp based schemes, WFQ and WF 2Q, for all the
flows with different rates. In comparison to SRR and STRR,
FRR achieves average and worst-case end-to-end delays that
are closer to the ones with the timestamp based schemes for
flows with large rates (≥ 150Kbps in the experiment). In this

experiment, FRR have smaller average end-to-end delays than
SRR and STRR for flows whose rates are larger than 40Kbps,
while having larger average packet delays for other flows. In
FRR, the timestamp based inter-class scheduling mechanism is
added on top of DRR so that flows with small rates do not
significantly affect flows with large rates. Thus, in a way, FRR

gives preference to flows with larger weights in comparison to
other DRR bases schemes: the average packet delay with FRR

is more proportional to the flow rate than that with SRR and
STRR.

Figure 7 (a), (b), and (c) shows the short-term throughput
achieved by different schemes. Since the results for SRR are
very similar to those for STRR, we only show the results for
STRR, similarly, results for WF 2Q are similar to the results for
WFQ. In this experiment, the short-term throughput in an interval
of 100ms is measured. We observe one 300Kbps CBR flow and
one 600Kbps flow from S0 to R0. In addition, 50 10Kbps CBR

flows from S0 and R0 are introduced. Other background flows
are the same as the previous experiment.

Figure 7 (a), (b), and (c) shows the results for the 300 Kbps

flow. The results for the 600 Kbps flow have a similar trend. As
can be seen from the figure, the short term throughput for STRR

(and SRR) exhibit heavy fluctuations. On the other hand, WFQ

and FRR yield much better short term throughput: within each
interval of 100ms, the throughput is always close to the ideal
rate. This demonstrates that FRR has a much better short-term
fairness property than SRR and STRR.

Figure 8 shows the proportional fairness of FRR. In this
experiment, we observe four deterministic flows from S0 to R0

with average rates of 100Kbps, 200Kbps, 200Kbps, and 300Kbps.
These flows follow an off/on pattern with each off/on period being
10 seconds. Hence, the flows are quiet for 10 seconds and then
send in a doubled rate for the next 10 seconds. One 600Kbps CBR
flow from S1 to R1 is introduced in period [10s, 16s] and another
400Kbps CBR flow from S1 to R1 is introduced in period [12s,
14s]. The CBR flows and the observed flows share the link from
N1 to N2. The bandwidth allocation in the link from N1 to N2 to
each of the flows during period [10s, 19s] is showed in Figure 8.
As can be see from the figure, for all periods with different traffics
sharing the link, the bandwidth allocation to the four observed
flows is exactly proportional to their reserved bandwidths.

The last experiment is designed to study the impacts of
C, a parameter in FRR. The background traffics used in
this experiment are the same as those in Figure 5. We ob-
serve the worst case end-to-end packet delay for 16 CBR

flows from S0 to R0 with average rates of 10Kbps, 20Kbps,
30Kbps, 40Kbps, 50Kbps, 60Kbps, 70Kbps, 80Kbps, 90Kbps,
100Kbps, 110Kbps, 120Kbps, 130Kbps, 140Kbps, 150Kbps,
and 160Kbps. When C = 8, there are two classes in the system,
F3 containing flows with rates 10Kbps, 20Kbps, and 30Kbps,
and F2 containing the rest of the flows. When C = 4, there are
three classes in the system, F4 (10Kbps to 30Kbps), F3 (40Kbps

to 120Kbps), and F2 (130Kbps to 160Kbps). When C = 2,
there are 5 classes: F8 (10Kbps), F7 (20Kbps and 30Kbps), F6

(40Kbps to 60Kbps), F5 (70Kbps to 120Kbps), and F4 (130Kbps

to 160Kbps).
Figure 9 shows the worst case delay in milli-seconds. We can

see that the worst case delay for flows within one class are similar,
which is evidenced by the ladder shape curves in the figure. This
is expected as the DRR based scheme is used for intra-class
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scheduling. The packet delay is directly related to C. A smaller
C value results in a smaller worst case packet delay.

Figure 10 shows a different view of Figure 9. In this figure,
we represent the absolute worst case delay time as the time to
send a number of packets (packets are of the same size, 210B, in
this experiment). This allows the delay to be normalized by the
flow rate. There are two interesting observations in Figure 10.

