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Abstract

We develop a message scheduling scheme for efficiently realizing all–to–all personal-
ized communication (AAPC) on Ethernet switched clusters with one or more switches.
To avoid network contention and achieve high performance, the message scheduling
scheme partitions AAPC into phases such that (1) there is no network contention within
each phase; and (2) the number of phases is minimum. Thus, realizing AAPC with
the contention-free phases computed by the message scheduling algorithm can poten-
tially achieve the minimum communication completion time. In practice, phased AAPC
schemes must introduce synchronizations to separate messages in different phases. We
investigate various synchronization mechanisms and various methods for incorporat-
ing synchronizations into the AAPC phases. Experimental results show that the mes-
sage scheduling based AAPC implementations with proper synchronization consistently
achieve high performance on clusters with many different network topologies when the
message size is large.

Keywords: All-to-all personalized communications, Ethernet, scheduling.

1 Introduction

All–to–all personalized communication (AAPC) is one of the most common communication

patterns in high performance computing. In AAPC, each machine in a system sends a differ-

ent message of the same size to every other machine. The Message Passing Interface (MPI)

routine that realizes AAPC is MPI Alltoall [15]. AAPC appears in many high performance

applications, including matrix transpose, multi-dimensional convolution, and data redistribu-

tion. Since AAPC is often used to rearrange the whole global array in an application, the
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message size in AAPC is usually large. Thus, it is crucial to have an AAPC implementation

that can fully exploit the network bandwidth in the system.

Switched Ethernet is the most widely used local–area–network (LAN) technology. Many

Ethernet–switched clusters of workstations are used to perform high performance computing.

For such clusters to be effective, communications must be carried out as efficiently as possible.

In this paper, we investigate efficient AAPC on Ethernet switched clusters.

We develop a message scheduling scheme for efficiently realizing AAPC on Ethernet switched

clusters with one or more switches. Similar to other AAPC scheduling schemes [6], our scheme

partitions AAPC into contention-free phases and fully utilizes the bandwidth in the bottleneck

links in all phases. Hence, realizing AAPC with the contention-free phases can potentially

achieve the minimum communication completion time. In practice, phased AAPC schemes

must introduce synchronizations to separate communications in different phases. We investi-

gate various synchronization mechanisms and various methods for incorporating synchroniza-

tions into the AAPC phases, and discuss the variations of AAPC implementations that are

based on the AAPC phases computed by the message scheduling algorithm. For each of the

variations, we develop an automatic routine generator that takes the topology information as

input and produces a customized MPI Alltoall routine. We evaluate the automatically gen-

erated routines and compare them with the original MPI Alltoall routine in LAM/MPI [10]

and the recently improved MPICH [23]. The results show that the message scheduling based

AAPC implementations with proper synchronization consistently achieve high performance

on clusters with many different network topologies when the message size is large.

The rest of the paper is organized as follows. Section 2 discusses the related work. Section

3 describes the network model. Section 4 details the proposed scheduling scheme. Section 5

discusses issues and variations of the message scheduling based implementations. Section 6

reports experimental results. Finally, the conclusions are presented in Section 7.
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2 Related Work

AAPC has been extensively studied due to its importance. A large number of optimal message

scheduling algorithms for different network topologies with different network models were

developed. Many of the algorithms were designed for specific network topologies that are used

in parallel machines, including hypercube [7, 24], mesh [1, 18, 17, 22], torus [6, 11], k-ary n-cube

[24], and fat tree [3, 16]. Heuristic algorithms were developed for AAPC on irregular topologies

[5, 14]. A framework for AAPC that is realized with indirect communications was reported in

[8]. Efficient AAPC scheduling schemes for clusters connected by a single switch was proposed

in [19]. Some of the algorithms in [19] are incorporated in the recent improvement of the

MPICH library [23]. Contention-aware AAPC schemes for hierarchical networks were studied

in [20]. Many techniques for optimizing other communication operations using contention-free

communications on switch-based clusters were also developed (see for example [12, 13]). We

consider Ethernet switched clusters with one or more switches. AAPC on such clusters is a

special communication pattern on a tree topology. To the best of our knowledge, message

scheduling for such cases has not been developed. Many advanced communication systems

[9, 25] can take advantage of the algorithms developed in this paper.

3 Network Model

We consider homogeneous Ethernet switched clusters, where both nodes and links in the

system are homogeneous. Links operate in the duplex mode that allows each machine to

send and receive at the full link speed simultaneously. The switches may be connected in

an arbitrary way. However, a spanning tree algorithm is used by the switches to determine

forwarding paths that follow a tree structure [21]. As a result, the physical topology is always

a tree. There is a unique path between any two nodes in the network.

The network can be modeled as a directed graph G = (V, E) with nodes V corresponding to

switches and machines and directed edges E corresponding to unidirectional channels. Since
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all edges are directed, we will use the terms edge and directed edge interchangeably. Let S be

the set of switches and M be the set of machines. V = S ∪M . Let u, v ∈ V , a directed edge

(u, v) ∈ E if and only if there is a direct link between node u and node v. We will call the

physical connection between node u and node v link (u, v). Thus, link (u, v) corresponds to

two directed edges (u, v) and (v, u) in the graph. Since the network topology is a tree, the

graph is also a tree. A machine u ∈ M can only be a leaf node and a switch s ∈ S can only

be an internal node. Figure 1 shows an example cluster.

s0

n0

s1 s2

switches

machines

n3 n4

roots3

s4 s5

subtree

n1

n2

Figure 1: An example Ethernet Switched Cluster

The terminologies used in this paper are defined next. A message, u → v, is a commu-

nication to be transmitted from node u to node v. The notion path(u, v) denotes the set

of directed edges in the unique path from node u to node v. For example, in Figure 1,

path(n0, n1) = {(n0, s0), (s0, s4), (s4, n1)}. Two messages, u1 → v1 and u2 → v2, are said to

have contention if they share a common directed edge, that is, there exists a directed edge

(x, y) such that (x, y) ∈ path(u1, v1) and (x, y) ∈ path(u2, v2). A pattern is a set of messages.

