
Techniques for Pipelined Broadcast on Ethernet

Switched Clusters ∗

Pitch Patarasuk Xin Yuan † Ahmad Faraj

Department of Computer Science Blue Gene Software Development
Florida State University IBM Corporation

Tallahassee, FL 32306 Rochester, MN 55901
{patarasu, xyuan}@cs.fsu.edu faraja@us.ibm.com

Abstract

By splitting a large broadcast message into segments and broadcasting the segments
in a pipelined fashion, pipelined broadcast can achieve high performance in many sys-
tems. In this paper, we investigate techniques for efficient pipelined broadcast on
clusters connected by multiple Ethernet switches. Specifically, we develop algorithms
for computing various contention-free broadcast trees that are suitable for pipelined
broadcast on Ethernet switched clusters, extend the parametrized LogP model for pre-
dicting appropriate segment sizes for pipelined broadcast, show that the segment sizes
computed based on the model yield high performance, and evaluate various pipelined
broadcast schemes through experimentation on Ethernet switched clusters with various
topologies. The results demonstrate that our techniques are practical and efficient for
contemporary fast Ethernet and Giga-bit Ethernet clusters.

Keywords: Broadcast, Ethernet, Collective Communication.

1 Introduction

Switched Ethernet is the most widely used local–area–network (LAN) technology. Many

Ethernet switched clusters of workstations are used for high performance computing. For

such clusters to be effective, communications must be carried out as efficiently as possible.

Broadcast is one of the most common collective communication operations. In this opera-

tion, the root process (the sender) sends a message to all other processes in the system. The

Message Passing Interface routine that realizes this operation is MPI Bcast [19]. Broadcast

∗A preliminary version of this paper is published in IEEE IPDPS 2006.
†Corresponding author: Xin Yuan, email: xyuan@cs.fsu.edu, phone: (850)644-9133, fax: (850)644-0058.

algorithms are classified as either atomic broadcast algorithms or pipelined broadcast algo-

rithms. Atomic broadcast algorithms distribute the broadcast message as a whole through

the network. Such algorithms apply to the cases when there is only one broadcast operation

and the broadcast message cannot be split. When there are multiple broadcast operations

or when the broadcast message can be split into message segments, a pipelined broadcast

algorithm, which distributes message segments in a pipelined fashion, can usually achieve

higher performance than atomic broadcast algorithms.

Two main issues must be addressed in order for pipelined broadcast to achieve high per-

formance in a cluster. First, a broadcast tree that allows efficient pipelined broadcast must

be determined. In pipelined broadcast, communications on different branches of the broad-

cast tree can be active at the same time. To maximize the performance, communications

that can potentially happen simultaneously should not share the same physical channel and

cause network contention. Hence, the broadcast trees for pipelined broadcast should be

contention-free. Second, appropriate segment sizes must be selected since the segment sizes

directly affect the total broadcast time. A small segment size may introduce excessive com-

munication start-up overheads while a large segment size may decrease pipeline efficiency.

We investigate efficient pipelined broadcast for realizing MPI Bcast with large message

sizes on clusters connected by multiple Ethernet switches. In this case, broadcasting a large

message is carried out by a sequence of pipelined broadcasts with smaller message segments.

We develop algorithms for computing various contention-free broadcast trees that are suitable

for pipelined broadcast on Ethernet switched clusters, and extend the parametrized LogP

model [15] for predicting appropriate segment sizes. We evaluate the proposed techniques

on fast Ethernet (100Mbps) and Giga-bit Ethernet (1000Mbps) clusters. The results show

that the proposed techniques are practical and efficient on such clusters. We will refer to

fast Ethernet as 100Mbps Ethernet and Giga-bit Ethernet as 1000Mbps Ethernet in the rest

of the paper. The main conclusions include the following:

2

• Pipelined broadcast is more effective than other broadcast schemes including the ones

used in MPICH 2-1.0.1 [20] and LAM/MPI 7.1.1 [16] on both 100Mbps and 1000Mbps

Ethernet switched clusters in many situations.

• Contention-free broadcast trees are essential for pipelined broadcast to achieve high

performance on clusters with multiple switches. Pipelined broadcast using topology

unaware broadcast trees may result in poor performance in such an environment.

• Pipelined broadcast is relatively insensitive to the segment size in that the range of

segment sizes that can yield high performance for a given operation is large. Our

extended parameterized LogP model is sufficiently accurate for finding the appropriate

segment size for a given pipelined broadcast on a platform.

The rest of the paper is organized as follows. Related work is discussed in Section 2. The

network model and commonly used broadcast algorithms are described in Section 3. Section

4 details the algorithms for computing various contention-free broadcast trees on Ethernet

switched clusters and presents the extended parameterized LogP model. Section 5 reports

the results of our experimental evaluation. Finally, Section 6 concludes the paper.

2 Related Work

The broadcast operation has been extensively studied and a very large number of broadcast

algorithms have been proposed. More closely related to this work are various pipelined

broadcast schemes. Various binomial tree based pipelined broadcast algorithms have been

developed [12, 14, 25, 26, 27]. In these schemes, each node sends successive segments to its

children in a round-robin fashion. One example is the k-binomial tree algorithm [14], which is

shown to have a better performance than traditional binomial trees. Although these schemes

can achieve theoretical optimal or nearly optimal performance, the shapes of the broadcast

trees are fixed. Such trees require high network connectivity to be contention free. For

3

networks with lower connectivity, such as Ethernet that has a tree topology, such broadcast

trees do not have a contention-free embedding and thus, the techniques in [12, 14, 25, 26, 27]

cannot be extended to clusters connected by multiple Ethernet switches.

Pipelined broadcast has also been investigated in other environments. In [1, 2], heuristics

for pipelined communication on heterogeneous clusters were devised. These heuristics focus

on the heterogeneity of links and nodes, but not the network contention issue. In [29],

a pipelined broadcast technique is proposed for the mesh topology. The effectiveness of

pipelined broadcast in cluster environments was demonstrated in [11, 23, 28]. It was shown

that pipelined broadcast using topology unaware trees can be very efficient for clusters

connected by a single switch. In [22], a scheme was proposed where the broadcast tree

changes smoothly from a binary tree to a linear tree as the message size increases.

In this paper, we do not propose new pipelined broadcast schemes. Instead, we develop

practical techniques to facilitate the deployment of pipelined broadcast on clusters connected

by multiple Ethernet switches. Similar to other architecture specific collective communica-

tion algorithms [8, 10, 17], the techniques developed in this paper can be used in advanced

communication libraries [7, 9, 13, 30]. Our research extends the work in [11, 23, 28] by

considering multiple switches. As shown in the performance study, pipelined broadcast us-

ing topology unaware trees in such an environment may yield extremely poor performance.

To the best of our knowledge, methods for building fully contention-free trees for pipelined

broadcast over a physical tree topology have not been developed. Moreover, although vari-

ous models that can be used to determine appropriate segment sizes for pipelined broadcast

have been proposed [3, 4, 6, 15, 22, 26, 27], these schemes cannot directly apply to Ethernet

switched clusters either because the model assumptions do not hold or because the model

parameters cannot be measured with sufficient accuracy. We extend the parameterized LogP

model in [15] for determining the appropriate segment sizes in pipelined broadcasts. Notice

that we could have extended the LognP and Log3P models [4] to have more powerful models

4

(e.g. having the ability to deal with non-contiguous data types). However, these models

mainly focus on dealing with non-contiguous memory accesses, which is not the emphasis in

our paper. As such, we extended the simpler parameterized LogP model that is sufficient

for our purpose.

The pipelined broadcast approach can only be efficient for broadcasting large messages.

For small messages, other broadcast algorithms are needed. There are techniques to de-

velop adaptive MPI routines that use different algorithms according to the message sizes

[7, 20]. These adaptive techniques allow our algorithms and the complementary algorithms

for broadcasting small messages to co-exist in one MPI routine.

3 Network Model

We consider Ethernet switched clusters where each workstation is equipped with one Eth-

ernet port and each Ethernet link operates in the duplex mode that supports simultaneous

communications in both directions with full bandwidth. Communications in such a system

follow the 1-port model [2], that is, at one time, a machine can send and receive one message.

The switches may be connected in an arbitrary way. However, a spanning tree algorithm

is used to determine forwarding paths that follow a tree structure [24]. As a result, the

physical topology of the network is always a tree with switches being the internal nodes and

machines being leaves. While hardware broadcast is supported in Ethernet, using such a

technology to realize MPI Bcast requires the implementation of a reliable multicast protocol

[13], which is complex. In this paper, we only consider unicast-based pipelined broadcast.

The network is modeled as a directed graph G = (V, E) with nodes V corresponding to

switches and machines, and edges E corresponding to unidirectional channels. Let S be the

set of switches in the network and M be the set of machines in the network. V = S ∪ M .