First, within each class, FRR biases against flows with larger
weights. This is due to the use of a DRR based scheme for
intra-class scheduling. Biasing against flows with large weights
is a common problem for all DRR based schemes. However, in
FRR, this problem is limited since the weight difference within
a class is bounded. Second, FRR treats different classes fairly.
It can be seen that for flows in different classes, the worst case
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packet delays fall in ranges with similar lower bounds and upper
bounds as shown in the seesaw shape curve (e.g. when C = 2).

VII. CONCLUSION

In this paper, we describe Fair Round Robin (FRR), a low
quasi-O(1) complexity round robin scheduler that provides pro-
portional and worst-case fairness. In comparison to other DRR

based scheduling schemes, FRR has similar complexity and pro-
portional fairness, but better worst-case fairness. The simulation
study demonstrates that even in average cases, FRR has better
short-term behavior than other DRR based schemes, including
smoothed round robin and stratified round robin. The constant
factors in the complexity and QoS performance bounds for FRR

are still fairly large. Recent improvements on GPS tracking [19],
[20], [23] and DRR implementations [8] may be applied to
improve FRR.
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APPENDIX: PROOFS

Proof of Lemma 1: Since X is the smallest number of continuous
DRR rounds that completely enclose [t1, t2), fi is served in at
least X−2 rounds. Thus, Si,DRR(t1, t2) ≥ (X−2)∗quantumi−

LM ≥ (X − 3)quantumi since we assume that quantumi ≥

LM . On the other hand, fi is served in at most all X rounds,
in this case, the total number of data sent should be less than
the total quantum generated during the rounds plus the left over
from the previous DRR round, which is less than LM . Thus,
Si,DRR(t1, t2) ≤ X ∗ quantumi + LM ≤ (X + 1)quantumi. 2

Proof of Lemma 2: Since N ∗ rmin ≤ r1 + r2 + ... + rN ≤ R,
rmin ≤ R

N . quantumi = LM ∗ ri

rmin
≤ D ∗ LM . Thus, the total

size of a round is at most
∑N

i=1{quantumi + LM} ≤ (D +

1) ∗ N ∗ LM . The time to complete service in a round is at most
(D+1)N∗LM

R ≤ (D + 1) ∗ LM

rmin
≤ (D + 1) ∗ LM

rmax/D
= D(D +

1) ∗ LM

rmax
≤ D(D + 1) ∗ LM

ri
.

Packet p arrives at the head of the queue for fi time t. It takes
at most two rounds for the packet to be serviced. There exists a
constant c1 = 2 ∗ D(D + 1) = O(D2) such that packet p will
be serviced before t + c1 × LM

ri
. This proves the first statement.

Next, we will prove the second statement.
Let a packet belonging to flow fi arrives at time t, creating a

total backlog of size qi in fi’s queue. From statement 1., there
exists a constant c1 such that the first packet in the queue will
be serviced in t + c1 × LM

ri
. After the first packet is serviced,

there will be at most d qi

quantumi
e+1 ≤ qi

quantumi
+2 rounds for

the qi data to be sent. During the qi

quantumi
+ 2 rounds, at most

( qi

quantumi
+2)∗

∑N
j=1 quantumj quanta are generated, and thus,

at most ( qi

quantumi
+ 2) ∗

∑N
j=1 quantumj + N ∗ LM data are

sent since each flow can have at most LM credits left from the
previous round. Thus, the total time to complete the qi

quantumi
+2

rounds is at most
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(
qi

quantumi
+2)∗

∑
N

j=1
quantumj+N∗LM

R

= ( qi

quantumi
+ 2)

∑
N

j=1
quantumj

R + N∗LM

R

= ( qi

quantumi
+ 2)

∑
N

j=1
LM∗

rj

rmin

R + N∗LM

R

= ( qi

quantumi
+ 2) LM

rmin

∑
N

j=1
rj

R + N∗LM

R

≤ ( qi

quantumi
+ 2) LM

rmin
+ N∗LM

R ≤ ( qi

LM∗
ri

rmin

) LM

rmin
+ 3LM

rmin

≤ qi

ri
+ 3∗LM

rmin
≤ qi

ri
+ 3∗LM

rmax/D
≤ qi

ri
+ 3D∗LM

ri

Thus, there exists a constant c2 = c1 + 3D = O(D2) such
that the queue of size qi will be sent before t + qi

ri
+ c2 ∗ LM

ri
.