The AAPC pattern on a network G = (S ∪ M, E) is {u → v|u 6= v ∧ u ∈ M ∧ v ∈ M}. A

contention-free pattern is a pattern where no two messages in the pattern have contention. A

phase is a contention-free pattern. For a given pattern, the load on an edge is the number of

times the edge is used in the pattern. The most loaded edge is called a bottleneck edge. The

load of a pattern is equal to the load of a bottleneck edge. Since the topology is a tree, for

the AAPC pattern, edges (u, v) and (v, u) always have the same load. Since we only consider

AAPC in this paper, we will use the terms “the load of an edge (u, v)” and “the load of a

link (u, v)” interchangeably. A bottleneck edge on a graph refers to a bottleneck edge for the
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AAPC pattern unless specified otherwise. For a set S, |S| denotes the size of the set. The

message size in the AAPC pattern is denoted as msize. Since scheduling for AAPC when

|M | ≤ 2 is trivial, we will assume that |M | ≥ 3.

Let edge (u, v) be one of the bottleneck edges. Assume that removing link (u, v) (edges (u, v)

and (v, u)) from G results in two connected components Gu = (Su ∪ Mu, Eu) and Gv = (Sv ∪

Mv, Ev). Gu is the connected component including node u, and Gv is the connected component

including node v. AAPC requires |Mu| × |Mv| × msize bytes of data to be transferred across

(u, v) in both directions. Let B be the bandwidth on all links. The best case time to complete

AAPC is |Mu|×|Mv|×msize

B
. The aggregate throughput of AAPC is bounded by

Peak aggregate throughput ≤
|M | × (|M | − 1) × msize

|Mu|×|Mv|×msize

B

=
|M | × (|M | − 1) × B

|Mu| × |Mv|
.

In general networks, the peak aggregate throughput may not be achievable. However, this

physical limit can be approached through message scheduling for the tree topology.

4 AAPC Message Scheduling

In the following, we will present an algorithm that computes phases for AAPC. The phases

conform to the following constraints, which are sufficient to guarantee optimality: (1) no

contention within each phase; and (2) the total number of phases is equal to the load of

AAPC on a given topology. In theory, when phases that satisfy these constraints are carried

out without inter-phase interferences, the peak aggregate throughput is achieved. In practice,

synchronizations must be used to separate the communications in different phases. We will

focus on computing the contention-free AAPC phases in this section. Practical issues including

different synchronization mechanisms and different ways to incorporate synchronizations into

the AAPC phases will be discussed in the next section.

The scheduling algorithm has three major steps. In the first step, the algorithm identifies

a root of the system. For a graph G = (S ∪ M, E), a root is a switch that satisfies the
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following conditions: (1) it is connected to a bottleneck edge; and (2) the number of machines

in each of the subtrees connecting to the root is less than or equal to |M |
2

, half of all machines

in the system. Note that a subtree of the root is a connected component after the root is

removed from G. Once the root is identified, messages in AAPC are classified in two levels:

local messages that are within a subtree, and global messages that are between subtrees. In

the second step, the algorithm allocates phases for global messages. Finally, the third step

assigns a phase to each of the local and global messages.

4.1 Identifying a root

Let the graph be G = (S ∪M, E). The process to find a root in the network is as follows. Let

link L = (u, v) (edges (u, v) and (v, u)) be one of the bottleneck links. Link L partitions G

into two connected components, Gu = (Su∪Mu, Eu) and Gv = (Sv ∪Mv, Ev). The load of link

L is thus, |Mu|× |Mv| = (|M |− |Mv|)×|Mv|. Let us assume that |Mu| ≥ |Mv|. If in Gu, node

u has more than one branch containing machines, then node u is the root. Otherwise, node u

should have exactly one branch that contains machines (obviously this branch may also have

switches). Let the branch connect to node u through link (u1, u). Clearly, link (u1, u) is also

a bottleneck link since all machines in Gu are in Gu1
. Thus, we can repeat the process for link

(u1, u). This process can be repeated an arbitrary n times and n bottleneck links (un, un−1),

(un−1, un−2), ..., (u1, u), are considered until the node un has more than one branch containing

machines in Gun
. Then, un is the root. Node un should have a nodal degree larger than 2 in

G when |M | ≥ 3.

Lemma 1: Each subtree of the root contains at most |M |
2

machines.

Proof: Using the process described above, we identify a root un and the connected bottleneck

link (un, un−1). Let Gun
= (Sun

∪ Mun
, Eun

) and Gun−1
= (Sun−1

∪ Mun−1
, Eun−1

) be the two

connected components after link (un, un−1) is removed from G. We have |Mun
| ≥ |Mun−1

|,

which implies |Mun−1
| ≤ |M |

2
. The load on the bottleneck link (un, un−1) is |Mun

| × |Mun−1
|.

Let node w be any node that connects to node un in Gun
and Gw = (Sw ∪ Mw, Ew) be
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the corresponding subtree. We have |M |
2

≥ |Mun−1
| ≥ |Mw| [Note: if |Mun−1

| < |Mw|, the

load on link (un, w) is greater than the load on link (un, un−1) (|Mw| × (|M | − |Mw|) >

|Mun−1
| × (|M | − |Mun−1

|)), which contradicts the fact that (un, un−1) is a bottleneck link].

Hence, each subtree of the root contains at most |M |
2

machines. 2

In Figure 1, links (s0, s1), (s1, s2), and (s2, s3) are bottleneck links. Let us assume that

(s1, s2) is initially selected to start the process. Removing (s1, s2) yields two connected

components: Gs1 = (Ss1 ∪ Ms1, Es1) and Gs2 = (Ss2 ∪ Ms2, Es2). Since 3 = |Ms2| > |Ms1| = 2

and s2 has one branch to s3 in Gs2, the process will consider bottleneck link (s2, s3). Removing

this link results in two connected components Gs3 = (Ss3∪Ms3, Es3) and Gs2 = (Ss2∪Ms2, Es2).

Since |Ms3| > |Ms2| and s3 has two branches in Gs3, one to machine n2 and the other one to

s5, switch s3 is identified as the root.