A directed edge (u, v) ∈ E if and only if there is a link between node u and node v. Since

the network topology is a tree, the graph is also a tree: there is a unique simple path (path

without a loop) between any two nodes. Figure 1 shows an example cluster. We assume

5

that all links have the same bandwidth.

switches

machines

n5n0

s0

s2

s1

s3
n1

n2

n3 n4

Figure 1: An example Cluster

Notion u → v denotes a communication from node u to node v. Path(u → v) denotes

the set of directed edges in the unique simple path from node u to node v. For example,

in Figure 1, path(n0 → n3) = {(n0, s0), (s0, s1), (s1, s3), (s3, n3)}. Two communications,

u1 → v1 and u2 → v2, are said to have contention if they share a common edge, that is,

there exists an edge (x, y) such that (x, y) ∈ path(u1 → v1) and (x, y) ∈ path(u2 → v2).

A pattern is a set of communications. A contention-free pattern is a pattern where no two

communications in the pattern have contention. We will use the notion u → v → w → ... →

x → y → z to represent pattern {u → v, v → w, ..., x → y, y → z}.

3.1 Broadcast on Ethernet Switched Clusters

Let the broadcast message size be msize and the number of machines in the broadcast

operation be P . We will assume that the time taken to send a message of size n between

any two machines can be modeled as T (n) = α + n × β, where α is the startup overhead

and β is the per byte transmission time. Splitting a large message into small segments

will increase the startup overheads and thus, the total communication time. Hence, when

an msize-byte message is split into segments of sizes s1, s2, ..., and sk, T (s1) + T (s2) +

... + T (sk) ≥ T (msize). Under the assumption that the startup overhead is insignificant

in T (si), 1 ≤ i ≤ k, T (s1) + T (s2) + ... + T (sk) ≈ T (msize). We note that the start-up

overheads in Ethernet clusters are not small in absolute terms. However, the significance of

the overheads depends on the segment sizes. For example, in our experimental system with

6

100Mbps Ethernet, the start-up overhead is less than 10% when the segment size is 1KB:

by selecting a proper segment size, the start-up overheads can be made insignificant.

Let the communication completion time be the duration between the time when the root

starts sending and the time when the last machine receives the whole message. In the broad-

cast operation, each machine receives msize data and the lower bound of the completion

time is at least T (msize). Note that a tighter lower bound is log(P)× α + msize × β since

it takes at least log(P) steps for a message to reach all P processes. In this section, we do

not intend to give a detail analysis of the lower bound. To simplify the discussion, we will

ignore the α term and use T (msize) as the lower bound. Our simplified analysis is sufficient

to justify the broadcast trees that we use. Readers can refer to [22, 26] for more detailed

analysis of pipelined broadcast.

Figure 2 shows some common broadcast trees, including linear tree, binary tree, k-ary

tree, binomial tree, and flat tree. Common atomic broadcast algorithms include the flat

tree and binomial tree algorithms. In the flat tree algorithm, the root sequentially sends the

broadcast message to each of the receivers. The completion time is thus (P −1)×T (msize).

In the binomial tree algorithm[18], broadcast follows a hypercube communication pattern

and the total number of messages that the root sends is log(P). Hence, the completion time

is log(P) × T (msize). Another interesting non-pipelined broadcast algorithm is the scatter

followed by all-gather algorithm, which is used in MPICH [20]. In this algorithm, the msize-

byte message is first distributed to the P machines by a scatter operation (each machine gets

msize
P

-byte data). After that, an all-gather operation is performed to combine messages to

all nodes. In the scatter operation, P−1
P

×msize data must be moved from the root to other

nodes, and the time is at least T (P−1
P

×msize). In the all-gather operation, each node must

receive P−1
P

× msize-byte data from other nodes and the time is at least T (P−1
P

× msize).

Hence, the completion time for the whole algorithm is at least 2 × T (P−1
P

× msize) ≈

2 × T (msize). Note that this is a lower bound on the performance. In practice, the all-

7

gather operation may not be completed in T (P−1
P

× msize).

0

1

2

3

4

5

6

7

0

1 2

3 4 5 6

7

0

1 2 3

4 5 6 7

0
1

2
3

4
5

6
7

(a) linear tree (d) binomial tree

0

1 2 3 4 5 6 7

(b) binary tree (c) 3−ary tree

(e) flat tree

Figure 2: Examples of broadcast trees

Now, let us consider pipelined broadcast. As discussed earlier, binomial trees based

pipelined broadcast schemes, such as those in [12, 14], are not applicable on Ethernet

switched clusters. We will focus on schemes where each segment is pipelined over a fixed-

degree tree. Assume that the msize-byte broadcast message is split into X segments of size

msize
X

, broadcasting the msize-byte message is realized by X pipelined broadcasts of segments

of size msize
X

. To achieve good performance, the segment size, msize
X

, should be small while

keeping the startup overhead insignificant in T (msize
X

), that is, X ×T (msize
X

) ≈ T (msize). In

our experiments, using msize
X

≥ 1KB on 100Mbps clusters and msize
X

≥ 8KB on 1000Mbps

clusters, the start-up overhead is less than 10% of the overall communication time.

The completion time for the X pipelined broadcasts depends on the broadcast tree, which

decides the size of each pipeline stage and the number of pipelined stages. For simplicity,

we will assume in this section that there is no network contention in pipelined broadcast.

Under the 1-port model, the size of a pipeline stage is equal to the time to send the number

of messages that a machine must send in that stage, which is equal to the nodal degree of the

machine in the broadcast tree. The number of pipelined stages is equal to the tree height.

Let the broadcast tree height be H and the maximum nodal degree of the broadcast tree be

D. Since a node must send to each of its D children one at a time, the largest pipeline stage

8

is D × T (msize
X

). The total time to complete the communication is

(X + H − 1) × (D × T (msize
X

)).

When msize is very large, X will be much larger than H − 1. In this case, (X + H −

1)(D×T (msize
X

)) ≈ X×(D×T (msize
X

)) ≈ D×T (msize). This simple analysis shows that for

large messages, trees with a small nodal degree should be used. For example, using a linear

tree, shown in Figure 2 (a), H = P and D = 1. The communication completion time is

(X +P −1)×T (msize
X

). When X is much larger than P , (X +P −1)×T (msize
X

) ≈ T (msize),

which is the theoretical limit of the broadcast operation.

Using the linear tree, the number of pipelined stages is P , which results in a long time to

drain the pipeline when P is large. To reduce the number of pipelined stages, a general k-ary

tree, that is, a tree with a maximum nodal degree of k, can be used. When k = 2, we call

such trees binary trees. Assuming a complete binary tree is used, H = log2(P) and D = 2.

The completion time is (X + log2(P)− 1)× 2× T (msize
X

) = (2X + 2log2(P)− 2)× T (msize
X

).

When X is sufficiently large, (2X+2log2(P)−2)×T (msize
X

) ≈ 2T (msize): when broadcasting

a very large message, pipelined broadcast with a binary tree is not as efficient as that with

a linear tree. However, when 2X + 2log2(P)− 2 ≤ X + P − 1 or X ≤ P − 2log2(P) + 1, the

binary tree is more efficient. In other words, when broadcasting a medium sized message,

a binary tree may be more efficient than a linear tree. When using general k-ary trees,

k > 2, for pipelined broadcast, the size of the pipelined stage increases linearly with k while

the tree height decreases proportionally to the reciprocal of the logarithm of k, assuming

that trees are balanced such that the tree height is O(logk(P)). Hence, it is unlikely that a

k-ary tree, k > 2, can offer better performance than a binary tree. For example, assuming

a complete k-ary tree, k > 2, is used for pipelined broadcast, H = logk(P) and D = k. The

completion time is (X + logk(P)− 1)× (k × T (msize
X

)), which is larger than the time for the

complete binary tree for most practical values of X and P . Our empirical study confirms

this on 100Mbps and 1000Mbps Ethernet clusters. Table 1 summarizes the performance of

9

Algorithm performance
Flat tree (P − 1) × T (msize)
Binomial tree log2(P) × T (msize)
scatter/allgather 2 × T (msize)
Linear tree (pipelined) T (msize)
Binary tree (pipelined) 2 × T (msize)
k-ary tree (pipelined) k × T (msize)

Table 1: The performance of broadcast algorithms for very large messages

broadcast algorithms when the broadcast message size is very large.

4 Pipelined broadcast on Ethernet switched networks

As shown in Table 1, pipelined broadcast is likely to achieve high performance when the

broadcast message is large. There are two obstacles that prevent this technique from being

widely deployed on Ethernet switched clusters: (1) finding contention-free broadcast trees,

and (2) deciding appropriate segment sizes. We will address both issues in this section.