This is true for all flows. The normalzied worst case fair index
is cDRR = maxi{

riCi,DRR

R } = c2LM

R . This proves the second
statement.

For any given time period, [t1, t2), let fi and fj be backlogged
during this period that is enclosed by X rounds. From Lemma 1,
we have

(X − 3)quantumi ≤ Si,DRR(t1, t2) ≤ (X + 1)quantumi

(X − 3)quantumj ≤ Sj,DRR(t1, t2) ≤ (X + 1)quantumj

By manipulating these inequations, it can be shown that
there exist two constants c1 = c2 = 4D = O(D), such that
|
Si,DRR(t1,t2)

ri
−

Sj,DRR(t1,t2)
rj

| ≤ c1
LM

ri
+ c2

LM

rj
. 2

Proof of Lemma 3: The notation Si,LDRRWA(t1, t2) is abused
in this lemma since LDRRWA does not decide the actual timing
to service packets. In this lemma, Si,LDRRWA(t1, t2) denotes
the amount of data for a continuously backlogged flow fi in X

continuous LDRRWA frames (of a particular class) using any
inter-class scheduling scheme.

Since fi is continuously backlogged, it will try to send as many
packets as possible in each frame. Since X frames enclose [t1, t2),
flow fi will fully utilize at least X − 2 frames (all but the first
frame and the last frame). In the X − 2 frames, (X − 2) × Qi

credits are generated for flow fi. The lookahead operation in the
frame prior to the X − 2 frames may borrow at most one packet,
whose size is less than LM , from fi in the first of the X − 2

frames and flow fi in the last of the X − 2 frames may pass
at most LM credits to the next frame. Note that the lookahead
operation borrows at most one packet from each backlogged flow.
Thus, Si,LDRRWA(t1, t2) ≥ (X − 2) × Qi − LM − LM . Since
Qi ≥ 2LM , Si,LDRRWA(t1, t2) ≥ (X − 3) × Qi.

On the other hand, fi will be served in at most all the X frames,
which produces X ×Qi credits for fi during this period of time.
Flow fi in the frame prior to the X frames may have at most
LM left-over credits and the lookahead operation in the last of
the X frames may borrow at most LM credits from fi in the next
frame. Thus,

Si,LDRRWA(t1, t2) ≤ X × Qi + LM + LM ≤ (X + 1)Qi.2

Proof of Lemma 10: This lemma relaxes the condition in Lemma
10 by not requiring each class to be serviced with its GPS
guaranteed rate. Since fi ∈ Fk and fj ∈ Fm be continuously
backlogged during [t1, t2), the sizes of all frames during this
period are no smaller than LM (Lemma 9). Let us partition the
duration [t1, t2) into smaller intervals [a1 = t1, b1), [a2 = b1, b2),
..., [aY = bY −1, bY = t2) such that within each interval [ah, bh),
1 ≤ h ≤ Y , the weights of all classes are fixed. Let F1, ..., Fn be
the n classes in the system. Let class Fk have weight wh

k during
interval [ah, bh), 1 ≤ h ≤ Y (If Fk is not backlogged, wh

k = 0).

The amount of class Fk data sent during [ah, bh) is thus,

wh
k∑n

i=1 wh
i

R ∗ (bh − ah).

Consider a reference scheduling system that contains three
classes RFk , RFm, and RFo. Let us use intervals [aa1 = t1, bb1),
[aa2 = bb1, bb2), ..., [aaY = bbY −1, bbY ) to emulate the behavior
of classes Fk and Fm during intervals [a1 = t1, b1), [a2 = b1, b2),
..., [aY = bY −1, bY ) respectively. Let rwh

k be the weight for class
RFk during interval [aah, bbh), 1 ≤ h ≤ Y . Let rwh

m be the
weight for class RFm during interval [aah, bbh), 1 ≤ h ≤ Y .
Let rwh

o be the weight for class RFo during interval [aah, bbh),
1 ≤ h ≤ Y . The weights and the duration of each interval are
given as follows:

rwh
k = wh

k , rwh
m = wh

m, rwh
o = 1 − wh

k − wh
m, 1 ≤ h ≤ Y

and
bbh = aah +

bh − ah∑n
i=1 wh

i

, 1 ≤ h ≤ Y.