In the rest of the paper, we will assume that the root connects to k subtrees, T0, T1, ...,

Tk−1, with |M0|, |M1|, ..., |Mk−1| machines respectively. Figure 2 shows the two-level view of

the system. Without loss of generality, let us assume that |M0| ≥ |M1| ≥ ... ≥ |Mk−1|. Thus,

the load of AAPC is |M0| × (|M1| + |M2| + ... + |Mk−1|) = |M0| × (|M | − |M0|).
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������
���

������
���
������
���

root

k−1TTT0 1

Figure 2: A two level view of the system

4.2 Global Message Scheduling

Global messages are messages between machines in different subtrees. We will use the notation

Ti → Tj to represent the set of messages from machines in subtree Ti to machines in subtree

Tj. In global message scheduling, all messages in Ti → Tj are grouped together and allocated

in consecutive phases. Since each message in Ti → Tj uses the edge from Ti to the root, to

avoid contention, each message in Ti → Tj must occupy a different phase. Since there are
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a total of |Mi| × |Mj| messages in Ti → Tj, the global message scheduling scheme allocates

|Mi| × |Mj| continuous phases for Ti → Tj. The phases are allocated as follows.

• When j > i, messages in Ti → Tj start at phase |Mi|× (|Mi+1|+ |Mi+2|+ ...+ |Mj−1|) =

|Mi| ×
∑j−1

n=i+1 |Mn|. Note that when i + 1 > j − 1,
∑j−1

n=i+1 |Mn| = 0.

• When i > j, messages in Ti → Tj start at phase |M0| × (|M | − |M0|)− (|Mi|+ |Mi−1|+

... + |Mj+1|) × |Mj| = |M0| × (|M | − |M0|)− (|Mj| ×
∑i

n=j+1 |Mn|).

Figure 3 shows the scheduling of global messages for the example in Figure 1. In this

figure, T0 contains two machines n0 and n1; T1 contains two machines n3 and n4; and T2

contains one machine n2. |M0| = 2, |M1| = 2, and |M2| = 1. Messages in T1 → T2 start at

|M1| ×
∑1

n=2 |Mn| = 0. Messages in T0 → T2 start at |M0| ×
∑1

n=1 |Mn| = |M0| × |M1| = 4.

Messages in T2 → T0 start at |M0| × (|M | − |M0|) − |M0| ×
∑2

n=1 |Mn| = 0.

T  −> T10 0T  −> T2 0

1

2

T  : n0, n1

T  : n3, n4

T  : n2

2 T  −> T

T  −> TT  −> T

1 1 0

2 0 2 1

T  −> T

Phase            0         1          2         3         4          5

Figure 3: Global message scheduling for the example in Figure 1

Lemma 2: Using the global message scheduling scheme described above, the resulting phases

have the following two properties: (1) the number of phases allocated is |M0| × (|M | − |M0|);

and (2) in each phase, each subtree is allocated to send at most one global message and receive

at most one global message.

Proof: The first property can be verified by examining phases allocated to all Ti → Tj, i 6= j.

For the second property, it can be shown that, for any subtree Ti, (1) phases allocated to

Ti → Tj, j 6= i, do not overlap; and (2) phases allocated to Tj → Ti, j 6= i, do not overlap.

We will leave the details to the reader. Since each message in Ti → Tj occupies a different

phase, there can be at most one global message sent from Ti and one global message sent to

Ti in each phase. 2
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4.3 Global and Local Message Assignment

The global and local message assignment decides the phase for each message. The following

lemma, which is the foundation of our assignment scheme, states that in a tree topology, a

message sent to a node does not have contention with a message sent from the node regardless

of the source of the message to the node and the destination of the message from the node.

Lemma 3: Let G = (S∪M, E) be a tree and x 6= y 6= z ∈ S∪M , path(x, y)∩path(y, z) = φ.

Proof: Assume that path(x, y) ∩ path(y, z) 6= φ. There exists an edge (u, v) that belongs to

both path(x, y) and path(y, z). As a result, the composition of the partial path path(y, u) ⊆

path(y, z) and path(u, y) ⊆ path(x, y) forms a non-trivial loop: edge (u, v) is in the loop while

edge (v, u) is not. This contradicts the assumption that G is a tree. 2

4.3.1 Handling global messages

Lemma 4: There is no contention among global messages.

Proof: From Lemma 2, there is at most one global message sent from and to each subtree in

any phase. The global message that is sent from the subtree will go through the root first

(before reaching another subtree) and the global message that is sent to the subtree must also

go through the root. From Lemma 3, these two messages will not have contention within the

subtree and its link to the root. Since this conclusion applies to all subtrees in all phases,

there is no contention among the global messages. 2

Lemma 4 indicates that as long as global messages in Ti → Tj are assigned to the phases

allocated to Ti → Tj, there will be no contention among the global messages. Let the machines

in subtree Ti be mi,0, mi,1, ..., mi,(|Mi|−1). To realize the global messages in Ti → Tj, 0 ≤ i 6=

j < k, each message mi,i1 → mj,j1, 0 ≤ i1 < |Mi| and 0 ≤ j1 < |Mj|, must happen in the

|Mi|× |Mj| phases that are allocated to Ti → Tj. Our assignment algorithm uses two different

methods to realize inter-subtree global communications. The first scheme is what we refer to

as a broadcast scheme. In this scheme, the |Mi|× |Mj | phases are partitioned into |Mi| rounds

with each round having |Mj| phases. In each different round, a different machine in Ti sends
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one message to each of the machines in Tj. This method has the flexibility in selecting the

order of the senders in Ti in each round and the order of the receivers in Tj within each round.

One example is to have the kth round realize the broadcast from node mi,k to all nodes in Tj,

which may result in the following pattern:

mi,0 → mj,0, ..., mi,0 → mj,|Mj |−1, ..., mi,|Mi|−1 → mj,0, ..., mi,|Mi|−1 → mj,|Mj |−1.