4.1 Computing contention-free broadcast trees

Under the 1-port model, communications originated from the same machine cannot happen

at the same time. Thus, a contention-free tree for pipelined broadcast only requires commu-

nications originated from different machines to be contention-free. Since each communication

in a linear tree originates from a different machine, all communications in the contention-free

linear tree must be contention-free. In a contention-free k-ary tree, communications from a

machine to its (up to k) children may have contention.

4.1.1 Contention-free linear trees

Let the machines in the system be n0, n1, ..., nP−1. Let F : {0, 1, ..., P−1} → {0, 1, ..., P−1}

be any one-to-one mapping function such that nF (0) is the root of the broadcast operation.

nF (0), nF (1), ..., nF (P−1) is a permutation of n0, n1, ..., nP−1 and nF (0) → nF (1) → nF (2) →

... → nF (P−1) is a logical linear tree. The task is to find an F such that the communications

in the logical linear tree do not have contention.

Let G = (S∪M, E) be a tree graph with S being the switches, M being the machines, and

10

E being the edges. P = |M |. Let nr be the root machine of the broadcast. Let G′ = (S, E ′)

be a subgraph of G that only contains switches and links between switches. A contention-free

linear tree can be computed in the following two steps.

• Step 1: Starting from the switch that nr is directly connected to, perform Depth First

Search (DFS) on G′. Number the switches based on the DFS arrival order. An example

numbering of the switches in the DFS order is shown in Figure 3. We will denote the

switches as s0, s1, ..., s|S|−1, where si is the ith switch arrived in the DFS traversal of

G′. The switch that nr attaches to is s0.

• Step 2: Let the Xi machines connecting to switch si, 0 ≤ i ≤ |S| − 1, be numbered as

ni,0, ni,1, ..., ni,Xi−1. nr = n0,0. Xi = 0 when there is no machine attaching to si. The

following logical linear tree is contention-free (we will formally prove this): n0,0(nr) →

... → n0,X0−1 → n1,0 → ... → n1,X1−1 → ... → n|S|−1,0 → ... → n|S|−1,X|S|−1−1.

We will refer to this algorithm as Algorithm 1. There exist many contention-free logical

linear trees for a physical tree topology. We will prove that Algorithm 1 computes one of the

contention-free logical linear trees.

Lemma 1: Let G′ = (S, E ′) be the subgraph of G that contains only switches and links

between switches. Let s0, s1, ..., s|S|−1 be the DFS ordering of the switches, where si is the

ith switch arrived in DFS traversal of G′. Communications in {s0 → s1, s1 → s2, ..., s|S|−2 →

s|S|−1, s|S|−1 → s0} are contention free. 2

0

1

2

3

4 5

Figure 3: DFS numbering

The proof of Lemma 1 can be found in [10]. Figure 3 shows an example. Clearly, commu-

nications in {s0 → s1, s1 → s2, s2 → s3, s3 → s4, s4 → s5, s5 → s0} are contention-free: each

11

directed edge (direction) of each link is used exactly once in the communication pattern.

Lemma 2: Let s0, s1, ..., s|S|−1 be the DFS ordering of the switches. Let 0 ≤ i < j ≤ k <

l ≤ |S| − 1, si → sj does not have contention with sk → sl.

Proof: From Lemma 1, path(si → si+1), path(si+1 → si+2), ..., path(sj−1 → sj), path(sk →

sk+1), path(sk+1 → sk+2), ..., path(sl−1 → sl) do not share any edge. It follows that

path(si → si+1) ∪ path(si+1 → si+2) ∪ ... ∪ path(sj−1 → sj) does not share any edge

with path(sk → sk+1) ∪ path(sk+1 → sk+2) ∪ ... ∪ path(sl−1 → sl). Since the graph is a

tree, path(si → sj) ⊆ path(si → si+1) ∪ path(si+1 → si+2) ∪ ... ∪ path(sj−1 → sj) and

path(sk → sl) ⊆ path(sk → sk+1) ∪ path(sk+1 → sk+2) ∪ ... ∪ path(sl−1 → sl). Thus, si → sj

does not have contention with sk → sl. 2

Theorem 1: The logical linear tree obtained from Algorithm 1 is contention free.

Proof: The linear tree is formed by grouping all machines attached to each switch together

and ordering the switches based on the DFS order. Since each machine occurs in the linear

tree exactly once, the link to and from each machine is used at most once in the linear

tree. Thus, the intra-switch communications do not have contention. Since the switches are

ordered based on DFS, from Lemma 2, the inter-switch communications do not have any

contention. Hence, the linear tree is a contention-free linear tree. 2

4.1.2 Contention-free binary trees

Since the tree height directly affects the time to complete the operation, the ideal binary

tree for pipelined broadcast is one with the smallest tree height. Among all binary trees, the

complete binary tree has the smallest tree height. Unfortunately, such a tree (and other fixed-

shape trees such as binomial trees) does not always have a contention-tree embedding on an

arbitrary physical tree topology. We are not able to develop an algorithm that guarantees

finding a contention-free binary tree with the smallest tree height. Instead, we propose

a heuristic that computes contention-free binary trees while trying to minimize the tree

heights. The heuristic is based on the contention-free linear tree obtained from Algorithm 1.

12

The following lemma is the foundation of this heuristic.

Lemma 3: Let us re-number the logical linear tree obtained from Algorithm 1 (n0,0 → ... →

n0,X0−1 → n1,0 → ... → n1,X1−1 → ... → n|S|−1,0 → ... → n|S|−1,X|S|−1−1) as m0 → m1 → ... →

mP−1. Here, n0,0 = m0 = nr. Let 0 ≤ i < j ≤ k < l ≤ P − 1, communication mi → mj does

not have contention with communication mk → ml.

Proof: Let mi = na,w, mj = nb,x, mk = nc,y, and ml = nd,z. Since i < j ≤ k < l,

a ≤ b ≤ c ≤ d. Path(mi → mj) has three components: (mi, sa), path(sa → sb), and (sb, mj).

Path(mk → ml) has three components: (mk, sc), path(sc → sd), and (sd, ml). When a = b,

communication mi → mj does not have contention with communication mk → ml since

(mi, sa) and (sb, mj) are not in path(sc → sd). Similarly, when c = d, communication mi →

mj does not have contention with communication mk → ml. When a < b ≤ c < d, from

Lemma 2, path(sa → sb) does not share edges with path(sc → sd). Hence, communication

mi → mj does not have contention with communication mk → ml in all cases. 2

Let m0 → m1 → ... → mP−1 be the linear tree obtained from Algorithm 1. For 0 ≤ i ≤

j ≤ P − 1, let us denote sub-array S(i, j) = {mi, mi+1, ..., mj}. The heuristic constructs

contention-free binary trees for all sub-arrays S(i, j), 0 ≤ i ≤ j ≤ P − 1. Notice that for a

sub-array S(i, j), there always exists at least one contention-free binary tree since the linear

tree is a special binary tree. Let tree(i, j) represent the contention-free binary tree computed

for S(i, j). Tree(0, P − 1) is the binary tree that covers all machines. The heuristic builds

tree(i, j) with communications ma → mb, i ≤ a < b ≤ j. Let 0 ≤ i ≤ j < k ≤ l ≤ P − 1,

from Lemma 3, tree(i, j) does not have contention with tree(k, l).

Figure 4 shows the heuristic (Algorithm 2). In this algorithm, tree[i][j] stores tree(i, j),

and best[i][j] stores the height of tree(i, j). Lines (2) to (12) are the base cases for binary

trees with 1, 2, and 3 nodes. Note that under the 1-port model, mi → mi+1 and mi → mi+2

cannot happen at the same time. Hence, tree {mi → mi+1, mi → mi+2} is a contention-free

binary tree for machines mi, mi+1, and mi+2. Lines (13) to (26) iteratively compute trees

13

that cover 4 to P machines. To compute tree(i, j), j > i + 2, the heuristic decides a k,

i + 1 < k ≤ j, so that tree(i, j) is formed by having mi as the root, tree(i + 1, k − 1)

as the left child, and tree(k, j) as the right child. Line (17) makes sure that mi → mk

does not have contention with communications in tree(i + 1, k − 1), which is crucial to

ensure that the binary tree is contention-free. The heuristic chooses a k with the smallest

max(best[i + 1][k − 1], best[k][j]) + 1 (lines (18) to (21)), which minimizes the tree height.

At the end, tree[0][P − 1] stores the contention-free binary tree. Assume that the number of

switches is less than P , the complexity of this algorithm is O(P 4). Note that this algorithm

is used off-line to compute contention-free trees (e.g it is used in our automatic MPI Bcast

routine generator that reads in the topology information and outputs a topology specific

routine). Hence, the complexity of O(P 4) is not an issue.