It can be verified that the amount of classes RFk and RFm data
sent in an interval [aah, bbh), 1 ≤ h ≤ Y , is exactly the same as
the amount of classes Fk and Fm data sent in an interval [ah, bh),
1 ≤ h ≤ Y , respectively. In an interval [aah, bbh), 1 ≤ h ≤ Y , let
us further assume that Class RFk has exactly the same sequence
of packets as Class Fk has in interval [ah, bh) and that Class
RFm has exactly the same sequence of packets as Class Fm has
in interval [ah, bh). The progress of classes Fk and Fm during
[t1, t2) is exactly the same as the progress of class RFk and RFm

during [aa1, bbY )

In the reference system, classes RFm and RFk are serviced
with the GPS guaranteed rate during [aa1, bbY ). Let RXk and
RXm be the smallest numbers of RFk and RFm frames that com-
pletely enclose [aa1, bbY ). From Lemma 10, (RXk −1)Ck−m ≤

RXm ≤ RXkCk−m + 1.
Let Xk and Xm be the smallest number of Fk and Fm frames

that completely enclose [t1, t2). Since the progress of classes Fk

and Fm during [t1, t2) is exactly the same as the progress of
class RFk and RFm during [aa1, bbY ), we have Xk = RXk and
Xm = RXm. Thus, (Xk − 1)Ck−m ≤ Xm ≤ XkCk−m + 1. 2

Proof of Theorem 1: Since GPS is work-conserving, we will
prove the theorem by showing that DW 2F 2Q has the same idle
and busy periods as GPS. Assuming that DW 2F 2Q and GPS

have different idle and busy periods. Let t be the first occurrence
when GPS and DW 2F 2Q are not in the same state. There are
two cases.

Case 1: GPS is idle and DW 2F 2Q is busy, serving packet p.
Since t is the first occurrence when GPS and DW 2F 2Q are not
in the same state, the amount of data served during [0, t) must
be the same for the two scheduling schemes. Since p is currently
being served under DW 2F 2Q, p must be started before t under
GPS. Since GPS is idle at time t, packet p must finish before t

under GPS. Hence, there must exist a packet q such that q has
not been served under GPS during [0, t) and has been served by
DW 2F 2Q during [0, t). Since GPS is idle at t, packet q should
start after t under GPS, which indicates that q cannot be served
under DW 2F 2Q during [0, t). This is the contradiction.

Case 2: GPS is busy and DW 2F 2Q is idle. Let packets p1,
p2, ..., pi be the packets departed under GPS during [0, t) and
packets cp1, ..., cpj be the packets currently in progress under
GPS. Since GPS is busy, at least one packet is being serviced
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at time t. Since DW 2F 2Q is idle at t, all packets that starts before
t under GPS should have been served, that is, packets p1, p2, ...,
pi and cp1, ..., cpj are all served during [0, t) under DW 2F 2Q.
Thus, during [0, t), DW 2F 2Q sends more data than GPS and t

cannot be the first occurrence that GPS and DW 2F 2Q are not
in the same state. 2

Proof of Theorem 5: There are two cases. The first case is when
flows fi and fj are in the same class, that is, k = m. The second
case is when flows fi and fj are not in the same class, that is,
k 6= m. The proof of the first case is similar to the proof of the
statement 3 in Lemma 2. Here, we will focus on the second case.
Let us assume that k > m.

Let packets p1
k, p2

k, ..., pa
k be the sequence of class Fk packets

sent under FRR during [t1, t2). Let packets p1
m, p2

m, ..., pb
m be

the sequence of class Fm packets sent under FRR during [t1, t2).
Since flows fi and fj are continuously backlogged during [t1, t2),
there exists a packet p0

k that departed before p1
k and pa+1

k that will
depart after pa

k . Under the simulated GPS, there is no idle time
between packet p0

k and packet p1
k and between packet pa

k and
packet pa+1

k . Packets p0
m and pb+1

m are defined similarly.
Consider the progress of these packets under the simulated

GPS. Let Bp
GPS denote the beginning time of packet p under

GPS and F p
GPS denote the finishing time of packet p under GPS.

