
A Study of Process Arrival Patterns for

MPI Collective Operations

Ahmad Faraj Pitch Patarasuk Xin Yuan∗

Blue Gene Software Development Department of Computer Science
IBM Corporation Florida State University

Rochester, MN 55901 Tallahassee, FL 32306
faraja@us.ibm.com {patarasu, xyuan}@cs.fsu.edu

Abstract

Process arrival pattern, which denotes the timing when different processes arrive
at an MPI collective operation, can have a significant impact on the performance of
the operation. In this work, we characterize the process arrival patterns in a set of
MPI programs on two common cluster platforms, use a micro-benchmark to study the
process arrival patterns in MPI programs with balanced loads, and investigate the im-
pacts of different process arrival patterns on collective algorithms. Our results show
that (1) the differences between the times when different processes arrive at a collective
operation are usually sufficiently large to affect the performance; (2) application de-
velopers in general cannot effectively control the process arrival patterns in their MPI
programs in the cluster environment: balancing loads at the application level does not
balance the process arrival patterns; and (3) the performance of collective communi-
cation algorithms is sensitive to process arrival patterns. These results indicate that
process arrival pattern is an important factor that must be taken into consideration in
developing and optimizing MPI collective routines. We propose a scheme that achieves
high performance with different process arrival patterns, and demonstrate that by ex-
plicitly considering process arrival pattern, more efficient MPI collective routines than
the current ones can be obtained.

Keywords: MPI, collective communication, process arrival pattern, communication al-

gorithm.

1 Introduction

MPI collective operations are used in most MPI applications and they account for a signif-

icant portion of the communication time in some applications [25]. Yet, compared to their

∗Contact Author: Xin Yuan, xyuan@cs.fsu.edu, phone: (850)644-9133, fax: (850)644-0058.

1

point-to-point counterparts, MPI collective operations have received less attention. Some

fundamental issues in collective operations are still not well understood [11].

The term process arrival pattern denotes the timing when different processes arrive at an

MPI collective operation (the call site of the collective routine). A process arrival pattern

is said to be balanced when all processes arrive at the call site roughly at the same time

such that the arrival timing does not dramatically affect the performance of the operation.

Otherwise, it is said to be imbalanced. The terms, balanced and imbalanced arrival patterns,

are quantified in Section 3.

The process arrival pattern can have a profound impact on the performance because it

decides the time when each process can start participating in an operation. Unfortunately,

this important factor has been largely overlooked by the MPI developers community. We are

not aware of any study that characterizes process arrival patterns in application programs.

MPI developers routinely make the implicit assumption that all processes arrive at the same

time (a balanced process arrival pattern) when developing and analyzing algorithms for MPI

collective operations [9, 10, 11, 31]. However, as will be shown in this paper, the process

arrival patterns in MPI programs, even well designed programs with balanced loads, are

more likely to be sufficiently imbalanced to affect the performance.

The imbalanced process arrival pattern problem is closely related to the application load

balancing problem. MPI practitioners who have used a performance tool such as Jumpshot to

visually see the process arrival times for their collectives should have noticed the imbalanced

process arrival pattern problem. However, these two problems are significantly distinct in

their time scales: the time differences that cause load imbalance at the application level are

usually orders of magnitude larger than those causing imbalanced process arrival patterns. It

is often possible to “balance” application loads by applying some load balancing techniques.

However, as will be shown later, it is virtually impossible to balance the process arrival

patterns in typical cluster environments: even programs with perfectly balanced loads tend

2

to have imbalanced process arrival patterns.

This work is concerned about efficient implementations of MPI collective routines. Appli-

cation load balancing, although important, requires techniques at the application level and

is beyond the scope of this paper. In order for applications with balanced loads to achieve

high performance, it is essential that the MPI library can deliver high performance with

different (balanced and imbalanced) process arrival patterns. Hence, from the library im-

plementer point of view, it is crucial to know (1) the process arrival pattern characteristics

that summarize how MPI collective routines are invoked; (2) whether the process arrival

pattern can cause performance problems in the library routines; and (3) how to deal with

the problem and make the library most efficient in practice. These are the questions that

we try to answer in this paper. Note that an MPI library does not differentiate applications

with different load balancing characteristics. It should try to deliver the best performance

to applications with or without balanced loads.

We study the process arrival patterns of a set of MPI benchmarks on two commercial

off-the-shelf (COTS) clusters: a high-end Alphaserver cluster and a low-end Beowulf cluster.

These two clusters are representative and our results can apply to a wide range of practi-

cal clusters. We characterize the process arrival patterns in MPI programs, use a micro-

benchmark to examine the process arrival patterns in applications with balanced loads and

to study the causes of the imbalanced process arrival patterns, and investigate the impacts

of different process arrival patterns on some commonly used algorithms for MPI collective

operations. The findings include:

• The process arrival patterns for MPI collective operations are usually imbalanced. Even

in a micro-benchmark with a perfectly balanced load, the process arrival patterns are

still imbalanced.

• In cluster environments, it is virtually impossible for application developers to control

the process arrival patterns in their programs without explicitly invoking a global

3

synchronization operation. Many factors that can cause imbalance in computation

and communication are beyond the control of the developers. Balancing the loads at

the application level is insufficient to balance the process arrival patterns.

• The performance of MPI collective algorithms is sensitive to the process arrival pattern.

In particular, the algorithms that perform better with a balanced arrival pattern tend

to perform worse when the arrival pattern becomes more imbalanced.

These findings indicate that for an MPI collective routine to be efficient in practice, it

must be able to achieve high performance with different (balanced and imbalanced) process

arrival patterns. Hence, MPI library implementers must take process arrival pattern into

consideration when developing and optimizing MPI collective routines. We propose a scheme

that uses a dynamic adaptive mechanism to deal with the imbalanced process arrival pattern

problem, and demonstrate that by explicitly considering process arrival pattern, more robust

MPI collective routines than the current ones can be developed.

The rest of this paper is organized as follows. Section 2 discusses the related work. Section

3 formally describes the process arrival pattern and the parameters we use to characterize it.

Section 4 presents the statistics of process arrival patterns in a set of benchmark programs.

In Section 5, we study a micro-benchmark that has a perfectly balanced load and investigate

the causes for such a program to have imbalanced process arrival patterns. In Section 6,

we evaluate the impacts of process arrival patterns on some common algorithms for MPI

collective operations. In Section 7, we propose and evaluate a potential solution to the

imbalanced process arrival pattern problem. Finally, Section 8 concludes the paper.

2 Related Work

Understanding the application/system behavior is critical for developing an efficient MPI

library. Due to its importance, there are numerous research efforts focusing on analyzing

MPI communication behavior. In [36], the performance of parallel applications is analyzed

4

using a technique that automatically classifies inefficiencies in point-to-point communica-

tions. The study analyzes the usage of MPI collective communication routines and their

elapsed times. The studies in [6, 14] performed quantitative measurements of the static and

dynamic communication routines in parallel applications. Work in [29] performed statistical

analysis of all-to-all elapsed communication time on the IBM SP2 machine to understand

the causes of the performance drop as the number of processors increases. The researchers

in [5, 30] examined the NAS parallel benchmarks [20] to quantitatively describe the MPI

routine usage and the distribution of message sizes. The analysis performed on parallel

applications in these studies (and other similar studies) often involves the investigation of

communication attributes such as the type of MPI routines, the message size, the message

volume, the message interval, the bandwidth requirement, and the communication elapsed

time. Our study focuses on a specific communication attribute for collective operations, the

process arrival pattern, which has not been studied before. It must be noted that the process

arrival pattern is affected not only by the application, but also by the operating system, the

system hardware, and the communication library. Understanding the characteristics and

the impacts of process arrival pattern is important for developing advanced communication

schemes [7, 8, 12, 34, 37] that maximize the MPI collective communication performance.

Researchers are aware of the imbalanced arrival pattern problem and have developed adap-

tive collective communication algorithms that can automatically change the logical topologies

used in the algorithms based on various factors including the process arrival pattern. Exam-

ple algorithms include the all-reduce and barrier algorithms in [17] and the broadcast and

reduce algorithms in [28]. Our work advocates further development of such algorithms as

well as other mechanisms to handle the imbalanced process arrival pattern problem.

3 Process arrival pattern

Let n processes, p0, p1, ..., pn−1, participate in a collective operation. Let ai be the time when

process pi arrives at the collective operation. The process arrival pattern can be represented

5

by the tuple (a0, a1, ..., an−1). The average process arrival time is ā = a0+a1+...+an−1

n
. Let fi be

the time when process pi finishes the operation. The process exit pattern can be represented

by the tuple (f0, f1, ..., fn−1). The elapsed time that process pi spends in the operation is

thus ei = fi − ai; the total time is e0 + e1 + ... + en−1; and the average per node time is

ē = e0+e1+...+en−1

n
. In an application, the total time or the average per node time accurately

reflects the time that the program spends on the operation. We will use the average per

node time (ē) to denote the performance of an operation (or an algorithm).