The second scheme is what we refer to as a rotate scheme. Let D be the greatest common

divisor of |Mi| and |Mj|. D = gcd(|Mi|, |Mj|) and |Mi| = a×D, |Mj| = b×D. Table 1 shows

an example of the rotate pattern when |Mi| = 6 and |Mj| = 4. In this case, a = 3, b = 2, and

D = 2. In this scheme, the pattern for receivers is a repetition of Mi times of a fixed sequence

that enumerates all machines in Tj. In the example in Table 1, the fixed receiver sequence is

mj,0, mj,1, mj,2, mj,3, which results in the receiver pattern of the following:

phase 0 1 2 3 4 5 6 7 ...

receiver mj,0 mj,1 mj,2 mj,3 mj,0 mj,1 mj,2 mj,3 ...

Different from the broadcast scheme, in a rotate scheme, the sender pattern is also an enu-

meration of all nodes in Ti in every |Mi| phases. There is a base sequence for the senders, which

can be an arbitrary sequence that covers all nodes in Ti. For example, In Table 1, the base

sequence for the senders is mi,0, mi,1, mi,2, mi,3, mi,4, mi,5. In the scheduling, the base sequence

and the “rotated” base sequence are used. Let the base sequence be mi,0, mi,1, ...mi,|Mi|−1.

The base sequence can be rotated 1 time, which produces the sequence mi,1, ...mi,|Mi|−1, mi,0.

Sequence mi,2, ...mi,|Mi|−1, mi,0, mi,1 is the result of rotating the base sequence 2 times. The

result from rotating the base sequence an arbitrary number of times can be defined similarly.

The senders are scheduled as follows. The base sequence is repeated b times for the first

a× b×D phases. At phase a× b×D, the scheme finds the smallest n such that after the base

sequence is rotated n times, the message (sender and receiver pair) at phase a×b×D does not

happen before. The sequence resulting from rotating base sequence n times is then repeated b

times. This process is repeated D times to create the sender pattern for all |Mi|×|Mj| phases.

Basically, at phases whose numbers are multiples of a× b×D, rotations are performed to find
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Table 1: Rotate pattern for realizing Ti → Tj when |Mi| = 6 and |Mj| = 4
phase message phase message phase message phase message

0 mi,0 → mj,0 6 mi,0 → mj,2 12 mi,1 → mj,0 18 mi,1 → mj,2

1 mi,1 → mj,1 7 mi,1 → mj,3 13 mi,2 → mj,1 19 mi,2 → mj,3

2 mi,2 → mj,2 8 mi,2 → mj,0 14 mi,3 → mj,2 20 mi,3 → mj,0

3 mi,3 → mj,3 9 mi,3 → mj,1 15 mi,4 → mj,3 21 mi,4 → mj,1

4 mi,4 → mj,0 10 mi,4 → mj,2 16 mi,5 → mj,0 22 mi,5 → mj,2

5 mi,5 → mj,1 11 mi,5 → mj,3 17 mi,0 → mj,1 23 mi,0 → mj,3

a new sequence. In Table 1, the base sequence is repeated b = 2 times. After that, a rotated

sequence for the senders mi,1, mi,2, mi,3, mi,4, mi,5, mi,0 is repeated 2 times. It can be verified

that all messages in Ti → Tj are realized in the rotate scheme. The following two lemmas,

derived from the definitions, state the related properties of these two patterns.

Lemma 5: In the broadcast pattern that realizes Ti → Tj, each sender mi,n, 0 ≤ n < |Mi|,

occupies |Mj| continuous phases. 2

Lemma 6: In the rotate pattern that realizes Ti → Tj, counting from the first phase for

messages in Ti → Tj, each sender in Ti happens once in every |Mi| phases and each receiver

in Tj happens once in every |Mj| phases. 2

4.3.2 Handling local messages

Consider subtree Ti, the total number of local messages in Ti is |Mi|× (|Mi|− 1), which is less

than |M0|×(|M |−|M0|) since |Mi| ≤
|M |
2

(Lemma 1). Thus, for each subtree, it is sufficient to

schedule one local message in each phase. Let u → v be a local message in Ti. From Lemma 3,

there are four cases when this local message can be assigned without contention (with global

messages) in a phase. The cases are summarized in Table 2. Note that by assigning at most

one local message in each subtree in a phase, there is no possibility of contention between local

messages and the algorithm does not have to consider the specific topologies of the subtrees.

The challenge in the local and global message assignment is that the global messages must be

assigned in such a way that each of the local messages can have a case in Table 2.
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4.3.3 The assignment algorithm

The detailed global and local message assignment algorithm is shown in Figure 4. The algo-

rithm consists of six steps. We will explain each step next.

In the first step, the messages from T0 to all other subtrees Tj, 1 ≤ j < k, are scheduled.

First, the receivers in T0 → Tj are assigned such that at phase p, node mj,(p−|M0|×(|M |−|M0|)) mod |Mj |

is the receiver. In the phases for T0 → Tj, a receiver sequence that covers all nodes in Tj is

repeated |M0| times, which facilitates the rotate pattern to be used for messages in T0 → Tj.

The reason that the receivers use that particular pattern is to align the receivers with the

receivers in Ti → Tj when i > j. As will be shown in Step 5, this alignment is needed to

correctly schedule local messages. Using the rotate pattern ensures that each of the nodes in

T0 appears once as the sender in every |M0| phases counting from phase 0.

In the second step, messages in Ti → T0 are assigned. In this step, phases are partitioned

into rounds where each round has |M0| phases starting from phase 0. Thus, phases 0 to

|M0| − 1 belong to round 0, phases |M0| to 2 × |M0| − 1 belong to round 1, and so on. The

primary objective of this step is to make sure that all local messages in T0 can be scheduled.

The objective is achieved by creating the pattern (for sending and receiving global messages)

shown in Table 3, which is basically a rotate pattern for T0 → T0. Since in step 1, each node

in T0 appears as a sender in every |M0| phases, the scheduling of receivers in Ti → T0 can

directly follow the mapping in Table 3. For example, in a phase in round 0, if m0,0 is the

sender (decided in step 1), then m0,1 will be the receiver in this phase. After the receiver

Table 2: Four cases for scheduling a local message u → v in Ti without causing contention
Case (1): Node v is the sender of a global message

and node u is the receiver of a global message.
Case (2): Node v is the sender of a global message

and there is no receiving node of a global message in Ti.
Case (3): Node u is the receiver of a global message

and there is no sending node of a global message.
Case (4): There is no sending node

and no receiving node of global messages in Ti.
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Input: Results from global message scheduling that identify which phases are used to
realize Ti → Tj for all 0 ≤ i 6= j < k

Output: (1) the phase to realize each global message
mi,i1 → mj,j1, 0 ≤ i1 < |Mi|, 0 ≤ j1 < |Mj |, 0 ≤ i 6= j < k.