There are four cases: (1) B
p1

k

GPS ≥ B
p1

m

GPS and F
pa

k

GPS < F
pb

m

GPS ,
(2) B

p1
k

GPS ≥ B
p1

m

GPS and F
pa

k

GPS ≥ F
pb

m

GPS , (3) B
p1

k

GPS < B
p1

m

GPS and
F

pa
k

GPS < F
pb

m

GPS , and (4) B
p1

k

GPS < B
p1

m

GPS and F
pa

k

GPS ≥ F
pb

m

GPS .
In the next, we will prove case (1). Other three cases

can be proven in a similar fashion. Consider case (1) when
B

p1
k

GPS ≥ B
p1

m

GPS and F
pa

k

GPS < F
pb

m

GPS . Let tt0 = B
p1

m

GPS ,
tt1 = B

p1
k

GPS , tt2 = F
pa

k

GPS , and tt3 = F
pb

m

GPS . We have
tt0 ≤ tt1 ≤ tt2 ≤ tt3. Let Si,GPS(t1, t2) be the services that
flow fi received during time [t1, t2) in the simulated GPS. We
have Si,FRR(t1, t2) = Si,GPS(tt1, tt2) and Sj,FRR(t1, t2) =

Sj,GPS(tt0, tt1) + Sj,GPS(tt1, tt2) + Sj,GPS(tt2, tt3).
In the simulated GPS system, flows fi and fj are con-

tinuously backlogged during [tt1, tt2). From Lemma 12, there
exist two constants cc1 and cc2 such that |

Si,GP S(tt1,tt2)
ri

−
Sj,GP S(tt1,tt2)

rj
| ≤ cc1∗LM

ri
+ cc2∗LM

rj
. Thus,

|
Si,F RR(t1,t2)

ri
−

Sj,F RR(t1,t2)
rj

|

≤ |
Si,GP S(tt1,tt2)

ri
−

Sj,GP S(tt1,tt2)
rj

| +
Sj,GP S(tt0,tt1)

rj

+
Sj,GP S(tt2,tt3)

rj

≤ cc1∗LM

ri
+ cc2∗LM

rj
+

Sj,GP S(tt2,tt3)
rj

+
Sj,GP S(tt0,tt1)

rj

Next, we will consider the two terms Sj,GP S(tt0,tt1)
rj

and
Sj,GP S(tt2,tt3)

rj
. First, consider class Fm packets serviced during

[tt0, tt1). Since all these packets are serviced after packet p0
k under

FRR (DW 2F 2Q as the inter-class scheduler), from Lemma 3,
at most one of the packets can have a GPS finishing time before
F

p0
k

GPS = B
p1

k

GPS = tt1. That is, there can be at most one class Fm

packet finishing during [tt0, tt1). Thus, in the simulated GPS, at
most two class Fm packets can be serviced during [tt0, tt1) and
Sj,GP S(tt0,tt1)

rj
≤ 2LM

rj
. Now, consider class Fm packets serviced

during [tt2, tt3). Since all these packets are serviced under FRR

before packet pa+1
k , at most one of the packets can have a GPS

finishing time after F
pa+1

k

GPS . From Lemma 7, the duration of packet
pa+1

k is less than CmLM

R in the simulated GPS, which is less

than one frame whose size is larger than LM . Let X be the
number of frames for class Fm during this period when pa+1

k
is in progress under GPS. Since fj is continuously backlogged
during this period of time, from Lemma 11, X ≤ Ck−m ∗ 1 + 1.
Thus, from Lemma 4, during the period that packet pa+1

k is in
progress under GPS, the amount of services given to flow fj is
at most (Ck−m + 1 + 2)quantumj .
Sj,GP S(tt2,tt3)

rj

≤
(Ck−m+1+2)quantumj+LM

rj
=

(Ck−m+3)wjCmLM+LM

wjR

≤ LMCk

R + 3LM Cm

R + LM

rj
≤ C LM

ri
+ (3C + 1)LM

rj

Thus, there exists two constants c1 = cc1+C = O(C) and c2 =

cc2+2+3C+1 = O(C) such that |Si,F RR(t1,t2)
ri

−
Sj,FRR(t1,t2)

rj
| ≤

c1∗LM

ri
+ c2∗LM

rj
.2
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