We will use the term imbalance in the process arrival pattern to signify the differences in

the process arrival times at a collective communication call site. Let δi be the time difference

between pi’s arrival time ai and the average arrival time ā, δi = |ai − ā|. The imbalance

in the process arrival pattern can be characterized by the average case imbalance time,

δ̄ = δ0+δ1+...+δn−1

n
, and the worst case imbalance time, ω = maxi{ai} − mini{ai}. Figure 1

depicts the described parameters in a process arrival pattern.

e1

δ 0
δ 2

e2
δ 1 δ 3

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
��� ����������

	�	
	�	

�

�

���
���
���

���
���
���

1 2 3

e3

0

p
0

p p p

ω

e

arrival time

exit time

average
arrival time

1a

a

a

f f
f

f

a0

2

3

0 1

2

3

Figure 1: Process arrival pattern

An MPI collective operation typically requires each process to send multiple messages.

A collective algorithm organizes the messages in the operation in a certain manner. For

example, in the pair algorithm for MPI Alltoall [31], the messages in the all-to-all operation

are organized in n − 1 phases: in phase i, 0 ≤ i ≤ n − 1, process pj exchanges a message

with process pj ⊕ i (⊕ is the exclusive or operator). The impact of an imbalanced process

6

arrival pattern is mainly caused by early completions or late starts of some messages in the

operation. In the pair algorithm, early arrivals of some processes will cause some processes to

complete a phase and start the next phase while other processes are still in the previous phase,

which may cause system contention and degrade the performance. Hence, the impacts of an

imbalanced process arrival pattern can be better characterized by the number of messages

that can be sent during the period when some processes arrive while others do not. To

capture this notion, we normalize the worst case and average case imbalance times by the

time to communicate one message. The normalized results are called the average/worst case

imbalance factor. Let T be the time to communicate one message in the operation. The

average case imbalance factor equals to δ̄
T

and the worst case imbalance factor equals to ω
T
.

A worst case imbalance factor of 20 means that by the time the last process arrives at the

operation, the first process may have sent twenty messages. In general, a process arrival

pattern is balanced if the worst case imbalance factor is less than 1 (all processes arrive

within a message time) and imbalanced, otherwise.

4 Process arrival patterns in MPI programs

4.1 Platforms

The process arrival pattern statistics are collected on two representative platforms. The

first is the Lemieux machine located in Pittsburgh Supercomputing Center (PSC) [24]. The

machine consists of 750 Compaq Alphaserver ES45 nodes connected by Quadrics, each of

the nodes includes four 1GHz SMP processors with 4GB of memory. The system runs Tru64

Unix operating system. All benchmarks are compiled with the native mpicc and linked with

the native MPI and ELAN libraries. ELAN is a low-level internode communication library

for Quadrics. On Lemieux, the experiments are conducted with a batch partition of 32,

64, and 128 processors (4 processors per node). The second platform is a 16-node Beowulf

cluster, whose nodes are Dell Dimension 2400, each with a 2.8GHz P4 processor and 128MB

7

of memory. All machines run Linux (Fedora) with the 2.6.5-1.358 kernel. These machines are

connected by a Dell Powerconnect 2624 1Gbps Ethernet switch. This system uses MPICH

2-1.0.1 for communication. All programs are compiled with the mpicc that comes with

the MPICH package. Some of the times and the corresponding bandwidths (BW) for one

way point-to-point communications with different message sizes on the two platforms are

summarized in Table 1. These numbers, which are obtained using a ping-pong program, are

used to compute imbalance factors.

Table 1: One way point-to-point communication time and bandwidth on Lemieux and Be-
owulf

message Lemieux Beowulf
size time (ms) BW (MB/s) time (ms) BW (MB/s)
4B 0.008 0.50 0.056 0.07

256B 0.008 32.0 0.063 4.10
1KB 0.021 49.5 0.088 11.6
4KB 0.029 141 0.150 27.3

16KB 0.079 207 0.277 59.1
32KB 0.150 218 0.470 69.7
64KB 0.291 225 0.846 77.5

128KB 0.575 228 1.571 83.4

4.2 Benchmarks

Table 2 summarizes the seven benchmarks. For reference, we show the code size as well as

the execution and collective communication elapsed times for running the programs on n =

64 processors on Lemieux. Table 3 shows the major collective communication routines in

the benchmarks and their dynamic counts and message sizes (assuming n = 64). There are

significant collective operations in all programs. Next, we briefly describe each benchmark

and the related parameters/settings used in the experiments.

FT (Fast-Fourier Transform) is one of the parallel kernels included in NAS parallel bench-

marks [20]. FT solves a partial differential equation using forward and inverse FFTs. The col-

lective communication routines used in FT include MPI Alltoall, MPI Barrier, MPI Bcast,

8

Table 2: Summary of benchmarks (times are measured on Lemieux with 64 processors)

benchmark description #lines exec. time comm. time
FT solves PDE with forward and inverse FFTs 2234 13.4s 8.3s
IS sorts integer keys in parallel 1091 2.2s 1.6s
LAMMPS simulates dynamics of molecules in different states 23510 286.7s 36.1s
PARADYN sim. dynamics of metals and metal alloys molecules 6252 36.6s 33.1s
NBODY simulates effects of gravitational forces on N bodies 256 59.5s 1.5s
NTUBE 1 performs molecular dynamics calculations of diamond 4480 894.4s 32.3s
NTUBE 2 performs molecular dynamics calculations of diamond 4570 852.9s 414.1s

and MPI Reduce with most communications being carried out by MPI Alltoall. We used the

class B problem size supplied by the NAS benchmark suite in the evaluation.

Table 3: The dynamic counts of major collective communication routines in the benchmarks
(n = 64)

benchmark routine msg size (byte) dyn. count
FT alltoall 131076 22

reduce 16 20
IS alltoallv 33193∗ 11

allreduce 4166 11
alltoall 4 11

LAMMPS allreduce 42392 2012
bcast 4-704 48779
barrier 4055

PARADYN allgatherv 6-1290∗ 16188
allreduce 4-48 13405

NBODY allgather 5000 300
NTUBE 1 allgatherv 16000∗ 1000
NTUBE 2 allreduce 8 1000

* For a v-version routine, the number is the average of all message sizes in the routine. A
range indicates there are multiple routines with different (average) message sizes.

IS (Integer Sort) is a parallel kernel from NAS parallel benchmarks. It uses bucket sort to

order a list of integers. The MPI collective routines in IS are MPI Alltoall, MPI Alltoallv,

MPI Allreduce, and MPI Barrier with most communications carried out by the MPI Alltoallv

routine. The class B problem size is used in the experiments.

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [16] is a classical

parallel molecular dynamics code. It models the assembly of particles in a liquid, solid, or

9

gaseous state. The code uses MPI Allreduce, MPI Bcast, and MPI Barrier. We ran the

program with 1720 copper atoms for 3000 iterations.

PARADYN (Parallel Dynamo) [22] is a molecular dynamics simulation. It utilizes the

embedded atom method potentials to model metals and metal alloys. The program uses

MPI Allgather, MPI Allgatherv, MPI Allreduce, MPI Bcast, and MPI Barrier. In the ex-

periments, we simulated 6750 atoms of liquid crystals in 1000 time steps.

NBODY [21] simulates over time steps the interaction, in terms of movements, positions and

other attributes, among the bodies as a result of the net gravitational forces exerted on one

another. The code is a naive implementation of the nbody method and uses MPI Allgather

and MPI Gather collective communications. We ran the code with 8000 bodies and for 300

time steps.

NTUBE 1 performs molecular dynamics calculations of thermal properties of diamond

[26]. This version of the code uses MPI Allgatherv and MPI Reduce. In the evaluation, the

program ran for 1000 steps and each processor maintained 100 atoms.

NTUBE 2 is a different implementation of the Nanotube program. The functionality of

NTUBE 2 is exactly the same as NTUBE 1. The collective communication routines used

in this program are MPI Allreduce and MPI Reduce. In the evaluation, the program ran for

1000 steps with each processor maintaining 100 atoms.

4.3 Data collection

To investigate process arrival patterns and other statistics of MPI collective communications,

we develop an MPI wrapper library. The wrapper records an event at each MPI process for

each entrance and exit of each MPI collective communication routine. An event records

information about the timing, the operation, the message size, etc. The times are measured

using the MPI Wtime routine. Events are stored in memory during the program execution

until MPI Finalize is called, when all processors write the events to log files for post-mortem

analysis. The functionality of our wrapper is similar to that of the standard MPI Profiling

10

interface (PMPI), we use our own wrapper for its flexibility and future extension. Accu-

rately measuring the times on different machines requires a globally synchronized clock. On

Lemieux, such a synchronized clock is available. On the Beowulf cluster, the times on dif-

ferent machines are not synchronized. We resolve the problem by calling an MPI Barrier

after MPI Init and having all measured times normalized with respect to the exit time of

the MPI Barrier. Basically, we are assuming that all (16) machines exit a barrier operation

at the same time. This introduces inaccuracy that is roughly equal to the time to transfer

several small messages.