(2) the phase to realize each local message mi,i1 → mi,i2 , 0 ≤ i1 6= i2 < |Mi|, 0 ≤ i < k.

Step 1: Assign phases to messages in T0 → Tj , 1 ≤ j < k.
1.a: For each T0 → Tj , the receivers in Tj are assigned as follows:

at phase p in the phases for T0 → Tj, machine mj,(p−|M0|×(|M |−|M0|)) mod |Mj | is the receiver.

/* it can be verified that a sequence that enumerates the nodes in Tj is repeated |M0| times
in phases for T0 → Tj . */

1.b: For each T0 → Tj , the senders in T0 are assigned according to the rotate pattern with
the base sequence m0,0,m0,1, ...,m0,|M0|−1.

Step 2: Assign phases to messages in Ti → T0, 1 ≤ i < k.
2.a: Assign the receivers in Ti → T0:

/*Step 1.b organizes the senders in T0 in such a way that every |M0| phases, all nodes in T0

appear as the sender once. We call |M0| phases a round */
The receiver pattern in Ti → T0 is computed based on the sender pattern in T0 → Tj according
to the mapping shown in Table 3. Round r has the same mapping as round r mod |M0|.
/* the mapping ensures that the local messages in T0 can be scheduled */

2.b: Assign the senders in Ti using the broadcast pattern with order mi,0, mi,1, ..., mi,|Mi|−1.

Step 3: Schedule local messages in T0 in phase 0 to phase |M0| × (|M0| − 1).
message m0,i → m0,j, 0 ≤ i 6= j < |M0|, is scheduled at the phase where m0,i is the receiver
of a global message and m0,j is the sender of a global message.

Step 4: Assign phases to global messages in Ti → Tj , i > j and j 6= 0.
Use the broadcast pattern with receivers repeating pattern mj,0, mj,1, ..., mj,|Mj |−1 for each

sender mi,k and senders following the order mi,0, mi,1, ..., mi,|Mi|−1.

Step 5: Schedule local messages in Ti, 1 ≤ i < k, in phases for Ti → Ti−1.
/* the last phase for Ti → Ti−1 is phase |M0| × (|M | − |M0|) − 1.*/
Steps 1 through 4 ensure that for each local message mi,i1 → mi,i2,
there is a phase in the phases for Ti → Ti−1 such that mi,i2 is the sender
of a global message and either mi,i1 is a receiver of a global message or no node in Ti

is receiving a global message. This step schedules mi,i1 → mi,i2 in this phase.

Step 6: Use either the broadcast pattern or the rotate pattern for messages in Ti → Tj , i < j and i 6= 0.
/* scheduling of these global message would not affect the scheduling of local messages. */

Figure 4: The global and local message assignment algorithm
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pattern is decided, the senders of Ti → T0 are determined using the broadcast scheme with

the sender order mi,0, mi,1, ..., mi,|Mi|−1.

Step 3 embeds local messages in T0 in the first |M0| × (|M0| − 1) phases. Note that |M0| ×

(|M0| − 1) ≤ |M0| × (|M | − |M0|) since |M0| ≤
|M |
2

. Since the global messages for nodes in T0

are scheduled according to Table 3, for each m0,n → m0,m, 0 ≤ n 6= m < |M0|, there exists

a phase in the first |M0| × (|M0| − 1) phases such that m0,n is scheduled to receive a global

message while m0,m is scheduled to send a global message. Thus, all local messages in T0,

m0,n → m0,m, 0 ≤ n 6= m < |M0|, can be scheduled in the the first |M0| × (|M0| − 1) phases.

In Step 4, global messages in Ti → Tj, i > j and j 6= 0 are assigned. The broadcast pattern

is used to assign global messages with receivers repeating the pattern mj,0, mj,1, ..., mj,|Mj |−1

and senders following the order mi,0, mi,1, ..., mi,|Mi|−1. Hence, messages in Ti → Tj, i > j

and j 6= 0 are assigned as

mi,0 → mj,0, ..., mi,0 → mj,|Mj |−1, ..., mi,|Mi|−1 → mj,0, ..., mi,|Mi|−1 → mj,|Mj |−1.

In Step 5, we schedule local messages in subtrees other than T0. Local messages in Ti,

1 ≤ i < k, are scheduled in the phases for Ti → Ti−1. Note that |Mi−1| ≥ |Mi| and there

are |Mi| × |Mi−1| phases for messages in Ti → Ti−1, which is more than the |Mi| × (|Mi| − 1)

phases needed for local messages in Ti. There are some subtle issues in this step. First, all

local messages are scheduled before assigning phases to global messages in Ti → Tj, 1 ≤ i < j.

The reason that global messages in Ti → Tj, 1 ≤ i < j, do not affect the local message

scheduling in subtree Tn, 1 ≤ n < k, is that all local messages are scheduled in phases after

Table 3: Mapping between senders and the receivers in Step 2
round 0 round 1 ... round |M0| − 2 round |M0| − 1 ...

send recv send recv ... send recv send recv ...
m0,0 m0,1 m0,0 m0,2 ... m0,0 m0,|M0|−1 m0,0 m0,0 ...
m0,1 m0,2 m0,1 m0,3 ... m0,1 m0,0 m0,1 m0,1 ...
... ... ... ... ... ... ... ... ... ...

m0,|M0|−2 m0,|M0|−1 m0,|M0|−2 m0,0 ... m0,|M0|−2 m0,|M0|−3 m0,|M0|−2 m0,|M0|−2 ...
m0,|M0|−1 m0,0 m0,|M0|−1 m0,1 ... m0,|M0|−1 m0,|M0|−2 m0,|M0|−1 m0,|M0|−1 ...