(1) Let m0 → m1 → ... → mP−1 be the linear tree obtained from Algorithm 1.
(2) for (i = 0; i < P ; i + +) do

(3) best[i][i] = 0; tree[i][i] = {};
(4) enddo

(5) for (i = 0; i < P − 1; i + +) do

(6) best[i][i + 1] = 1;
(7) tree[i][i + 1] = {mi → mi+1};
(8) enddo

(9) for (i = 0; i < P − 2; i + +) do

(10) best[i][i + 2] = 1;
(11) tree[i][i + 2] = {mi → mi+1, mi → mi+2};
(12) enddo

(13) for (j = 3; j < P ; j + +) do

(14) for (i = 0; i < P − j; i + +) do

(15) best[i, i + j] = ∞;
(16) for (k = i + 2; k ≤ i + j; k + +) do

(17) if (mi → mk does not have contention with tree[i + 1][k − 1]) then

(18) if (best[i][i + j] > max(best[i + 1][k − 1], best[k][i + j]) + 1) then

(19) best[i][i + j] = max(best[i + 1][k − 1], best[k][i + j]) + 1;
(20) index = k;
(21) endif

(22) endif

(23) enddo

(24) tree[i][i + j] = tree[i + 1][index − 1]∪ tree[index][i + j] ∪ {mi → mi+1, mi → index};
(25) enddo

(26) enddo

(27) tree[0][P − 1] stores the final result.

Figure 4: Heuristic to compute contention-free binary trees (Algorithm 2)

14

Theorem 2: The logical binary tree computed by Algorithm 2 is contention-free.

Proof: We will prove that, for all i and j, 0 ≤ i ≤ j ≤ P − 1, (1) tree[i][j] only consists of

communications ma → mb, i ≤ a < b ≤ j; and (2) tree[i][j] is contention free.

Base case: It is trivial to show that trees with 1, 2, or 3 nodes satisfy the two conditions.

For example, the 2-node tree rooted at node mi contains nodes {mi, mi+1} and one edge

mi → mi+1 (from lines (5) - (8) in Figure 4). This tree satisfies condition (1) since it only

consists of communications mi → mi+1. This tree is contention free since there is only one

communication in the tree.

Induction case: Since tree[i][j] = tree[i + 1][k − 1] ∪ tree[k][j] ∪ {mi → mi+1, mi → mk},

i+2 < j and i+1 < k ≤ j, tree[i][j] only consists of communications ma → mb, i ≤ a < b ≤ j.

From Lemma 3, communications in tree[i+1][k−1] do not have contention with communi-

cations in tree[k][j]; mi → mi+1 does not have contention with communications in tree[k][j]

and tree[i + 1][k − 1]; and mi → mk does not have contention with tree[k][j]. Thus, only

mi → mk can potentially cause contention with communications in tree[i + 1][k − 1]. Since

the algorithm makes sure that mi → mk does not cause contention with communications in

tree[i + 1][k − 1] (line (17)), there is no contention in tree[i][j]. 2

Algorithm 2 can easily be extended to compute general k-ary trees. S(i, j) can basically

be partitioned into k sub-arrays which form the k subtrees. Precautions must be taken to

prevent the communications from root to a subtree from causing contention with communi-

cations in the subtrees.

While Algorithm 2 tries to minimize the tree height, the trees computed using this algo-

rithm may not be the optimal. We evaluate the trees computed by Algorithm 2 through

simulation. Figure 5 shows the results when applying Algorithm 2 to random clusters with

different sizes (up to 1024 machines). In this experiment, we consider two cases, on average

16 machines per switch and on average 8 machines per switch. For the 8 machines/switch

case, a 1024-machine cluster has 128 switches. The random cluster topologies are generated

15

as follows. First, the size of the clusters to be studied is decided and the random tree topolo-

gies for the switches are generated by repeatedly adding random links between switches until

a tree that connects all nodes is formed (links that violate the tree property are not added).

After that, machines are randomly distributed to each switch with a uniform probability.

For each size, 20 random topologies are generated and the average height of the 20 trees

computed using Algorithm 2 is reported. For comparison, we also show the tree heights of

complete binary trees for all the sizes. As can be seen from the figure, the average heights

of the trees computed using Algorithm 2 are within a factor of two of the heights of the

complete binary tree. Notice that the height of the complete binary tree is the lower bound

of the height of the optimal contention-free binary tree.

 0

 5

 10

 15

 20

 25

 30

 1024 512 256 128 32

T
re

e
he

ig
ht

Number of Machines

Alg. 2(8 machines/switch)
Alg. 2(16 machines/switch)

complete binary tree

Figure 5: Performance of Algorithm 2

4.2 Model for computing appropriate segment sizes

Our model is a minor extension of the parameterized LogP model [15]. In the parameter-

ized LogP model, the point-to-point communication performance is characterized by five

parameters, (L, os(m), or(m), g(m), P). L is the end-to-end delay for a data transfer, which

includes all contributing factors such as network set-up and buffer copies. Parameters os(m)

and or(m) are the times that the CPUs are busy sending and receiving a message of size

m, respectively. The gap g(m) is the minimum time interval between consecutive message

(of size m) transmissions and receptions. The gap g(m) also covers all contributing factors

including os(m) and or(m). It follows that g(m) ≥ os(m) and g(m) ≥ or(m). P is the

number of processors in the system. This parameterized LogP model extends the original

16

LogP model [6] in that the parameters os, or, and g are functions of the message size m,

which allows the communication time of large messages to be modeled more accurately.

Since the L term in the parameterized LogP model contains all contributing factors in-

cluding buffer copying whose time is proportional to the size of the message in an Ethernet

switched cluster, to accurately model the communication, the L term must also be a func-

tion of the message size (m). Hence, in our extended parameterized LogP model, the latency

term, L(m), is a function of the message size and the model is characterized by five terms:

(L(m), os(m), or(m), g(m), P). Figure 6 shows an example for modeling the time when send-

ing 4 consecutive messages of size m using the extended parameterized LogP model.

o (m)s

o (m)r

g(m) g(m) g(m) g(m)

L(m) g(m)

Time

Total Time = L(m) + 4*g(m)

Figure 6: The time for sending 4 consecutive messages of size m

A pipelined broadcast can be decomposed into a set of point-to-point communications.

The model for pipelined broadcast with a contention-free broadcast tree does not need to

consider the network contention issue. Hence, the communication completion time can be

obtained by combining the times of the point-to-point communications in the critical path.

Let the message size msize be partitioned into X segments, the segment size is m = msize
X

(for easy exposition, we will assume that msize is divisible by X). Figure 7 shows how the

pipelined broadcast with a linear broadcast tree can be modeled: since it takes L(m)+g(m)

time for a segment to be transferred from one processor to another processor, as shown in

Figure 7 (b), it takes (P − 1)(L(m) + g(m)) time for the first segment to reach the last

processor. With pipelined broadcast, the rest (X-1) segments are propagated in a pipelined

17

fashion in the broadcast tree (shown in Figure 7 (c)) and the communication completion

time is thus,

T imelinear tree = (P − 1)(L(msize
X

) + g(msize
X

)) + (X − 1)g(msize
X

) (1)

0

1

2

3

4

��

��

���

��
���������
���������
���������
���������

�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������

	�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���

���������
���������
���������
���������
���������

�������
�������
�������
�������
�������

4

0

1

2

3

Time
Time

4

0

1

2

3

g

g

g

g

L

g g g

(P−1)(L(m) + g(m)) + (X−1)g(m)(P−1)(L(m) + g(m))

(a) Linear broadcast tree (b) Time for the first segment (c) Total communication time

Figure 7: Modeling pipelined communication with a linear tree

The communication completion time for pipelined broadcast with a binary tree depends

on the tree topology. Without loss of generality, we will assume that a node in the broadcast

tree first sends the segment to the left child and then to the right child. Hence, the time

for a segment to be transferred from a processor to its left child is L(m) + g(m) while the

time for the right child is L(m) + g(m) + g(m) = L(m) + 2g(m). The time for a segment to

reach a receiver can be obtained by summing the times for the segment to go through each

intermediate node. Specifically, let the path from the root to a receiver be m′
0 → m′

1 → m′
2 →

... → m′
x−1 → m′

x (m′
0 is the root and m′

x is the receiver). The time for each hop m′
j → m′

j+1

is denoted as T ime(m′
j → m′

j+1), 0 ≤ i < x. T ime(m′
j → m′

j+1) = L(m) + g(m) if m′
j+1 is

the left child of m′
j; and T ime(m′

j → m′
j+1) = L(m)+2g(m) if m′

j+1 is the right child of m′
j.