4.4 Process arrival pattern statistics

In this sub-section, we focus on presenting the process arrival pattern statistics. The causes

for MPI applications to have such behavior will be investigated in the next section. Table 4

shows the average of the worst/average case imbalance factors among all collective routines

in each benchmark on Lemieux and the Beowulf cluster. The table reveals several notable

observations. First, the averages of the worst case imbalance factors for all programs on

both clusters are quite large, even for FT, whose computation is fairly balanced. Second,

the process arrival pattern depends heavily on the system architecture. For example, the

imbalance factors for NTUBE 1 and NTUBE 2 are much larger on Lemieux than on the

Beowulf cluster. This is because these two programs were designed for single CPU systems.

When running them on Lemieux, an SMP cluster, the process arrival patterns become ex-

tremely imbalanced. Overall, the imbalance factors for all programs on both platforms are

large: the best average worst case imbalance factor is 19 for Lemieux (LAMMPS) and 17 for

Beowulf (NTUBE 1).

Operations that account for most of the communication times typically have large message

sizes. In Figure 2, we distinguish operations with medium/large message sizes (> 1000B)

from those with small message sizes (≤ 1000B). Part (a) of Figure 2 shows the distribution

of the worst case imbalance factors for the results on Lemieux (128 processors) while part

11

Table 4: The average of worst case (ω̄
T
) and average case (δ̄

T
) imbalance factors among all

collective routines on two the platforms

imbalance factor
benchmark Lemieux (n = 128) Beowulf

average worst average worst
FT 91.0 652 278 1.2K
IS 61.0 358 1.4K 11K

LAMMPS 4.00 19.0 273 630
PARADYN 9.10 46.0 12.0 79.0

NBODY 13.0 132 12.0 50.0
NTUBE 1 4.8K 38K 4.30 17.0
NTUBE 2 85K 347K 9.00 39.0

(b) shows the results on the Beowulf cluster. All benchmarks are equally weighted when

computing the distribution. As expected, arrival patterns for operations with large mes-

sages are in general less imbalanced than those for operations with small messages. This is

mainly due to the way the imbalance factors are computed: larger messages mean larger per

message time (T). However, there is a significant portion of operations with both small and

medium/large sizes having large imbalance factors and only a small fraction of the opera-

tions are balanced. In particular, for operations with medium/large messages, only a small

percentage (21% on Lemieux and 6% on Beowulf) have balanced process arrival patterns (a

worst case imbalance factor less than 1). The percentage is smaller for operations with small

messages. This indicates that imbalanced process arrival patterns are much more common

than balanced process arrival patterns.

In Table 5, we further narrow our focus on the imbalance factors for the collective op-

erations that are important in the benchmarks. These are the operations that appear in

the main loop and account for a significant amount of application time. Compared with

the imbalance factors shown in Table 4, we can see that the process arrival patterns for

these important routines are generally less imbalanced than the average of all routines in

the applications, which reflects the fact that programmers are more careful about the load

12

(a) Lemieux (128 processors) (b) Beowulf cluster

Figure 2: The distribution of worst case imbalance factors (ω̄
T
)

balancing issue in the main loop. However, the process arrival patterns for these important

routines are still quite imbalanced. On both platforms, only the MPI Alltoallv in IS can be

classified as having balanced process arrival patterns. Examining the source code reveals

that this routine is called right after another MPI collective routine.

Table 5: The imbalance factor for major routines
imbalance factor

major Lemieux (n = 128) Beowulf
routine ave. worst ave. worst

FT alltoall 2.90 24.0 26.0 124
IS alltoallv 0.00 0.20 0.20 0.80

allreduce 145 756 4.4K 34K
LAMMPS bcast 0.20 3.40 299 671

allreduce 16.3 91.3 24 132
barrier 28.6 157.3 106 442

PARADYN allgatherv 0.80 6.50 10.0 66.5
allreduce 15.7 73.3 14.0 93.0

NBODY allgather 13.0 132 12.0 50.0
NTUBE 1 allgatherv 78.8 345 3.50 14.0
NTUBE 2 allreduce 83K 323K 9.00 39.0

Another interesting statistics is the characteristics of process arrival patterns for each

individual call site. If the process arrival patterns for each call site in different invocations

13

exhibit heavy fluctuation, the MPI routine for this call site must achieve high performance for

all different types of process arrival patterns to be effective. On the other hand, if the process

arrival patterns for the same call site is statistically similar, the MPI implementation will

only need to optimize for the particular type of process arrival patterns. In the experiments,

we observe that the process arrival patterns for different invocations of the same call site

exhibit a phased behavior: the process arrival patterns are statistically similar for a period

of time before they change. In some cases, the process arrival patterns for the same call

site are statistically similar in the whole program. Figure 3 depicts two representative cases:

the imbalance factors for the MPI Alltoall in FT and the MPI Allgather in NBODY. As can

be seen from the figure, the majority of the calls have similar worst case and average case

imbalance factors despite some large spikes that occur once in a while. This indicates that it

might be feasible to customize the routine for each MPI call site and get good performance.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25

Im
ba

la
nc

e
fa

ct
or

Invocation #

average case
worst case

(a) FT: MPI Alltoall

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

Im
ba

la
nc

e
fa

ct
or

Invocation #

average
worst case

(b) NBODY: MPI Allgather

Figure 3: The imbalance factors for MPI Alltoall in FT and MPI Allgather in NBODY on
Lemieux (n = 128)

4.5 Summary

While we expect to see some imbalance process arrival patterns in MPI programs, it is

surprising to see the very low percentage of balanced process arrival patterns. The low

percentage applies to applications whose loads are fairly balanced, to collective operations

in the main loops where load balancing is critical for the performance of the applications,

14

and to operations with all different message sizes.

5 Process arrival patterns in a micro-benchmark

Since a well designed MPI program typically has a balanced computation load, understanding

the process arrival patterns in such programs is particularly important. One surprising result

in the previous section is that even programs with evenly distributed computation loads

have very imbalanced process arrival patterns. However, these programs are too complex to

determine what exactly is causing the imbalanced process arrival patterns. In this section,

we study a simple micro-benchmark, shown in Figure 4, where all processes perform exactly

the same computation and communication (perfectly balanced load). The goals are (1) to

determine whether application programmers can control the critical process arrival patterns

in their MPI programs by balancing the load at the application level, and (2) to investigate

the causes of the imbalanced process arrival patterns. In this micro-benchmark, a barrier is

called before the main loop that is executed 1000 times. The loop body consists the simulated

computation (lines (4)-(6)) and the MPI Alltoall() routine (line (8)). The computation time

can be adjusted by changing the parameter XTIME.

(1) MPI Barrier(...);
(2) for (i=0; i<1000; i++) {
(3) /* compute for roughly X milliseconds */
(4) for (m=0; m< XTIME; m++)
(5) for (k=1, k<1000; k++)
(6) a[k] = b[k+1] - a[k-1] * 2;
(7) arrive[i] = MPI Wtime();
(8) MPI Alltoall(...);
(9) leave[i] = MPI Wtime()
(10)}

Figure 4: Code segment for a micro-benchmark

We measured the process arrival patterns for the all-to-all operation. We will report

results for message size 64KB. Smaller message sizes result in larger imbalance factors. The

15

average computation time in each node is set to 200ms for both clusters. Figure 5 shows the

worst and average case imbalance factors in each invocation in a typical execution on each

of the two platforms. In both clusters, the process arrival patterns are quite imbalanced

even though all processors perform exactly the same operations. The imbalance factors on

Lemieux are larger than those on the Beowulf cluster for several reasons. First, Lemieux

has more processes and thus has a higher chance to be imbalanced. Second, on Lemieux,

different jobs share the network in the system, the uncertainty in messaging can cause the

imbalance. Third, Lemieux has a faster network, the same imbalance time results in a larger

imbalanced factor.