14



the first phase for T0 → Tn (since |Mn| × |Mn−1| ≤ |M0| × |Mn|) while phases for Ti → Tj,

1 ≤ i < j, are all before that phase. Second, let us examine how exactly a communication

mi,i2 → mi,i1 is scheduled. From Step 4, the receiver in Tj → Ti, j > i, is organized such that,

at phase p, mi,(p−|M0|×(|M |−|M0|)) mod |Mi| is the receiver. From Step 1, receivers in T0 → Ti are

also aligned such that at phase p, mi,(p−|M0|×(|M |−|M0|)) mod |Mi| is the receiver. Hence, in the

phases for Ti → Ti−1, either mi,(p−|M0|×(|M |−|M0|)) mod |Mi| is a receiver of a global message or no

node in Ti is receiving a global message. Thus, at all phases in Ti → Ti−1, we can assume that

the designated receiver is mi,(p−|M0|×(|M |−|M0|)) mod |Mi| at phase p. In other words, at phase p,

mi,(p−|M0|×(|M |−|M0|)) mod |Mi| can be scheduled as the sender of a local message. Now, consider

the sender pattern in Ti → Ti−1. Since Ti → Ti−1 is scheduled using the broadcast pattern,

each mi,i1 is sending in |Mi−1| continuous phases. Since the receiving pattern covers every

node, mi,i2 ∈ Ti, in every |Mi| continuous phases and |Mi−1| ≥ |Mi|, there exists at least one

phase where mi,i1 is sending a global message and mi,i2 is the designated receiver of a global

message. Local message mi,i2 → mi,i1 is scheduled in this phase. Hence, all messages in Ti

can be scheduled in phases for Ti → Ti−1 without contention.

Finally, since all local messages are scheduled, we can use either the broadcast scheme or

the rotate scheme to realize messages in Ti → Tj, i < j and i 6= 0.

Theorem: The global and local message assignment algorithm in Figure 4 produces phases

that satisfy the following conditions: (1) all messages in AAPC are realized in |M0| × (|M | −

|M0|) phases; and (2) there is no contention within each phase.

Proof: It is obvious that all global and local messages are assigned to phases that are allocated

to the global messages. From Lemma 2, all messages are realized in |M0|×(|M |−|M0|) phases.

For each subtree, the algorithm assigns, in one phase, at most one global message sent from the

subtree, one global message sent to the subtree, and one local message. It can be verified that

one of the four cases in Table 2 applies for the assignment of the local message. From Lemma

3, there is no contention between local and global messages. Since there is no contention
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among global messages (Lemma 4), there is no contention within each phase. 2

Table 4 shows the result of the global and local message assignment for the example in

Figure 1. In this table, we can assume m0,0 = n0, m0,1 = n1, m1,0 = n3, m1,1 = n4, and

m2,0 = n2. From the algorithm, we first determine the receiver pattern in T0 → T1 and

T0 → T2. For messages in T0 → T1, m1,(p−6) mod 2 is the receiver at phase p, which means

the receiver pattern from phase 0 to phase 3 is m1,0, m1,1, m1,0, and m1,1. After that, the

rotate pattern is used to realize all messages in T0 → T1. The results are shown in the second

column in the table. In the second step, messages in T1 → T0 and T2 → T0 are assigned.

Messages in T2 → T0 occupy the first round (first two phases). Since the sender pattern in

the first round is m0,0 and m0,1, according to Table 3, the receiver pattern should be m0,1 and

m0,0. The receivers for T1 → T0 are assigned in a similar fashion. After that, the broadcast

pattern is used to realize both T1 → T0 and T2 → T0. In Step 3, local messages in T0 are

assigned in the first 2 × 1 = 2 phases according to the assignment of the sender and receiver

of global messages in each phase. In Step 4, T2 → T1 is scheduled with a broadcast pattern.

In Step 5, local messages in T1 and T2 are scheduled. The local messages in T1 are scheduled

in phases for T1 → T0 (phase 2 to phase 5). Counting phases from the last phase (phase 5),

the algorithm ensures that each machine in T1 appears as the designated receiver in every

|M1| = 2 consecutive phases and that each machine in T1 sends a global message in |M0| = 2

consecutive phases. This arrangement allows all local messages to be assigned without causing

contention. Finally, in Step 6, we use the broadcast pattern for messages in T1 → T2.

Table 4: Results of global and local message assignment for the cluster in Figure 1
global messages local messages

phase T0 → {T1, T2} T1 → {T2, T0} T2 → {T0, T1} T0 T1 T2

0 m0,0 → m1,0 m1,0 → m2,0 m2,0 → m0,1 m0,1 → m0,0

1 m0,1 → m1,1 m1,1 → m2,0 m2,0 → m0,0 m0,0 → m0,1

2 m0,1 → m1,0 m1,0 → m0,0

3 m0,0 → m1,1 m1,0 → m0,1 m1,1 → m1,0

4 m0,0 → m2,0 m1,1 → m0,1 m2,0 → m1,0 m1,0 → m1,1

5 m0,1 → m2,0 m1,1 → m0,0 m2,0 → m1,1
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5 Message scheduling based AAPC implementations

One naive method to achieve contention-free AAPC is by separating the contention-free phases

computed by the message scheduling algorithm using barrier synchronizations. In theory, this

implementation achieves contention-free communication for AAPC. In practice, there are two

major limitations in this implementation. First, the barrier synchronizations would incur

substantial synchronization overheads unless special hardware for the barrier operation such

as the Purdue PAPERS [2] is available. Second, using barriers to separate all phases may

be overly conservative in allowing the data to be injected into the network. Most network

systems have some mechanisms such as buffering to resolve contention. Allowing the network

system to resolve a limited degree of contention usually results in a better utilization of

network resources than resolving contention at the user layer with barriers. Hence, it may

be more efficient to use the contention-free phases to limit contention instead of to totally

eliminate contention. To address the first limitation, other synchronization mechanisms with

less overheads such as the pair-wise synchronization can be used to replace the barriers. To

address the second limitation, the separation of the communications in different phases may

only be partially enforced (or not enforced) instead of being fully enforced. These issues give

rise to many variations in how the contention-free AAPC phases can be used to realize AAPC

efficiently. Note that synchronization messages can also cause contention. However, we ignore

such contention since synchronization messages are small and such contention can usually be

resolved by the network system effectively.