The total time for a segment to reach a receiver m′
x is the sum of the times on each hop and

has the form of Am′
x
× L(m) + Bm′

x
× g(m), where Am′

x
and Bm′

x
are constants. The time

for the first segment to reach the last processor is thus maxm′
x
{Am′

x
×L(m) + Bm′

x
× g(m)},

denoted as A × L(m) + B × g(m). After the first segment reaches the last processor, the

rest X − 1 segments will be sent in a pipelined fashion, which introduces (X − 1)× 2× g(m)

time. Hence, the communication time for pipelined broadcast with a binary tree is

18

T imebinary tree = A × L(msize
X

) + B × g(msize
X

) + 2(X − 1)g(msize
X

) (2)

Figure 8 shows an example for modeling the binary tree. For the topology in Figure 8 (a),

the last processor to receive the message is processor 4. As shown in the Figure 8 (b), A = 2

and B = 4. Hence, the communication completion time for pipelined broadcast on this tree

is thus, 2L(m) + 4g(m) + 2(X − 1)g(m).

0

1 2

3 4

��

��

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���

���

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

4

0

1

2

3

g

L

g

g g

2L(m) + 4g(m)

Time

(b) Time for the first segment (a) An example binary broadcast tree

Figure 8: Modeling pipelined communication with a binary tree

As can be seen from formulas (1) and (2), the communication completion time for pipelined

broadcast can be decided once P , the broadcast tree topology, L(m), and g(m) are decided.

Since P is known and the broadcast tree topology is computed based on the algorithms

discussed in the previous section, we only need to know the values for L(m) and g(m) in

order to apply the model.

5 Experiments

In this section, we validate the performance model and evaluate the performance of pipelined

broadcast with various broadcast trees on 100Mbps (fast) Ethernet and 1000Mbps (Giga-

bit) Ethernet clusters with different physical topologies. The physical topologies for both

100Mbps and 1000Mbps Ethernet clusters used in the evaluation are shown in Figure 9. We

will refer to the topologies in Figure 9 as topologies (1), (2), (3), (4), and (5). Topology (1)

contains 16 machines connected by a single switch. Topologies (2), (3), (4), and (5) are 32-

machine clusters with different network connectivity. Topologies (4) and (5) have exactly the

same physical topology, but different node assignments. The machines are Dell Dimension

19

2400 with a 2.8 GHz P4 processor, 640MB of memory, and 40GB of disk space. All machines

run Linux (Fedora) with 2.6.5-1.358 kernel. The Ethernet card in each machine is Broadcom

BCM 5705 (10/100/1000 Mbps Ethernet card) with the driver from Broadcom. The 100Mbps

Ethernet switches are Dell Powerconnect 2224 (24-port 100Mbps Ethernet switches) and the

1000Mbps Ethernet switches are Dell Powerconnect 2724 (24-port 1000Mbps switches).

n0 n1 n15 n0 n1 n15 n16 n17 n31 n0 n1 n7 n8 n9 n16n15 n17 n23 n24 n25 n31

S0 S0 S1 S0 S3S2S1

(1) (2) (3)

n11n8 n9n10 n18 n19n16 n17n0 n1n2 n3

n4

S0

n5n6 n7 n12 n13 n14 n15

S1 S2

n23n20 n21 n22

n30S3

n27n26 n29n28

n25

n24 n31

S0 S1 S2

S3n6

n23n15n7

n14 n22

n30

n31

n5 n13 n21 n29

n28n4 n12 n20

n27n19n11

n26n2 n10 n18

n1 n9 n17 n25 n3

n8n0 n16 n24

(5)(4)

Figure 9: Topologies used in the evaluation

To evaluate the pipelined broadcast schemes, we implement automatic routine gener-

ators that take the topology information as input and automatically generate customized

MPI Bcast routines that employ pipelined broadcast with different contention-free broadcast

trees. The generated routines are written in C with MPICH point-to-point primitives.

In the following sub-sections, we will first validate the performance model and show that

this model can be used to compute appropriate segment sizes for pipelined broadcast. We

will then investigate different aspects of pipelined broadcast and compare pipelined broad-

cast with the original MPI Bcast in LAM/MPI 7.1.1 [16] and MPICH 2-1.0.1 [20]. The code

segment for measuring communication completion time is shown in Figure 10. Multiple it-

erations of MPI Bcast are measured. Within each iteration, a barrier is added to prevent

pipelined communication between iterations. Since we only consider broadcasts with reason-

able large messages, the barrier overhead is insignificant to the communication time. The

programs are compiled with the mpicc compiler in MPICH with no additional flags. In the

experiments, ITER NUM is set to 20, and the average of five experiments of each experience

20

is reported unless specified otherwise.

MPI Barrier(MPI COMM WORLD);
start = MPI Wtime();
for (count = 0; count < ITER NUM; count ++) {

MPI Bcast(...);
MPI Barrier(...);

}
elapsed time = MPI Wtime() - start;

Figure 10: Code segment for measuring MPI Bcast performance.

5.1 Performance model validation

Our extended parameterized LogP model characterizes the system with five parameters,

(L(m), os(m), or(m), g(m), P). Among these five parameters, only L(m), g(m), and P are

used in the formulas (1) and (2). Since L and g are functions of m, ideally, one would like

to build a table for L and g for every possible value of m. This is practically impossible. In

[26], it is shown that under the linear cost model, the optimal segment size is O(
√

msize).

Guided by this result, we select a range of potential sizes from 256B to 32KB: 256B, 512B,

1024B, 2048B, 4096B, 8192B, 16384B, and 32768B. Using these eight sizes guarantees that

the optimal segment size is within a factor of two of the selected sizes assuming that the

optimal segment sizes fall within the range. The L and g values for these message sizes in

our cluster are shown in Table 2. We measure g(m) as follows. For each message size m that

is of interest, we perform one way communication for a very large number (M = 100000)

of times and measure the sender side latency for all of the M sends. g(m) is equal to the

latency divided by M . To obtain L(m), we use a pingpong program to measure the round

trip time for the messages of size m (RTT (m)) and derive L(m) based on the formula,

RTT (m) = L(m)+g(m)+L(m)+g(m), or L(m) = RTT (m)/2−g(m). The round trip time

is the average of 1000 iterations. The experiments for both g(m) and RTT (m) are repeated

36 times and the average of the 36 experiments are reported. Both g(m) and RTT (m) are

very consistent in our cluster: the confidence interval for the 99% confidence level is less than

0.5% of the average value. Notice that by using RTT (m) = 2g(m) + 2L(m), we implicitly

assume that the network is the bottleneck of the communication. The assumption is typically

21

100Mbps Ethernet 1000Mbps Ethernet
message size(m) g(m) RTT(m) L(m) g(m) RTT(m) L(m)
256B 0.030ms 0.280ms 0.110ms 0.013ms 0.118ms 0.046ms
512B 0.051ms 0.414ms 0.156ms 0.017ms 0.141ms 0.054ms
1024B 0.089ms 0.678ms 0.250ms 0.025ms 0.185ms 0.068ms
2048B 0.177ms 0.988ms 0.318ms 0.039ms 0.246ms 0.083ms
4096B 0.351ms 1.334ms 0.317ms 0.069ms 0.301ms 0.082ms
8192B 0.695ms 2.038ms 0.324ms 0.133ms 0.422ms 0.078ms
16384B 1.389ms 3.428ms 0.325ms 0.267ms 0.658ms 0.062ms
32768B 2.781ms 6.208ms 0.323ms 0.541ms 1.142ms 0.030ms

Table 2: The parameters for the extended parameterized LogP model

true for the relatively slow Ethernet: it is true for 100Mbps Ethernet. The assumption also

holds for 1000Mbps when the message size is small. When the CPU speed is the bottleneck,

however, L(m) can be under-estimated with the formula. In our experimental system, the

CPU is the bottleneck with 1000Mbps Ethernet when the message size is more than 8KB.

This is why L(m) decreases when m increases from 8KB to 32KB for the 1000Mbps case in

Table 2.

Tables 3 shows the optimal segment sizes (among the eight segment sizes) computed from

our performance model with those obtained from empirical measurements on 100Mbps and

1000Mbps Ethernet clusters. Figure 11 compares the measured optimal pipelined broadcast

performance with the performance using the predicted optimal segment size by the model.

As can be seen from the Table 3, for both 100Mbps and 1000Mbps clusters and both linear

tree and binary tree algorithms, the trend in the predicted optimal segment sizes is the same

as that in the measured optimal segment sizes. However, the predicted optimal segment

sizes sometimes differ from the measured sizes. Several factors contribute to this. First, in

our modeling of pipelined broadcast, we assume the 1-port model where each node can send

and receive at the link speed. While this assumption holds for the clusters with 100Mbps

Ethernet, it is not the case for clusters with 1000Mbps Ethernet: the CPU (2.8GHz P4)

cannot keep up with sending and receiving at 1000Mbps at the same time. The insufficient

CPU speed significantly affects the performance of the linear tree algorithm on 1000Mbps

clusters. The second reason is the inaccuracy in the performance and parameter measure-

22

ments. In some cases, the performance difference for two adjacent segment sizes is too close

to be distinguished due to the measurement inaccuracy. Even though the optimal segment

sizes computed based on the performance model do not always match the measured opti-

mal sizes, the performance of pipelined broadcast using the segment sizes computed based

on the performance model closely matches the measured optimal pipelined communication

performance as shown in Figure 11. One reason is that the performance of the pipelined

broadcast algorithms is not very sensitive to the segment size. These results demonstrate

that our performance model is sufficiently accurate for predicting appropriate segment sizes

on contemporary 100Mbps and 1000Mbps Ethernet switched clusters.