 20
 40
 60
 80

 100
 120
 140
 160

10008006004002000

Im
ba

la
nc

e
fa

ct
or

invocation

Worst case
Average case

(a) Lemieux (128 processors)

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

10008006004002000

Im
ba

la
nc

e
fa

ct
or

invocation

Worst case
Average case

(b) Beowulf cluster

Figure 5: Process arrival patterns in the micro-benchmark (64KB message size, 200ms com-
putation time) on the two platforms

We further investigate the causes of the imbalanced process arrival patterns in this simple

benchmark. For the MPI Alltoall routine to have the imbalanced process arrival patterns

shown in Figure 5, there can be only two potential causes. First, it might take different

processors different times to run the (same) computation. An earlier study [23] has shown

that this is indeed happening in some clusters and has attributed this phenomenon to the

asynchronous operating system events. Second, it might take different processors different

times to perform the communication (MPI Alltoall). This imbalance in the communication

16

is reflected in the process exit patterns. In the following, we study the relationship among

the imbalance in process arrival patterns, computation times, and process exit patterns in

the micro-benchmark. The worst case imbalance factor for a process exit pattern is defined

similarly to that of a process arrival pattern. The computation imbalance time is defined

as the maximum time among all processes to execute the computation minus the minimum

time among all processes. To be consistent, we use the imbalance factor in the comparison,

which is equal to the imbalance time divided by the time to send one message (64KB).

We change the XTIME parameter such that the average computation time lasts for

50, 100, 200, 400, and 800ms. Due to the nondeterministic nature in the imbalance, we

repeat each experiment 5 times, each on a different day. In each experiment, we collect data

from the 1000 invocations of the all-to-all routine. We then use the data from the 5000

samples (5 experiments, 1000 samples per experiment) to compute the average values and

the 95% confidence intervals of the imbalance factors for process arrival patterns, process

exit patterns, and computation.

Tables 6 and 7 show the worst case imbalance factors for exit patterns, computation, and

arrival patterns in the micro-benchmark for different computation times on the two platforms.

In the tables, for each worst case (exit, computation, arrival) imbalance factor, we show the

average value along with the confidence interval in the format of ave ± interval
2

, which

denotes that the 95% confidence interval is [ave− interval
2

, ave+ interval
2

]. There are a number

of observations in the tables. First, when changing the computation time from 50ms to

800ms, the computation imbalance in both clusters increases almost linearly. Such imbalance

in computation is inherent to the system and is impossible for application developers to

overcome. This explains why in our benchmark study of the previous section, we only

observe balanced process arrival patterns in consecutive collective routine calls. Second, the

worst case imbalance factors for process arrival patterns are consistently larger than the

computation imbalance factors, which indicates that the imbalances in both computation

17

and communication are contributing to the imbalance in the process arrival patterns. Third,

on Lemieux, the imbalance factors for process exit patterns are almost the same with different

process arrival patterns while on the Beowulf cluster, the imbalance factors for process exit

patterns are quite different. This is because different algorithms are used to implement

MPI Alltoall on the two clusters. On the Beowulf cluster, since the imbalance factors for

process exit patterns are somewhat related to those for process arrival patterns, the imbalance

effect may be accumulated as the simple benchmark executes. This explains the slight upward

trend in the worst case imbalance factor in Figure 5 (b) (the worst case imbalanced factors are

about 14.5 in the first few iterations and about 16.5 in the last few iterations). Nonetheless,

the imbalance in communication, which is directly affected by the library implementation,

is beyond the control of application developers.

Table 6: Effects of process exit patterns and computation imbalance on process arrival
patterns on Lemieux (32 processors)

comp. worst case imbalance factor(ω̄
T
)

time exit computation arrival
50ms 15.2 ± 0.7 23.4 ± 0.3 32.5 ± 0.8
100ms 15.2 ± 0.6 46.8 ± 1.6 54.5 ± 1.9
200ms 15.0 ± 0.3 87.4 ± 1.8 92.7 ± 1.9
400ms 15.1 ± 0.8 160 ± 1.9 164 ± 2.0
800ms 15.0 ± 0.3 320 ± 3.6 322 ± 3.6

Table 7: Effects of process exit patterns and computation imbalance on process arrival
patterns on the Beowulf cluster

comp. worst case imbalance factor (ω̄
T
)

time exit computation arrival
50ms 5.07 ± 1.29 3.16 ± 0.02 7.02 ± 1.29
100ms 4.32 ± 1.00 7.52 ± 0.02 9.53 ± 0.99
200ms 3.71 ± 0.11 14.18 ± 0.02 15.17 ± 0.06
400ms 6.22 ± 0.23 31.41 ± 0.30 33.17 ± 0.35
800ms 11.62 ± 0.41 56.24 ± 0.05 56.29 ± 0.20

18

5.1 Summary

The way a program is coded is only one of many factors that can affect process arrival

patterns. Other factors, such as system characteristics and library implementation schemes

that can introduce the inherent imbalance in computation and communication, are beyond

the control of application developers. Hence, it is unrealistic to assume that application pro-

grammers can balance the load at the application level to make the process arrival patterns

balanced. The process arrival patterns in MPI programs are and will be imbalanced in most

cases in a cluster environment.

6 Impacts of imbalanced process arrival patterns

We study the impact of the process arrival pattern on commonly used algorithms for MPI Alltoall

and MPI Bcast. MPI Alltoall and MPI Bcast represent two types of MPI collective opera-

tions: MPI Alltoall is an inherently synchronized operation, that is, a process can complete

this operation only after all processes arrive; while MPI Bcast is not an inherently synchro-

nized operation.

The impacts of imbalanced process arrival patterns depend on the communication algo-

rithms. For example, some communication algorithms such as the binomial tree MPI Bcast

algorithm are able to tolerate some degrees of imbalanced process arrival patterns since some

nodes start the communication later than other nodes in these algorithms. As shown in the

previous sections, the process arrival patterns are likely to be random and imbalanced: it is

difficult to have a process arrival pattern that matches the algorithm. Hence, the impacts of

imbalanced (random) process arrival patterns on the algorithms are not clear. This section

tries to systematically study the impacts of imbalanced process arrival patterns on different

types of algorithms.

The evaluated MPI Alltoall algorithms include the simple, Bruck, pair, and ring algo-

rithms. The simple algorithm basically posts all receives and all sends, starts the communi-

19

cations, and waits for all communications to finish. The Bruck algorithm [4] is a lg(n)-step

algorithm that is designed for achieving efficient all-to-all with small messages. The pair

algorithm only works when the number of processes, n, is a power of two. It partitions the

all-to-all communication into n−1 steps. In step i, process pj exchanges a message with pro-

cess pj ⊕ i. The ring algorithm also partitions the all-to-all communication into n− 1 steps.

In step i, process pj sends a messages to process p(j+i) mod n and receives a message from

process p(j−i) mod n. A more detailed description of these algorithms can be found in [31].

We also consider the native algorithm used in MPI Alltoall on Lemieux, which is unknown

to us.

The evaluated MPI Bcast algorithms include the flat tree, binomial tree, scatter-allgather,

and native algorithm on Lemieux, which is unknown to us. In the flat tree algorithm, the

root sequentially sends the broadcast message to each of the receivers. In the binomial

tree algorithm [19], the broadcast follows a hypercube communication pattern and the total

number of messages that the root sends is lg(p). The scatter-allgather algorithm, used for

broadcasting large messages in MPICH [19], first distributes the msize-byte message to all

nodes by a scatter operation (each node gets msize
p

bytes), and then performs an all-gather

operation to combine the scattered messages to all nodes.

(1) r = rand() % MAX IF;
(2) for (i=0; i<ITER; i++) {
(3) MPI Barrier (...);
(4) for (j=0; j<r; j++) {
(5) ... /* computation time equal to one msg time */
(6) }
(7) t0 = MPI Wtime();
(8) MPI Alltoall(...);
(9) elapse += MPI Wtime() - t0;
(10)}

Figure 6: Code segment for measuring the impacts of imbalanced process arrival patterns

Figure 6 outlines the code segment we use to measure the performance with a controlled

20

imbalance factor in the random process arrival patterns. The worst case imbalance factor

is controlled by a variable MAX IF (maximum imbalance factor). Line (1) generates a

random number r that is bounded by MAX IF. Before the all–to–all routine (or broadcast)

is measured (lines 7-9), the controlled imbalanced process arrival pattern is created by first

calling a barrier (line (3)) and then introducing some computation between the barrier and

all-to-all routines. The time to complete the computation is controlled by r. The time spent

in the loop body in line (5) is made roughly equal to the time for sending one message

(see Table 1), and the total time for the computation is roughly equal to the time to send

r messages. Hence, the larger the value of MAX IF is, the more imbalanced the process

arrival pattern becomes. Note that the actual worst case imbalance factor, especially for

small message sizes, may not be bounded by MAX IF since the process exit patterns of

MPI Barrier may not be balanced.

For each process arrival pattern, the routine is measured 100 times (ITER = 100) and

the average elapsed time on each node is recorded. For each MAX IF value, we perform

32 experiments (32 random process arrival patterns with the same value of MAX IF). The

communication time is reported by the confidence interval with a 95% confidence level,

computed from the results of the 32 experiments.

Figure 7 (a) shows the results for 1B all-to-all communication on Lemieux (32 proces-

sors). When MAX IF ≤ 9, the Bruck algorithm performs better than the ring and pair

algorithms, and all three algorithms perform significantly better than the simple algorithm.