We will discuss the variations of message scheduling based AAPC schemes that we use to

evaluate the proposed message scheduling algorithm. We will classify a scheme as fully syn-

chronized when a synchronization mechanism is used to separate each pair of messages (in

different phases) that have contention, partially synchronized when a synchronization mecha-

nism is only used to limit the potential network contention, or not synchronized when no syn-

chronization mechanism is employed. The implementations that we consider include schemes
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with no synchronizations, fully and partially synchronized schemes with pair-wise synchro-

nizations, and fully and partially synchronized schemes with barrier synchronizations. Next,

we will describe the implementations.

Implementations with no synchronizations

The simplest scheme is to use the contention-free phases to order the send and receive opera-

tions without introducing any synchronization mechanism. Ordering the messages according

to the contention-free phases may reduce the network contention in comparison to other ar-

bitrary ordering of the messages. We will call this scheme the no-sync. scheme.

For systems with multiple switches, a machine may be idle in some phases. These idle

machines may move messages from one phase to an earlier phase in the no-sync. scheme,

which destroys the contention-free phase structure. Dummy messages can be added so that all

machines are busy in all phases, which may improve the chance for maintaining the contention-

free phase structure. Ideally, the dummy communications can happen between any two idle

machines in a phase. However, allowing dummy communications between an arbitrary pair

of machines significantly increases the complexity for scheduling the dummy messages. In

our implementation, we take a simple approach that limits the dummy communications to

be within one switch. Specifically, for each idle machine in a phase, the scheme tries to find

another machine in the same switch that does not receive or does not send. If such a machine

exists, a dummy communication between the two machines is created. If such a machine does

not exist, a dummy self-communication (send to self) is inserted in the phase for the idle

machine. We will call this scheme the dummy scheme.

Implementations with pair-wise synchronizations

With pair-wise synchronizations, the contention-free communications can be maintained by

ensuring that two messages that have contention are carried out at different times. There are

two ways to perform the pair-wise synchronizations: sender-based and receiver-based. In the

sender-based synchronization, to separate messages a → b in phase p and c → d in phase q,
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p < q, the synchronization message a → c is sent after a sends a → b, and c sends c → d

only after it receives the synchronization message. In the receiver-based synchronization, the

synchronization message b → c is sent after b finishes receiving a → b, and c sends c → d only

after it receives the synchronization message. The sender-based scheme is more aggressive

in that the synchronization message may be sent before a → b completes. Thus, some data

in a → b may reside in the network when c → d starts. The receiver-based scheme may be

over-conservative in that the synchronization message is sent only after the data in a → b are

copied into the application space in b.

We compute the required synchronizations for the fully synchronized scheme as follows.

For every communication in a phase, we check if a synchronization is needed for every other

communication at later phases and build a dependence graph, which is a directed acyclic graph.

After deciding all synchronization messages for all communications, we compute and remove

redundant synchronizations in the dependence graph. The redundant synchronizations are the

ones that can be derived from other synchronizations. For example, assume that message m1

must synchronize with message m2 and with another message m3. If message m2 also needs

to synchronize with message m3, then the synchronization from m1 to m3 can be removed.

Let |M | and |S| be the numbers of machines and switches respectively. The dependence graph

contains O(|M |2) nodes. The complexity to build the graph is O(|M |4|S|2) and the complexity

to remove redundant synchronizations is O(|M |6). Since these computations are performed off-

line, such complexity is manageable. In code generation, synchronization messages are added

for all the remaining edges in the dependence graph. This way, the AAPC algorithm maintains

a contention-free schedule while minimizing the number of synchronization messages.

In a partially synchronized scheme, the AAPC phases are partitioned into blocks of phases.

The number of phases in a block, bs, is a parameter. Block 0 contains phases 0 to bs − 1,

block 1 contains phases bs to 2 × bs − 1, and so on. The partially synchronized schemes

use synchronizations to separate messages in different blocks instead of phases. The order of
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communications within one block is not enforced. The required synchronizations in a partially

synchronized scheme are computed by first computing the required synchronizations for the

fully synchronized scheme and then removing the synchronizations within each block.

In summary, there are four types of implementations with pair-wise synchronizations. We

will name them as follows: sender all for the fully synchronized scheme with sender-based

synchronizations; sender partial (bs) for the partially synchronized scheme with sender-based

synchronizations and the parameter bs (the number of phases in a block); receiver all for the

fully synchronized scheme with receiver-based synchronizations; and receiver partial (bs) for

the partially synchronized scheme with receiver-based synchronizations.

Implementations with barrier synchronizations

The fully barrier synchronized AAPC scheme is the one with a barrier between each pair of

phases. In the partially barrier synchronized scheme, the AAPC phases are partitioned into

blocks of phases. The number of phases in a block, bs, is a parameter. A barrier is added be-

tween each pair of blocks (one barrier every bs phases). There are three variations of partially

barrier synchronized schemes: no synchronization within each block, sender-based pair-wise

synchronization within each block, and receiver-based pair-wise synchronization within each

block. We name these implementations with barriers as follows: barrier all for the fully syn-

chronized scheme; barrier partial & none (bs) for the partially synchronized schemes with no

synchronizations within each block; barrier partial & sender (bs) for the partially synchronized

schemes with sender all within each block; barrier partial & receiver (bs) for the partially

synchronized scheme with receiver all within each block.

6 Experiments

For each of the AAPC variations described in the previous section, we develop a routine gen-

erator that takes the topology information as input and automatically produces a customized

MPI Alltoall routine that employs the particular scheme for the given topology. The auto-
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matically generated routines run on MPICH 2-1.0.1 point-to-point primitives. We also use an

automatic tuning system [4] to select from all of the message scheduling based schemes the

best ones to form a tuned routine for each topology. Practically, the performance of the tuned

routines represents the best performance that can be obtained from our message scheduling

based implementations. Table 5 gives the names and brief descriptions of the schemes used

in the evaluation. Note that although the tuning system can theoretically be used to carry

out all the experiments, we only use it to generate the tuned routines. All experiments are

performed by manually executing the algorithms.