100Mbps Ethernet 1000Mbps Ethernet
message Linear tree Binary tree Linear tree Binary tree
size Model Actual Model Actual Model Actual Model Actual
8KB 256B 256B 256B 512B 256B 512B 512B 1024B
16KB 256B 512B 512B 512B 256B 512B 1024B 2048B
32KB 256B 512B 1024B 1024B 512B 2048B 2048B 2048B
64KB 256B 512B 1024B 1024B 1024B 2048B 4096B 4096B
128KB 512B 512B 1024B 1024B 1024B 2048B 4096B 8192B
256KB 512B 1024B 1024B 2048B 2048B 2048B 4096B 8192B
512KB 1024B 1024B 1024B 4096B 4096B 2048B 8192B 8192B
1MB 1024B 2048B 2048B 4096B 4096B 4096B 8192B 16384B
2MB 1024B 1024B 4096B 4096B 4096B 4096B 8192B 16384B

Table 3: Predicted optimal segment sizes versus actual optimal segment sizes on 100Mbps
and 1000Mbps clusters (topology (4))

 0

 50

 100

 150

 200

 250

 300

 350

 400

2M1M512K128K64K32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

message size (bytes)

linear actual
linear model
binary actual
binary model

(a) 100Mbps Ethernet

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

2M1M512K128K64K32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

message size (bytes)

linear actual
linear model
binary actual
binary model

(b) 1000Mbps Ethernet

Figure 11: The measured optimal performance versus the performance using the predicted
optimal segment size (topology (4))

23

Since the extended parameterized LogP model can be used to compute appropriate seg-

ment sizes that result in a performance close to optimal, when reporting the performance

of pipelined broadcast, we only report the results with best segment sizes among the eight

sizes that we consider.

5.2 Results on 100Mbps Ethernet clusters

In this section, we investigate various aspects of pipelined broadcast on 100Mbps Ethernet

switched clusters. Figure 12 shows the performance of pipelined broadcast using different

contention-free trees on topology (1). The performance of pipelined broadcast on topologies

(2), (3), (4), and (5) has a similar trend. As can be seen from the figure, when the message

size is large (≥ 32KB), the linear tree offers the best performance. For medium sized

messages (8KB to 16KB), the binary tree offers the best performance. In all experimental

settings, the 3-ary tree is always worse than the binary tree, which confirms that k-ary trees,

k > 2, are not effective. In the rest of the section, we will only show the performance of the

linear tree and the binary tree. The line titled “pingpong/2” in Figure 12 shows the time to

send a single message of a given size between two machines, that is, T (msize). When the

message size is large (≥ 128KB), the communication completion time for linear trees is very

close to T (msize), which indicates that pipelined broadcast with the linear tree is clearly a

good choice for 100Mbps Ethernet switched clusters when the message is large. The time

for binary trees is about twice the time to send a single message.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

64K32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

3-ary tree
Binary tree
Linear tree

Pingpong/2

(a) Medium sized messages

 0

 100

 200

 300

 400

 500

 600

2M1M512K256K128K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

3-ary tree
Binary tree
Linear tree

Pingpong/2

(b) Large sized messages

Figure 12: Pipelined broadcast with different broadcast trees (Topology (1), 100Mbps)

24

Figures 13 and 14 compare the performance of pipelined broadcast using contention-free

trees with the algorithms used in LAM/MPI and MPICH on topologies (1), (4), and (5). The

results for topologies (2) and (3) are similar to those for topology (4). Since all algorithms

run over MPICH except LAM, we also include a binomial tree implementation (the algorithm

used in LAM) over MPICH in the comparison. MPICH uses the scatter followed by all-gather

algorithm when the message size is larger than 512KB and the binomial tree for smaller

messages. When the message size is reasonably large (≥ 8KB), the pipelined broadcast

routines (with a linear tree) significantly out-perform the non-pipelined broadcast algorithms

used in LAM and MPICH. For topology (1) and (4), when the message size is large (≥

512KB), MPICH has similar performance to the pipelined broadcast with binary trees.

This is compatible with our analysis in Section 3.1 that both should have a completion time

of around 2 × T (msize). However, pipelined broadcast with linear trees is about twice as

fast as MPICH when msize ≥ 512KB. On topology (5), all of the algorithms in LAM

and MPICH perform poorly. This shows that the performance of these topology unaware

algorithms is sensitive to the physical topology, which manifests the advantage of performing

pipelined broadcast with contention-free trees.

The MPICH all-gather routine changes algorithms when the broadcast message size is

512KB. Hence, the performance curve for MPICH is non-continuous at this point (512KB).

MPICH algorithms are topology unaware. From Figures 14 (b) and (c), we can see that

although the algorithm for ≥ 512KB messages performs better on topology (4), it performs

worse on topology (5). In all topologies with 100Mbps connection, the linear tree algorithm

is much better than the MPICH algorithm; the improvement ranges from more than 30%

for 64KB data to more than 200% for 1MB data for all physical topologies.

Figure 15 compares pipelined broadcast using contention-free trees with that using topol-

ogy unaware trees. In the comparison, we use the topology unaware linear tree in [11, 28]:

n0 → n1 → ... → nP−1 (n0 is the root). For topology unaware binary trees, we assume the

25

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64K32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(a) Topology (1)

 0

 20

 40

 60

 80

 100

 120

64K32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(b) Topology (4)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

64K32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(c) Topology (5)

Figure 13: Performance of different algorithms (100Mbps, medium sized messages)

 0

 100

 200

 300

 400

 500

 600

 700

 800

2M1M512K256K128K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(a) Topology (1)

 0

 100

 200

 300

 400

 500

 600

 700

 800

2M1M512K256K128K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(b) Topology (4)

 0

 100

 200

 300

 400

 500

 600

 700

 800

2M1M512K256K128K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(c) Topology (5)

Figure 14: Performance of different algorithms (100Mbps, large messages)

complete binary tree, where node nk has children n2k+1 and n2k+2 and parent n k−1

2

. For

topology (2), the topology unaware linear tree happens to be contention free. As a result, its

performance is exactly the same as the contention-free linear tree. However, for topology (5),

this is not the case, the topology unaware linear tree incurs significant network contention

and its performance is much worse than the contention-free linear tree. Topology unaware

binary trees cause contention in all the topologies except topology (1) and their performance

is significantly worse than the contention-free binary trees. These results indicate that to

achieve high performance, contention-free broadcast trees must be used.

Figure 16 shows the impacts of segment sizes on the performance of pipelined broadcast

with contention-free linear trees. The results for pipelined broadcast with binary trees have

a similar trend. These figures indicate that pipelined broadcast is not very sensitive to the

segment size. Changing from a segment size of 512B to 2048B does not significantly affect the

26

 0

 100

 200

 300

 400

 500

512K256K128K64K32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

binary (topology unaware)
binary (contention free)

linear (topology unaware)
linear (contention free)

(a) Topology (2)

 0

 50

 100

 150

 200

 250

 300

 350

512K256K128K64K32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

binary (topology unaware)
linear (topology unaware)

binary (contention free)
linear (contention free)

(b) Topology (5)

Figure 15: Contention-free broadcast trees versus topology unaware broadcast trees

 0

 50

 100

 150

 200

 250

1M512K256K128K64K32K16K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

MPICH
segment size=512

segment size=1024
segment size=2048

optimal

(a) Topology (1)

 0

 50

 100

 150

 200

 250

 300

1M512K256K128K64K32K16K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

MPICH
segment size=512

segment size=1024
segment size=2048

optimal

(b) Topology (3)

Figure 16: Pipelined broadcast using linear trees with different segment sizes

performance, especially in comparison to using a different algorithm as shown in Figure 16.

This explains the reason that the optimal segment sizes computed by the performance model

yield close to optimal performance even though the segment sizes do not always match the

measured optimal segment sizes.

5.3 Results on 1000Mbps Ethernet switched clusters

In this section, we investigate pipelined broadcast on 1000Mbps Ethernet. Figure 17 shows

the performance of pipelined broadcast using different contention-free trees on topology (1).