However, when the imbalance factor is larger (16 ≤ MAX IF ≤ 129), the simple algorithm

shows better results. The native algorithm performs much better than all algorithms in the

case when MAX IF ≤ 129. When MAX IF = 257, the native algorithm performs worse

than the ring and simple algorithms. These results show that under different process arrival

patterns with different worst case imbalance factors, the algorithms have different perfor-

mance. When the imbalance factor increases, one would expect that the communication

21

time should increase. While this applies to the Bruck, ring, pair, and native algorithms,

it is not the case for the simple algorithm: the communication time actually decreases as

MAX IF increases when MAX IF ≤ 17. In this cluster, 4 processors share the network

interface card. With moderate imbalance in a process arrival pattern, different processors

initiate their communications at different times, which reduces the resource contention and

improves communication efficiency.

 0
 1
 2
 3
 4
 5
 6
 7
 8

2571296533179531

C
om

m
un

ic
at

io
n

tim
e

(m
s)

MAX_IF

Bruck
Pair
Ring

Simple
Native

(a) Message size = 1B

 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160

2571296533179531

C
om

m
un

ic
at

io
n

tim
e

(m
s)

MAX_IF

Pair
Ring

Simple
Native

(b) Message size = 64KB

Figure 7: 1B and 64KB MPI Alltoall on Lemieux (32 processors)

Figure 7 (b) shows the performance when the message size is 64KB. When MAX IF ≤ 9,

the pair algorithm is noticeably more efficient than the ring algorithm, which in turn is

faster than the simple algorithm. However, the simple algorithm offers the best performance

when MAX IF ≥ 33. For this message size, the native algorithm performs worse than all

three algorithms when MAX IF ≤ 65. The figure also shows that each algorithm performs

very differently under process arrival patterns with different imbalance factors. The trend

observed in Lemieux is also seen in the Beowulf cluster, which is captured in Figure 8.

Since MPI Alltoall is an inherently synchronized operation, when the imbalance factor

is very large, all algorithms should have a similar performance. This is shown in all ex-

periments except for the 64KB case on Lemieux where MAX IF = 257 is not sufficiently

large. However, from the experiments, we can see that algorithms that perform better with

a balanced process arrival pattern tend to perform worse when the process arrival pattern

22

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

2571296533179531

C
om

m
un

ic
at

io
n

tim
e

(m
s)

MAX_IF

Bruck
Pair
Ring

Simple

(a) Message size = 1B

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

2571296533179531

C
om

m
un

ic
at

io
n

tim
e

(m
s)

MAX_IF

Pair
Ring

Simple

(b) Message size = 64KB

Figure 8: 1B and 64KB MPI Alltoall on Beowulf

becomes more imbalanced.

Figure 9 (a) shows the results for 1B broadcast on Lemieux (32 processors). When

MAX IF ≤ 8, all algorithms perform similarly. When MAX IF > 8, the flat tree al-

gorithm performs considerably better than the other algorithms. Part (b) of the figure

shows the results for broadcasting 64KB messages. When MAX IF < 8, native, binomial,

and scatter-allgather algorithms perform similarly and better than the flat tree algorithm.

However, when MAX IF > 16, the flat tree algorithm performs better than all other al-

gorithms. Moreover, the performance advantage of the flat tree algorithm increases as the

imbalance factor increases. Figure 10 shows the results on the Beowulf cluster. The trend

for large message sizes is similar. For 1B broadcast, the flat-tree algorithm is consistently

better for different imbalance factors.

The algorithms for MPI Bcast that perform better under a balanced process arrival pattern

perform worse when the arrival pattern becomes imbalanced. In contrast to the results for

MPI Alltoall, the performance difference for different broadcast algorithms widens as the

imbalance factor increases. Due to the implicit synchronization in MPI Alltoall, there is a

limit on the impacts of an imbalanced pattern (all algorithms will have a similar performance

when the imbalance factor is very large). However, for the MPI Bcast type of operations

that are not inherently synchronized, the impacts can potentially be unlimited.

23

 0

 1

 2

 3

 4

 5

 6

 7

2571296533179531

C
om

m
un

ic
at

io
n

tim
e

(m
s)

MAX_IF

Flattree
Binomial

Native

(a) Message size = 1B

 0

 20

 40

 60

 80

 100

 120

2571296533179531

C
om

m
un

ic
at

io
n

tim
e

(m
s)

MAX_IF

Flattree
Binomial

Native
Scatter-allgather

(b) Message size = 64KB

Figure 9: 1B and 64KB MPI Bcast on Lemieux (32 processors)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

2571296533179531

C
om

m
un

ic
at

io
n

tim
e

(m
s)

MAX_IF

Flattree
Binomial

(a) Message size = 1B

 0

 20

 40

 60

 80

 100

 120

2571296533179531

C
om

m
un

ic
at

io
n

tim
e

(m
s)

MAX_IF

Flattree
Binomial

Scatter-allgather

(b) Message size = 64KB

Figure 10: 1B and 64KB MPI Bcast on Beowulf cluster

24

6.1 Summary

The common observation in the experiments in this section is that collective communication

algorithms respond differently to different process arrival patterns. The algorithm that

performs better with a balanced process arrival pattern tends to perform worse when the

process arrival pattern becomes more imbalanced. Moreover, depending on the type of

collective operations, the impact of an imbalanced process arrival pattern can be large.

7 A Potential Solution

Our proposed solution is based on two key observations. First, while the process arrival

pattern for a collective operation is nondeterministic, the process arrival patterns for each

individual call site tend to exhibit a phased behavior as discussed in Section 4, that is,

the process arrival patterns are statistically similar for an extended period of time before

they change (See Figure 3). Hence, if the library routine can find an algorithm that can

provide good performance, it is likely that the algorithm will provide good performance for

an extended period of time. Second, while different collective algorithms may perform best

for different process arrival patterns, the performance of a given algorithm changes slowly as

the maximum imbalance factor changes, as shown by the small 95% confidence intervals and

the smooth curves for all algorithms in Section 6. This indicates that when an algorithm gives

the best performance for a particular process arrival pattern, it tends to give a reasonable

performance for other process arrival patterns that are not drastically different. Hence, to

get a reasonable performance, we do not need to find all best algorithms for different process

arrival patterns. Instead, we just need to find some best algorithms for some representative

points in the process arrival pattern space.

These two observations strongly suggest that it might be possible to develop a collective

routine that performs well for different process arrival patterns by (1) identifying good al-

gorithms for different process arrival patterns and (2) using a dynamic adaptive mechanism

25

that selects the best performing algorithm at run-time. The STAR-MPI that we developed

[8] provides such a dynamic adaptive mechanism. We apply the STAR-MPI idea to de-

velop a robust MPI Alltoall routine by incorporating process arrival pattern aware all-to-all

algorithms. This solution takes a coarse-grain approach to achieve high performance with

different (balanced and imbalanced) process arrival patterns: the routine maintains a set of

all-to-all algorithms that perform well for different process arrival patterns; at runtime, each

communication algorithm is probed to decide the best algorithm for a given call site. As

shown in the performance evaluation, our routine consistently achieves higher performance

for different platforms and applications (different process arrival patterns) than the native

MPI implementations. This demonstrates that, by explicitly considering the process arrival

pattern, it is possible to develop more efficient MPI collective communication routines than

the current ones. Next, we will describe the process arrival pattern aware all-to-all algorithms

included in our robust all-to-all routine. Details about the dynamic adaptive mechanism can

be found in [8].

7.1 Process arrival pattern aware all-to-all algorithms

To identify good algorithms for different process arrival patterns, we empirically test an

extensive set of algorithms that we implemented [7] on different platforms. We will describe

the selected algorithms and give rationale about why they provide good performance in

different situations.

Pair/Ring algorithms. The pair and ring algorithms described in Section 6 provide good

performance when the process arrival pattern is balanced. In both algorithms, the all-to-all

operation is partitioned into n − 1 phases with each process performing exactly the same

amount of operations in each phase. When the process arrival pattern is perfectly balanced,

the phases may be executed in a lock-step manner and the communication is efficient.

While the ring and pair algorithms are efficient when the process arrival pattern is bal-

anced, they do not perform well when the imbalanced factor is larger. In particular, when

26

the worst case imbalanced factor is larger than 1, early arrivals of some processes in the

pair/ring algorithms will cause some processes to complete a phase and start the next phase

while other processes are still in the previous phase. This may destroy the phase structure,

cause system contention, and degrade the performance. This problem can be resolved in two

ways, each resulting in a different type of efficient algorithms.

Ring/Pair + one MPI barrier. One solution is to prevent the imbalanced arrival patterns

from happening when the ring/pair algorithm is invoked. By adding a barrier operation, this

scheme guarantees to have a balanced process arrival pattern for the ring/pair algorithm.

The barrier operation forces processes that arrive at the operation early to idle. It provides

good performance when the worst case imbalance factor is small, but not 0.