The performance of pipelined broadcast on topologies (2), (3), (4), and (5) has a similar

trend. In 1000Mbps Ethernet, the linear tree performs better than binary tree only when

message size is larger than 1MB (compared to 32KB on 100Mbps clusters). Two major

factors contribute to this. First, on 1000Mbps Ethernet, the CPU (2.8GHz P4) cannot keep

up with sending and receiving data at 1000Mbps at the same time. This affects the linear

27

tree algorithm more than it does the binary tree algorithm since the binary tree pipelined

broadcast algorithm is less computational intensive than the linear tree algorithm. Assuming

that the CPU speed is not a limiting factor, in the binary tree algorithm, each node takes two

units of time to perform two sends and one receive while the linear tree algorithm requires

each node to perform one send and one receive in one unit of time. The other factor is the

relatively larger software start-up overheads in 1000Mbps Ethernet. Figure 17 also shows

that the 3-ary tree is always worse than the binary tree on the 1000Mbps cluster, which

confirms that k-ary trees, k > 2, are not effective. The line titled “pingpong/2” in Figure 17

shows T (msize). As can be seen from the figure, unlike the results for 100Mbps Ethernet,

on 1000Mbps Ethernet, the performance of pipelined broadcast cannot approach T (msize)

even for very large message sizes (e.g. 2MB). This is due to the insufficient CPU speed,

which significantly affects the performance of the linear tree algorithm (the only algorithm

that can theoretically achieve close to T (msize) time).

 0

 1

 2

 3

 4

 5

 6

 7

 8

64K32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

3-ary tree
Binary tree
Linear tree

Pingpong/2

(a) Medium sized messages

 0

 20

 40

 60

 80

 100

 120

2M1M512K256K128K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

3-ary tree
Binary tree
Linear tree

Pingpong/2

(b) Large sized messages

Figure 17: Pipelined broadcast with different broadcast trees (Topology (1), 1000Mbps)

Figure 18 compares the performance of pipelined broadcast using contention-free trees with

the algorithms used in LAM/MPI and MPICH on topologies (1), (4), and (5). The results

for topologies (2) and (3) have the same trend as those for topology (4). Since all algorithms

run over MPICH except LAM, we also include a binomial tree implementation over MPICH

in the comparison. These three topologies ((1), (4), and (5))) show the behavior of these

algorithms in different situations. In topology (1), all nodes are connected to a single switch.

28

Thus, network contention is not a problem for all algorithms. As seem in the Figure 18 (a),

pipelined broadcast is noticeably better than other algorithms in this configuration when

msize ≥ 128KB. For example, at 128KB, the time for pipelined broadcast with binary tree

is 7.8ms, which is 11.5% better than the 8.7ms for MPICH. At 512KB, the time is 24.3ms for

pipelined broadcast (with binary tree), which is a 14.4% improvement over the 27.8ms for

MPICH. In comparison to the results on 100Mbps clusters, where the improvement is more

than 200% for large messages, the improvement in 1000Mbps systems is smaller. On this

topology, the relative performance of the MPICH algorithm and pipelined broadcast with

a binary tree on the 1000Mbps cluster is similar to that on the 100Mbps cluster. However,

the insufficient CPU speed significantly affect the linear tree algorithm. We expect a larger

improvement when the processing nodes are faster.

The cases when the network contention is a problem for topology unaware algorithms

in LAM and MPICH are shown in Figures 18 (b) and (c) for topologies (4) and (5). As

shown in Figure 18 (b), on topology (4), the recursive-doubling algorithm used in MPICH

for the message size range from 32KB to 256KB introduces severe network contention in

this range and yields extremely poor performance. The binomial tree algorithm used in

LAM is not affected by network contention as much. However, its performance is poor

compared to the pipelined broadcast algorithms. For example, at 1MB, the time for binary

tree pipelined broadcast is 47.2ms, a 85% improvement over the 87.4ms for LAM. The

MPICH algorithm for msize ≥ 512KB, which is also topology unaware, does not introduce

contention in this particular topology (topology (4)). Yet, its performance is worse than

pipelined broadcast. At 1MB, pipelined broadcast with a binary tree (47.2ms) out-performs

MPICH (57.4ms) by 21.6%. On topology (5), all algorithms in LAM and MPICH incur

severe network contention and perform much worse than the pipelined broadcast across

all the message sizes in Figure 18 (c). These experiments show that pipelined broadcast

performs better than the algorithms in MPICH and LAM on 1000Mbps Ethernet clusters in

29

all different situations with or without network contention.

 0

 10

 20

 30

 40

 50

1M512K256K128K64K32K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(a) Topology (1)

 0

 50

 100

 150

 200

 250

 300

1M512K256K128K64K32K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(b) Topology (4)

 0

 50

 100

 150

 200

 250

1M512K256K128K64K32K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(c) Topology (5)

Figure 18: Performance of different algorithms on 1000Mbps clusters

5.4 Properties of pipelined broadcast algorithms

The results in the previous sub-sections show that pipelined broadcast algorithms achieve

high performance in many situations. In this sub-section, we further investigate the prop-

erties of the pipelined algorithms. In particular, we will try to answer the following three

questions: What is the “sufficiently large” message size for a pipelined broadcast algorithm

to be efficient? Can the pipelined broadcast algorithms be applied to other networks? Why

is the performance of the pipelined algorithm not very sensitive to segment sizes?

As shown in Section 3, the total communication time for the pipelined broadcast al-

gorithms can be expressed as (X + H − 1) × (D × T (msize
X

)), where X is the number of

segments, msize
X

is the segment size, H is the tree height (H = P for linear tree algorithms

and H = O(log(P)) for binary tree algorithms), and D is the nodal degree of the broad-

cast tree (D = 1 for linear tree and D = 2 for the binary tree). The communication time

can be partitioned into two components: D × X × T (msize
X

) and D × (H − 1) × T (msize
X

).

The part D × X × T (msize
X

), which will be called the pipeline term, reflects the additional

software start-up overheads for splitting the broadcast message into segments; the part

D × (H − 1) × T (msize
X

), which will be called the delay term, reflects the time to propagate

the message across the broadcast tree. There are two conditions for the pipelined broadcast

algorithms to be effective: (1) the software overhead for splitting a large message into seg-

30

ments should not be excessive, that is, X × T (msize
X

) must be close to T (msize); and (2) the

pipeline term must dominate the delay term, that is, X must be much larger than H − 1.

Table 4 shows the values of X × T (msize
X

) with different broadcast message sizes and

segment sizes. The last row is T (msize) (segment size = msize). As can be seen from the

table, the ratio between X × T (msize
X

) and T (msize), which reflects the additional start-

up overheads introduced by splitting the message into segments, mainly depends on the

segment size (msize
X

), and not on other factors such as the message size and the number

of segments on both 100Mbps and 1000Mbps clusters. In particular, across all broadcast

message sizes, for the 100Mbps Ethernet, when the segment size msize
X

≥ 1024B, X×T (msize
X

)

is within 10% of T (msize); for the 1000Mbps Ethernet, when the segment size msize
X

≥ 8KB,

X × T (msize
X

) is within 10% of T (msize). When the message size is smaller than these

thresholds, the communication start-up overheads increase more dramatically. Note that the

optimal segment size for a scheme may be less than the thresholds due to the compromise

between software overhead and pipeline efficiency.

Segment 100Mbps Ethernet 1000Mbps Ethernet
size (msize

X
) 32KB 128KB 512KB 2MB 32KB 128KB 512KB 2MB

256 3.73 15.03 60.28 200.93 2.52 8.52 26.87 102.07
512 3.35 13.00 51.79 198.61 1.51 5.19 18.00 70.55
1024 3.10 11.82 46.28 184.15 0.89 3.40 13.31 53.01
2048 3.08 11.65 45.60 181.35 0.73 2.73 10.75 42.83
4096 3.01 11.45 45.12 180.00 0.63 2.36 9.36 37.31
8192 3.00 11.41 46.65 179.13 0.60 2.17 8.56 33.57

16384 2.99 11.37 44.86 178.79 0.59 2.11 8.26 32.74
32768 2.99 11.36 44.81 178.60 0.57 2.08 8.06 31.93
msize 2.99 11.35 44.91 178.57 0.57 2.10 8.31 32.64

Table 4: X × T (msize
X

) (milli-second) for different message sizes and segment sizes

Let us now consider the first question: what is the “sufficiently large” message size? There

are two conditions for the pipelined algorithms to be efficient. First, the segment size needs

to be sufficient large such that X × T (msize
X

) is close to T (msize). From Table 4, we can

see that the good segment size is 1KB for 100Mbps clusters and 8KB for 1000Mbps clusters.