Ring/Pair + light barrier. The ring/pair + one MPI barrier algorithm forces processes

that arrive at the operation early to idle. This may not be efficient when a large number of

processes arrive at the operation significantly earlier than others since processes that arrive

early could have used the idle time to perform some useful operations. The ring/pair+light

barrier is another solution to the problem caused by the imbalanced process arrival patterns.

The idea is (1) to allow the phases to proceed in an asynchronous manner and (2) to use a

mechanism (light barrier) to minimize the impact of the imbalanced process arrival pattern.

Basically, whenever there is a possibility that two messages in different phases can be sent

to the same processes at the same time and cause contention, a light barrier that performs

pair-wise synchronization is added to sequentialize the two messages. By introducing light

barriers, the algorithm sequentializes all messages that can potentially cause contention and

the impact of imbalanced process arrival patterns is minimized.

Simple. All of the above algorithms are based on the concept of phase, which requires pro-

cesses to coordinate. In the case when the imbalance factor is large, the coordination among

processes may actually hinder the communication performance. The simple algorithm, de-

scribed in Section 6, performs all communications in a single phase (step), eliminating the

27

coordination among processes. As a result, this algorithm performs well for sufficiently

imbalanced process arrival patterns.

Besides these algorithms, our routine also includes the native MPI Alltoall, which is se-

lected in the native MPI library for a reason. Hence, there are a total of 8 algorithms that

are included in our robust MPI Alltoall routine. As shown in the performance evaluation

section, our routine performs better than the native MPI Alltoall in most cases, which in-

dicates that the native MPI Alltoall implementation is not the best performing algorithm

among the algorithms in many practical cases. Notice that some of these algorithms, such

as pair/ring and simple, are included in MPICH, where they are used to realize the all-to-all

operation with different message sizes. In our routine, all the algorithms can be selected to

realize the operation with the same message size, but different process arrival patterns.

7.2 Performance results

We evaluate the performance of the robust MPI Alltoall routine on the following high-end

clusters: the Lemieux cluster at Pittsburgh Supercomputing Center [24], the UC/ANL Ter-

agrid cluster at Argonne [33], the AURORA cluster at the University of Technology at

Vienna [1], and the AVIDD-T cluster at Indiana University [2]. Table 8 summarizes the

configurations of all clusters besides Lemieux, whose configuration is described in Section 4.

The benchmarks were compiled with the native mpicc or mpif90 installed on the systems

and linked with the native MPI library. We use a micro-benchmark and a set of applica-

tion benchmarks in the evaluation. In presenting the results, we denote our robust rou-

tine as ROBUST and the native routine as NATIVE. The software used in this section,

including our robust all-to-all routine and all benchmarks, are available to the public at

http://www.cs.fsu.edu/∼xyuan/MPI/STAR-ALLTOALL.

28

Table 8: Clusters used other than Lemieux

cluster UC-TG [33] Aurora [1] Avidd-T [2]
node two 2.4GHz Xeon two 3.6GHz Nocona four 1.3 GHz Itanium II

memory 4GB 4GB 6GB
interconn. Myrinet Infiniband Myrinet

MPI MPICH-GM 1.2.7 MVAPICH 0.9.5 MPICH-GM 1.2.7

7.3 Micro-benchmark results

The micro-benchmark used in the study is shown in Figure 11. This benchmark can emulate

balanced applications with different computation times as well as imbalanced applications

with different computation times and different degrees of computation imbalance. There

are four components inside the loop. First, a barrier is called in line (3) to synchronize all

processes. Then, line (4) is a loop emulating the balanced computation. In this loop, all

processes perform the same computation. The duration of this loop is controlled by the

parameter XTIME. After that, line (5) is an imbalanced loop that artificially introduces

an imbalanced computation load. The duration of this loop is controlled by the variable r,

which is a random variable with a maximum value of MAX IF . This loop runs for roughly

the time to send r messages of size equal to the message size in MPI Alltoall. Note that r

is not the same across all processes: r is a random number (with different seeds in different

processors) bounded by the parameter MAX IF . Thus, the larger the value MAX IF is,

the more imbalanced the process arrival pattern becomes. At the end, the MPI Alltoall

routine is called and measured.

In the evaluation, XTIME will be set such that the computations in line (4) last for 50ms,

100ms, 200ms, and 400ms while the MAX IF takes the values of 1, 10, 50, and 100. As

shown in Section 5, even without the imbalanced loop in line (5), the balanced loop in line

(4) introduces imbalanced process arrival patterns since different processors take different

times to complete the loop. The micro-benchmark runs for 200 iterations. Our proposed

all-to-all routine consumes 80 iterations examining different algorithms before landing on

29

(1) r = rand() % MAX IF ;
(2) for (i=0; i<ITER; i++) {
(3) MPI Barrier (...);

/* compute for roughly X milliseconds */
(4) for (j=0; j< XTIME; j++) COMP;

/* compute for roughly a time equal to sending r messages */
(5) for (j=0; j<r; j++) COMP FOR ONE MSG TIME;
(6) t0 = MPI Wtime();
(7) MPI Alltoall(...);
(8) elapse += MPI Wtime() - t0;
(9)}

Figure 11: Code segment to measure performance of MPI Alltoall

the best algorithm. Since we are more interested in the final algorithm selected and since

the algorithm selection overhead is amortized over all invocations in a program, we only

compute and report the per invocation communication completion time of MPI Alltoall by

averaging the communication completion time of the last 120 iterations.

Parts (a-d) of Figure 12 show the micro-benchmark performance results for using NATIVE

and ROBUST MPI Alltoall routines with different message sizes in a perfectly load-balanced

micro-benchmark on the different clusters. The results shown are based on using the micro-

benchmark with balanced computations (line (4)) set to consume roughly 400ms and no

execution of the imbalanced computations (line (5)) as MAX IF = 1. There are two

major observations across the different clusters. First, ROBUST never performs worse than

NATIVE. Second, for a wide range of message sizes, the speed-up achieved by ROBUST over

NATIVE is significant. For example, when the message size is 64KB, ROBUST improves

the performance of the all-to-all operation across all machines with a speed-up of 28% on

LEMIEUX, 53% on UC-TG, 24% on AVIDD-T, and 19% on AURORA.

Table 9 shows the results for using NATIVE and ROBUST MPI Alltoall routines with

64KB message size in the micro-benchmark with perfectly load-balanced computations of

various computation times (different XTIME). From Section 5, the computation imbalance

increases as the computation time increases from 50ms to 400ms. ROBUST is able to

30

sustain its substantial speed-ups NATIVE across the different clusters and under different

computation loads.

 0

 200

 400

 600

 800

 1000

 1200

 1400

256K128K64K32K16K8K

co
m

pl
et

io
n

tim
e

(m
s)

message size

NATIVE
ROBUST

(a) LEMIEUX (n = 128)

 0

 100

 200

 300

 400

 500

 600

256K128K64K32K16K8K

co
m

pl
et

io
n

tim
e

(m
s)

message size

NATIVE
ROBUST

(b) UC-TG (n = 64)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

256K128K64K32K16K8K

co
m

pl
et

io
n

tim
e

(m
s)

message size

NATIVE
ROBUST

(c) AVIDD-T (n = 32)

 0

 5

 10

 15

 20

 25

 30

 35

256K128K64K32K16K8K

co
m

pl
et

io
n

tim
e

(m
s)

message size

NATIVE
ROBUST

(d) AURORA (n = 16)

Figure 12: Per-invocation comm. time (400ms balanced computation, MAX IF = 1)

Parts (a-d) of Figure 13 show the performance results for using NATIVE and ROBUST

MPI Alltoall routines with different message sizes under an imbalanced computation load

(and thus an imbalanced process arrival pattern). The balanced computations in the bench-

mark are set to consume roughly 200ms and the imbalanced arrival pattern is generated with

MAX IF set to 100. Using the proposed algorithms in our all-to-all routine for imbalanced

arrival patterns, the results shown in Figure 13 demonstrate the robustness of our scheme in

achieving significant improvements over the native one. For example, ROBUST speeds up

over NATIVE for 64KB messages by 29% on LEMIEUX, 28% on UC-TG, 38% on AVIDD-T,

and 19% on AURORA.

Table 10 shows the performance results for using NATIVE and ROBUST MPI Alltoall

31

Table 9: Performance of NATIVE and ROBUST MPI Alltoall of 64KB under different com-
putation times on different machines (MAX IF = 1)

machine implem- computation time
entation 50 100 200 400

NATIVE 346ms 348ms 352ms 362ms
LEMIEUX (n = 128) ROBUST 263ms 266ms 273ms 283ms

speed-up 31.6% 30.8% 28.9% 27.9%

NATIVE 117ms 108ms 147ms 185ms
UC-TG (n = 64) ROBUST 105ms 93.0ms 122ms 121ms

speed-up 11.4% 16.1% 20.5% 52.9%

NATIVE 76.0ms 77.5ms 77.5ms 80.5ms
AVIDD-T (n = 32) ROBUST 63.3ms 64.7ms 66.7ms 64.9ms

speed-up 20.1% 19.8% 16.2% 24.0%

NATIVE 8.90ms 9.20ms 9.20ms 9.60ms
AURORA (n = 16) ROBUST 8.20ms 8.10ms 8.50ms 8.10ms

speed-up 8.50% 13.6% 8.30% 18.5%

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

256K128K64K32K16K8K

co
m

pl
et

io
n

tim
e

(m
s)

message size

NATIVE
ROBUST

(a) LEMIEUX (n = 128)

 0

 100

 200

 300

 400

 500

 600

256K128K64K32K16K8K

co
m

pl
et

io
n

tim
e

(m
s)

message size

NATIVE
ROBUST

(b) UC-TG (n = 64)

 0
 20
 40
 60
 80

 100
 120
 140
 160

256K128K64K32K16K8K

co
m

pl
et

io
n

tim
e

(m
s)

message size

NATIVE
ROBUST

(c) AVIDD-T (n = 32)

 0

 10

 20

 30

 40

 50

256K128K64K32K16K8K

co
m

pl
et

io
n

tim
e

(m
s)

message size

NATIVE
ROBUST

(d) AURORA (n = 16)

Figure 13: Per-invocation comm. time (200ms balanced computation, MAX IF = 100)

32

routines with 64KB message size and under different imbalanced process arrival patterns

generated by various values of MAX IF . As shown in the table, whether the imbalance in

process arrival patterns is modest (MAX IF ≤ 10) or large (MAX IF > 10), ROBUST

is still able to achieve substantially better performance than NATIVE across the different

platforms. For instance, when MAX IF = 10, ROBUST achieves a speed-up of 30.6% on

LEMIEUX, 26.1% on UC-TG, 17.7% on AVIDD-T, and 13.6% on AURORA.

Table 10: Performance of NATIVE and ROBUST MPI Alltoall of 64KB under different
imbalanced arrival patterns on different machines (200ms balanced computation)

machine implem- MAX IF

entation 1 10 50 100

NATIVE 353ms 354ms 357ms 365ms
LEMIEUX (n = 128) ROBUST 271ms 271ms 276ms 283ms

speed-up 30.1% 30.6% 29.4% 29.0%

NATIVE 143ms 145ms 139ms 136ms
UC-TG (n = 64) ROBUST 115ms 103ms 122ms 106ms

speed-up 24.4% 26.1% 35.0% 28.3%

NATIVE 78.2ms 78.5ms 84.0ms 94.0ms
AVIDD-T (n = 32) ROBUST 63.0ms 66.7ms 70.4ms 68.0ms

speed-up 24.1% 17.7% 19.3% 38.2%

NATIVE 9.20ms 10.30ms 10.31ms 12.43ms
AURORA (n = 16) ROBUST 8.50ms 8.06ms 8.43ms 9.63ms

speed-up 8.30% 27.8% 22.3% 29.1%

7.4 Results for application benchmarks

The previous section shows that our routine (ROBUST) achieves high performance in the

micro-benchmark with different message sizes, different computation loads, and different

degrees of computation imbalance. In this section, we evaluate the performance of ROBUST

using four MPI application benchmarks: FT, VH-1, MT, and FFT-2D. The FT (Fast-

Fourier Transform) benchmark, a parallel kernel from the NAS parallel benchmarks [20],

solves a partial differential equation using forward and inverse FFTs. In the evaluation, the

class C problem size is used and the program runs for 400 iterations (or steps). The VH-1

(Virginia Hydrodynamics) [35] is a multidimensional ideal compressible hydrodynamics code

based on the Lagrangian remap version of the Piecewise Parabolic Method. The code uses

33

MPI Alltoall to perform a transpose on a matrix of size i × i. The value of i is 16K on

LEMIEUX, 8K on UC-TG, 4K on AVIDD-T, and 2K on AURORA. The code executes for

500 steps. The FFT-2D [32] program performs a two-dimensional Fast Fourier Transform on

a 4K×4K complex matrix. In the evaluation, the code executes for 300 steps. Finally, the

MT (Matrix Transpose) [18] is a simple program that uses MPI Alltoall to perform matrix

transpositions on a 4K × 4K matrix. The code executes for 300 steps. Table 11 summarizes

the message sizes of the MPI Alltoall routine used in the application programs across different

clusters. The process arrival patterns in these four benchmarks on different platforms are

very different. Hence, the performance of these benchmarks on different platforms gives good

indications about the performance of ROBUST in practical situations.

Table 11: Message sizes of MPI Alltoall in application benchmarks on different clusters

program LEMIEUX UC-TG AVIDD-T AURORA
(n = 128) (n = 64) (n = 32) (n = 16)

FT 128KB 512KB 2048KB 8192KB
VH-1 320KB 320KB 320KB 320KB
FFT-2D 16KB 64KB 256KB 1024KB
MT 8KB 32KB 128KB 512KB

Table 12 shows the results for application benchmarks with the NATIVE and ROBUST

MPI Alltoall routines. For each application, we show the communication time for the

MPI Alltoall routine (left column) as well as the total application time (right column), the

speed-up by using ROBUST over NATIVE, and the algorithm selected by ROBUST on

each platform. We can clearly see that ROBUST significantly improves the communication

time over NATIVE across the different applications on different platforms. To illustrate,

ROBUST achieves a communication time speed-up of 55.74% and 31.45% for the VH-1

benchmark on LEMIEUX and AVIDD-T clusters, respectively. Similar gains are also seen

for other programs; e.g. a speed-up of 31.00% for the FFT-2D benchmark on UC-TG and

a speed-up of 45.28% for the FT benchmark on AURORA. For the overall application time,

the speed-up depends on several factors, including (1) the percentage of all-to-all time in the

total application time, and (2) how the all-to-all operation interacts with computation and

34

other (collective) communications. In particular, the interaction among the all-to-all oper-

ation, the computation, and other collective communications can either offset or enhance

the performance improvement: the improvement in the communication time may or may

not transfer into the improvement in the total application time. For example, for VH-1 on

Lemieux, the communication time is improved by 895 seconds, but the improvement in the

total application time is only 250 seconds. On the other hand, for VH-1 on UC-TG, the com-

munication time is improved by 175 seconds while the total application time is improved by

212 seconds. Analyzing the program execution traces reveals that while ROBUST minimizes

the total communication time among all processes (the sum of the times in all processes),

it does not uniformly decrease the communication time in each individual process. Thus,

the reduction of the total execution time between two collective routines, which can serve as

synchronization points, depends not only on the reduction of the communication time, but

also on the amount of computation between the two collective routines and the shape of the

process exit pattern of the first collective routine. This is why the reduction in total commu-

nication time does not always transfer to the reduction in total application time. Overall,

minimizing the total communication time is effective and ROBUST achieves noticeable im-

provement over NATIVE for both communication time and total benchmark time, which

demonstrates the robustness of our implementation. Moreover, we can see from the table

that, in many cases, the algorithms used by ROBUST are different across different programs

on different platforms. This shows the importance of having multiple process arrival pattern

aware algorithms to deal with different applications of different arrival patterns, which our

all-to-all routine does.

7.5 Summary

Although the native implementations of the MPI Alltoall routine across the different plat-

forms exploit features of the underlying network architecture, these routines do not perform

as good as ROBUST in many cases. This can mainly be attributed to the fact that the native

35

Table 12: Performance of application benchmarks

program implem. LEMIEUX UC-TG A VIDD-T AURORA
(n = 128) (n = 64) (n = 32) (n = 16)

comm. total comm. total comm. total comm. total

NATIVE 265.0s 501.3s 6182s 10107s 1069s 1720s 616.0s 1690s
FT ROBUST 221.0s 450.6s 5917s 9832s 865.0s 1583s 424.0s 1500s

speed-up 19.9% 11.3% 4.9% 2.8% 23.6% 8.7% 45.3% 12.7%
algorithm pair+one barrier simple pair+light barrier pair+light barrier

NATIVE 2495s 3679s 836.0s 5489s 443.0s 1600s 45.50s 457.0s
VH-1 ROBUST 1602s 3429s 661.0s 5277s 337.0s 1506s 39.50s 451.0s

speed-up 55.7% 7.3% 26.5% 3.9% 31.5% 6.2% 15.2% 1.3%
algorithm simple simple simple simple

NATIVE 178.3s 403.0s 78.60s 594.0s 91.20s 190.5s 47.30s 255.0s
FFT-2D ROBUST 165.0s 399.0s 60.00s 576.0s 79.80s 180.3s 38.10s 244.0s

speed-up 8.1% 1.0% 31.0% 3.1% 14.3% 5.7% 24.2% 4.5%
algorithm simple simple ring+light barrier simple

NATIVE 14.46s 15.97s 15.30s 16.50s 44.10s 47.40s 22.50s 27.74s
MT ROBUST 12.62s 13.96s 14.70s 16.20s 37.80s 41.10s 21.93s 27.22s

speed-up 14.5% 14.3% 4.1% 1.9% 16.7% 14.8% 2.6% 1.9%
algorithm pair+one barrier pair+light barrier pair+light barrier ring+light barrier

routines were designed without taking process arrival pattern into consideration. As such,

they do not provide high performance for many practical cases. By explicitly considering

process arrival pattern and employing a dynamic adaptive technique, more robust collective

routines than the current ones can be developed.