Second, X must be sufficiently larger than H − 1. When other algorithm parameters are

31

fixed, the term sufficiently large message size can be quantified. For example, assume that we

want to ensure that the delay term is less than one third of the total time, X ≥ 2×(H−1). In

this case, to broadcast on a 32-process system using the linear tree algorithm, the broadcast

message is sufficiently large when the size is larger than 2 × (32 − 1) × 1KB = 62KB for

100Mbps clusters and 2×(32−1)×8KB = 496KB for 1000Mbps clusters. Using the binary

tree algorithm, assuming H = log(P), the message size is sufficiently large when it is larger

than 2× (log(32)− 1)× 1KB = 8KB for 100Mbps clusters and 2× (log(32)− 1)× 8KB =

64KB for 1000Mbps clusters. Notice that the number of processes and the broadcast tree

also significantly affect the message size for a pipelined algorithm to be effective: the linear

tree pipelined algorithm is usually efficient for broadcasting on a small number of processes

while the binary tree algorithm can be applied to a large number of processes.

The proposed pipelined broadcast algorithms are network oblivious. Whether such algo-

rithms can be efficient on other types of networks depends on whether the two conditions

can be met. The second condition (the pipeline term must dominate the delay term) is not

system dependent. Hence, whether the algorithms can be efficient on a cluster depends on

whether it is possible to split a large message into smaller segments without incurring ex-

cessive overheads. We note that in networks with higher speeds than Ethernet, such as the

20Gbps InfiniBand, communication start-up overheads are in general more significant with

respect to the network bandwidth in comparison to Ethernet. This may render pipelined

broadcast schemes less efficient. However, to decide whether pipelined broadcast can be

effective on a network, further study is need to examine the additional start-up overheads

introduced when a large message is split in the network.

Table 4 also explains why the pipelined broadcast algorithms are not very sensitive to seg-

ment sizes in Ethernet clusters: when the pipeline term dominates the total communication

time, the total time is mainly affected by X × T (msize
X

); and for a wide range of segment

sizes, X × T (msize
X

) is close to T (msize) (and not sensitive to segment sizes).

32

6 Conclusion

We consider pipelined broadcast on Ethernet switched clusters with multiple switches. Algo-

rithms for computing various contention-free broadcast trees on Ethernet switched clusters

are developed. A performance model that can be used to compute the appropriate seg-

ment size for a given broadcast operation is described. We show that pipelined broadcast is

more efficient than other commonly used broadcast algorithms on contemporary 100Mbps

and 1000Mbps Ethernet switched clusters in many situations. While our techniques are

developed for Ethernet switched clusters with physical tree topologies, the techniques can

be applied to other types of clusters since the tree topology can be embedded on most con-

nected networks: the near-optimal broadcast performance can be achieved on a system with

an irregular topology by first finding a spanning tree on the irregular topology and then

applying our techniques to perform pipelined broadcast.

Acknowledgment

This research is supported in part by National Science Foundation grants CCF-0342540,

CNS-0551555, and CCF-0541096.

References

[1] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert, “Pipelined Broadcasts on Heteroge-

neous Platforms.” IEEE Trans. on Parallel and Distributed Systems, 16(4):300-313, 2005.

[2] O. Beaumont, L. Marchal, and Y. Robert, “Broadcast Trees for Heterogeneous Platforms.”

The 19th IEEE Int’l Parallel and Distributed Processing Symposium, page 80b, 2005.

[3] K.W. Cameron and X.-H. Sun, “Quantifying Locality Effect in Data Access Delay: Memory

LogP,” IEEE Int’l Parallel and Distributed Processing Symposium (IPDPS), page 48b, 2003.

[4] K.W. Cameron, R. Ge, and X. -H. Sun, “LognP and log3P: Accurate Analytical Mod-

els of Point-to-Point Communication in Distributed Systems,” IEEE Trans. on Computers,

56(3):314-327, 2007.

[5] J. Cohen, P. Fraigniaud, and M. Mitjana, “Scheduling Calls for Multicasting in Tree Net-

works.” In 10th ACM-SIAM Symp. on Discrete Algorithms (SODA ’99), pages 881-882, 1999.

33

[6] D. Culler, et al., “LogP: Towards a Realistic Model of Parallel Computation.” Proceedings of

the fourth ACM SIGPLAN Symposium on Principle and Practice of Parallel Programmingn

(PPoPP), pages 1-12, 1993.

[7] A. Faraj and X. Yuan, “Automatic Generation and Tuning of MPI Collective Communication

Routines,” the 19th ACM International Conference on Supercomputing, pages 393-402, 2005.

[8] A. Faraj, X. Yuan, and Pitch Patarasuk, “A Message Scheduling Scheme for All-to-all Person-

alized Communication on Ethernet Switched Clusters,” IEEE Transactions on Parallel and

Distributed Systems, 18(2):264-276, Feb. 2007.

[9] A. Faraj, P. Patarasuk, and X. Yuan, ”A Study of Process Arrival Patterns for MPI Collective

Operations.” International Journal of Parallel Programming, accepted for publication.

[10] A. Faraj, P. Patarasuk and X. Yuan, “Bandwidth Efficient All-to-all Broadcast on Switched

Clusters.” International Journal of Parallel Programming, accepted for publication.

[11] J.Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and J. Dongarra, “Per-

formance Analysis of MPI Collective Operations.” The 19th IEEE International Parallel and

Distributed Processing Symposium, pages 8-8, 2005.

[12] S. L. Johnsson and C. T. Ho, “Optimum Broadcasting and Personalized Communication in

Hypercube.” IEEE Trans. on Computers, 38(9):1249-1268, 1989.

[13] A. Karwande, X. Yuan, and D. K. Lowenthal, “An MPI Prototype for Compiled Commu-

nication on Ethernet Switched Clusters,” Journal of Parallel and Distributed Computing,

65(10):1123-1133, October 2005.

[14] R. Kesavan and D. K. Panda, “Optimal Multicast with Packetization and Network Interface

Support,” Proceedings of International Conference on Parallel Processing, pages 370-377, 1997.

[15] T. Kielmann, H. E. Bal, and K. Verstoep, “Fast Measurement of LogP Parameters for Mes-

sage Passing Platforms,” Proceedings of 2000 IPDPS Workshop on Parallel and Distributed

Processing, Pages 1176-1183, Cancun, Mexico, May 2000.

[16] LAM/MPI Parallel Computing. http://www.lam-mpi.org/.

[17] R. G. Lane, S. Daniels and X. Yuan, “An Empirical Study of Reliable Multicast Protocols

over Ethernet-Connected Networks,” Performance Evaluation Journal, 64(3):210-228, March

2007.

34

[18] P.K. McKinley, H. Xu, A. Esfahanian and L.M. Ni, “Unicast-Based Multicast Communi-

cation in Wormhole-Routed Networks.” IEEE Trans. on Parallel and Distributed Systems,

5(12):1252-1264, Dec. 1994.

[19] The MPI Forum. The MPI-2: Extensions to the Message Passing Interface, July 1997. Avail-

able at http://www.mpi-forum.org/docs/mpi-20-html/ mpi2-report.html.

[20] MPICH - A Portable Implementation of MPI. http://www.mcs.anl.gov/mpi/mpich.

[21] A Proskurowski, “Minimum Broadcast Trees.” IEEE Trans. on Computers, 30:363-366, 1981.

[22] P. Sanders and J.F. Sibeyn, “A Bandwidth Latency Tradeoff for Broadcast and Reduction.”

Information Processing Letters, 86(1):33-38, 2003.

[23] SCI-MPICH: MPI for SCI-connected Clusters. Available at: www.lfbs.rwth-aachen.de/

users/joachim/SCI-MPICH/pcast.html.

[24] Andrew Tanenbaum, “Computer Networks”, 4th Edition, 2004.

[25] J.-Y. Tien, C.-T. Ho, and W.-P Yang, “Broadcasting on Incomplete Hypercubes.” IEEE

Transactions on Computers, 42(11):1393-1398, 1993.

[26] J. L. Traff and A. Ripke, “Optimal Broadcast for Fully Connected Networks.” Proceedings of

High-Performance Computing and Communication (HPCC-05), pages 45-56, 2005.

[27] J.L Traff and A. Ripke, “An Optimal Broadcast Algorithm Adapted to SMP-Clusters,” EURO

PVM/MPI, pages 48-56, 2005.

[28] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra, “Automatically Tuned Collective Communi-

cations,” In Proceedings of SC’00: High Performance Networking and Computing (CDROM

proceeding), 2000.

[29] J. Watts and R. Van De Gejin, “A Pipelined Broadcast for Multidimentional Meshes.” Parallel

Processing Letters, 5(2):281-292, 1995.

[30] Xin Yuan, Rami Melhem and Rajiv Gupta, “Algorithms for Supporting Compiled Communi-

cation,” IEEE Transactions on Parallel and Distributed Systems, 14(2):107-118, Feb. 2003.

35