8 Conclusion

In this paper, we investigate the process arrival patterns in a set of MPI benchmarks on

two representative cluster platforms. We show that in such environments, it is virtually

impossible for application developers to control process arrival patterns in their applications

without explicitly invoking global synchronization operations and that process arrival pat-

terns are likely to be imbalanced. Since the process arrival pattern has a significant impact

on the performance of collective communication algorithms, we conclude that MPI develop-

ers must take the process arrival pattern characteristics into consideration when developing

MPI collective communication routines that can provide high performance in practical clus-

ters. This study advocates further investigation for understanding the impact of process

36

arrival patterns on different MPI collective operations and different collective communica-

tion algorithms and for identifying efficient process arrival pattern aware algorithms. The

current understanding of MPI collective algorithms, which assumes a balanced process arrival

pattern, is insufficient for developing routines that are efficient in practice. We demonstrate

that when process arrival pattern aware algorithms are identified, a dynamic adaptive scheme

can be used to implement robust collective routines that provide high performance across

different applications and platforms.

Acknowledgment

This research is supported in part by National Science Foundation (NSF) grants CCF-

0342540, CCF-0541096, and CCF-0551555. The experiments on the Lemieux cluster at

Pittsburgh Supercomputing Center are sponsored through an NSF Teragrid grant CCR-

050010T.

References

[1] The AURORA cluster of University of Technology at Vienna,

http://aurora.tuwien.ac.at.

[2] The AVIDD-T cluster, http://rac.uits.iu.edu/rats/research/avidd-t/hardware.shtml.

[3] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert, “Pipelined Broadcasts on Hetero-

geneous Platforms.” IEEE Trans. on Parallel and Distributed Systems, 16(4):300-313,

2005.

[4] J. Bruck, C. Ho, S. Kipnis, E. Upfal, and D. Weathersby, “Efficient Algorithms for

All-to-all Communications in Multiport Message-Passing Systems.” IEEE Trans. on

Parallel and Distributed Systems, 8(11):1143-1156, Nov. 1997.

[5] W. E. Cohen and B. A. Mahafzah, “Statistical Analysis of Message Passing Programs

to Guide Computer Design,” In Proceedings of the Thirty-First Annual Hawaii Inter-

national Conference on System Sciences, volume 7, pages 544-553, 1998.

37

[6] A. Faraj and X. Yuan, “Communication Characteristics in the NAS Parallel Bench-

marks,” In Fourteenth IASTED International Conference on Parallel and Distributed

Computing and Systems (PDCS 2002), pages 724-729, November 2002.

[7] A. Faraj and X. Yuan, “Automatic Generation and Tuning of MPI Collective Communi-

cation Routines,” The 19th ACM International Conference on Supercomputing (ICS’05),

pages 393-402, Cambridge, MA, June 20-22, 2005.

[8] A. Faraj, X. Yuan, and D. K. Lowenthal, “STAR-MPI: Self Tuned Adaptive Routines

for MPI Collective Operations,” The 20th ACM International Conference on Supercom-

puting (ICS’06), pages 199-208, Queensland, Australia, June 28-July 1, 2006.

[9] A. Faraj, X. Yuan, and Pitch Patarasuk, “A Message Scheduling Scheme for All-to-all

Personalized Communication on Ethernet Switched Clusters,” IEEE Transactions on

Parallel and Distributed Systems, 18(2):264-276, Feb. 2007.

[10] A. Faraj, P. Patarasuk, and X. Yuan, “Bandwidth Efficient All-to-all Broadcast on

Switched Clusters,” International Journal of Parallel Programming, accepted.

[11] J.Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and J. Dongarra,

“Performance Analysis of MPI Collective Operations,” IEEE IPDPS, CDROM proceed-

ings, 2005.

[12] A. Karwande, X. Yuan, and D. K. Lowenthal, “An MPI Prototype for Compiled Com-

munication on Ethernet Switched Clusters,” Journal of Parallel and Distributed Com-

puting 65(10):1123-1133, October 2005.

[13] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance, Portable Im-

plementation of the MPI Message Passing Interface Standard,” Parallel Computing,

22(6):789-828, 1996.

[14] D. Lahaut and C. Germain, “Static Communications in Parallel Scientific Propgrams,”

In Proceedings of the 6th International PARLE Conference on Parallel Architectures

and Languages, pages 262-276, 1994.

38

[15] LAM/MPI Parallel Computing. http://www.lam-mpi.org.

[16] LAMMPS: Molecular Dynamics Simulator, Available at http://www.cs.sandia.gov/ sj-

plimp/lammps.html.

[17] A. Mamidala, J. Liu, D. Panda. “Efficient Barrier and Allreduce on InfiniBand Clusters

using Hardware Multicast and Adaptive Algorithms.” IEEE International Conference

on Cluster Computing, pages 135-144, Sept. 2004.

[18] Matrix Transposition example, http://www.sara.nl/userinfo/reservoir/mpi/mpi-intro.

[19] MPICH - A Portable Implementation of MPI, Available at

http://www.mcs.anl.gov/mpi/mpich.

[20] NASA Parallel Benchmarks, Available at http://www.nas.nasa.gov/NAS/NPB.

[21] Parallel NBody Simulations, Available at http://www.cs.cmu.edu/ scan-

dal/alg/nbody.html.

[22] ParaDyn: Parallel Molecular Dynamics With the Embedded Atom Method, Available

at http://www.cs.sandia.gov/ sjplimp/download.html.

[23] F. Petrini, D. J. Kerbyson, and S. Pakin, “The Case of the Missing Supercomputer

Performance: Achieving Optimal Performance on the 8192 Processors of ASCI Q”,

IEEE/ACM SC2003 Conference, 2003.

[24] Pittsburg Supercomputing Center, Available at http://www.psc.edu/machines/tcs/lemieux.html.

[25] R. Rabenseinfner, “Automatic MPI counter profiling of all users: First results on CRAY

T3E900-512,” In Proceedings of the Message Passing Interface Developer’s and User’s

Conference, pages 77-85, 1999.

[26] I. Rosenblum, J. Adler, and S. Brandon, “Multi-processor molecular dynamics using the

Brenner potential: Parallelization of an implicit multi-body potential,” International

Journal of Modern Physics, 10(1): 189-203, February, 1999.

39

[27] P. Patarasuk, A. Faraj, and X. Yuan, “Pipelined Broadcast on Ethernet Switched

Clusters.” The 20th IEEE International Parallel & Distributed Processing Symposium

(IPDPS), CDROM proceedings, April 25-29, 2006.

[28] P. Sanders and J.F. Sibeyn, “A Bandwidth Latency Tradeoff for Broadcast and Reduc-

tion.” Information Processing Letters, 86(1):33-38, 2003.

[29] T.B. Tabe, J.P. Hardwick, and Q.F. Stout, “Statistical analysis of communication time

on the IBM SP2,” Computing Science and Statistics, 27: 347-351, 1995.

[30] T. Tabe and Q. Stout, “The use of the MPI communication library in the NAS Paral-

lel Benchmark,” Technical Report CSE-TR-386-99, Department of Computer Science,

University of Michigan, Nov 1999.

[31] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimizing of Collective Communica-

tion Operations in MPICH,” International Journal of High Performance Computing

Applications, 19(1):49-66, Spring 2005.

[32] Two-D FFT, http://www.mhpcc.edu/training/workshop/parallel develop.

[33] The UC/ANL Teragrid cluster, http://www.uc.teragrid.org/tg-docs/user-guide.html.

[34] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra, “Automatically Tuned Collective Com-

munications,” In Proceedings of SC’00: High Performance Networking and Computing

(CDROM proceeding), 2000.

[35] The Virginia Numerical Bull Session Ideal Hydrodynamics,

http://wonka.physics.ncsu.edu/pub/VH-1.

[36] J. S. Vetter and A. Yoo, “An empirical performance evaluation of scalable scientific

applications,” In Proceedings of the 2002 ACM/IEEE conference on Supercomputing,

pages 1-18, 2002.

[37] X. Yuan, R. Melhem and R. Gupta, “Algorithms for Supporting Compiled Communica-

tion,” IEEE Transactions on Parallel and Distributed Systems, 14(2):107-118, February

2003.

40