Table 5: Message scheduling based AAPC schemes used in the evaluation
Name (parameter) description
No-sync. no synchronization
Dummy no synchronization with dummy communications for idle machines
Sender all fully synchronized with sender-based pair-wise synchronizations
Sender partial (bs) partially synchronized with sender-based pair-wise synchronizations
Receiver all fully synchronized with receiver-based pair-wise synchronizations
Receiver partial (bs) partially synchronized with receiver-based pair-wise synchronizations
Barrier all fully synchronized with barrier synchronizations
Barrier partial & none (bs) partially synchronized with barrier synchronizations,

no synchronization within each block
Barrier partial & sender (bs) partially synchronized with barrier synchronizations,

sender all within each block of phases
Barrier partial & receiver (bs) partially synchronized with barrier synchronizations,

receiver all within each block of phases

Tuned scheduling based the best implementation selected from all of the schemes above

The message scheduling based schemes are compared with the original MPI Alltoall rou-

tine in LAM/MPI 7.1.1 [10] and a recent improved MPICH 2-1.0.1 [23]. LAM/MPI 7.1.1

and MPICH 2-1.0.1 are compiled with the default setting. Both LAM/MPI and MPICH

MPI Alltoall routines are based on point-to-point primitives. Since LAM/MPI and MPICH

have different point-to-point implementations, we also port the LAM/MPI algorithm to MPICH

and report the performance of the ported routine, which will be referred to as LAM-MPICH.

Hence, in the evaluation, message scheduling based implementations are compared with each

other and with native LAM/MPI 7.1.1, native MPICH 2-1.0.1, and LAM-MPICH.
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The experiments are performed on a 32-node Ethernet switched cluster. The nodes of the

cluster are Dell Dimension 2400 with a 2.8MHz P4 processor, 128MB of memory, and 40GHz

of disk space. All machines run Linux (Fedora) with 2.6.5-1.358 kernel. The Ethernet card in

each machine is Broadcom BCM 5705 with the driver from Broadcom. These machines are

connected to Dell PowerEdge 2224 100Mbps Ethernet switches.

for (i=0; i< WARMUP ITER; i++) MPI Alltoall(...);
MPI Barrier(...);
start = MPI Wtime();
for (count = 0; count < ITER NUM; count ++) { MPI Alltoall(...); MPI Barrier(...); }
elapsed time = MPI Wtime() - start;

Figure 5: Code segment for measuring the performance of MPI Alltoall.

The code segment used in the performance measurement is shown in Figure 5. A barrier

operation is performed after each all-to-all operation to ensure that the communications in

different invocations do not affect each other. Since we only consider AAPC with reasonably

large messages, the overhead introduced by the barrier operations is insignificant. The results

reported are the averages of 50 iterations of MPI Alltoall (ITER NUM = 50) when msize ≤

256KB and 20 iterations when msize > 256KB.

The topologies used in the studied are shown in Figure 6, two 24-node clusters in Figure 6 (a)

and Figure 6 (b) and two 32-node clusters in Figure 6 (c) and Figure 6 (d). We will refer to

these topologies as topologies (1), (2), (3), and (4). The aggregate throughput, which is defined

as |M |×(|M |−1)×msize

communication time
, is used as the performance metric and is reported in all experiments.

Figures 7 compares the tuned scheduling based implementation with MPICH, LAM, and

LAM-MPICH for topologies (1), (2), (3) and (4). In the figures, we also show the theoretical

peak aggregate throughput as a reference. The peak aggregate throughput is obtained using

the formula in Section 3, assuming a link speed of 100Mbps with no additional overheads.

The algorithm in LAM/MPI does not perform any scheduling while the improved MPICH

performs a limited form of scheduling. Both do not achieve high performance on all topolo-

gies since the network contention issue is not fully addressed in the implementations. On the
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Figure 6: Topologies used in the evaluation

contrary, by introducing proper synchronization into the contention-free AAPC phases, the

tuned scheduling based routine consistently achieve (sometimes significantly) higher perfor-

mance than MPICH, LAM, and LAM-MPICH in the four topologies when the message size

is larger than 4KB. This demonstrates the strength of the message scheduling scheme.

Next, we will investigate different synchronization mechanisms and different methods to

incorporate synchronizations into the contention-free phases in scheduling based AAPC im-

plementations. The trends in the experimental results for the four topologies are somewhat

similar. Thus, for each experiment, we will only report the results for two topologies.

Figure 8 compares the receiver-based pair-wise synchronization with the sender-based pair-

wise synchronization. When the message size is small, receiver all offers better performance.

When the message size is large, the sender-based scheme gives better results. With the sender-

based pair-wise synchronization, the AAPC scheme injects data into the network aggressively:

a message me in one phase may not be fully executed (the message may still be in the

network system) before the next message ml that may have contention with me starts. Hence,

the sender-based scheme allows a limited form of network contention. On the other hand,

using the receiver-based pair-wise synchronization, a message ml that may have contention
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(a) Results for Topology (1)
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(b) Results for Topology (2)
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(c) Results for Topology (3)
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(d) Results for Topology (4)

Figure 7: The performance of different AAPC implementations

with an earlier message me can start only after the message in me is received. The results

indicate that the limited contention in the sender-based scheme can be resolved by the network

system and the sender-based synchronization scheme offers better overall performance when

the message size is reasonably large. Since the scheduling based implementations are designed

for AAPC with reasonably large messages, we will use the send-based scheme for pair-wise

synchronization in the rest of the evaluation.

Figure 9 compares the performance of message scheduling based AAPC schemes with differ-

ent synchronization mechanisms, including no-sync., dummy, sender all, and barrier all. The

aggregate throughput achieved by no-sync. and dummy is much lower than that achieved by

the fully synchronized schemes. Also, adding dummy communications to the idle machines

seems to improve the performance over the no-sync. scheme in some situations (e.g. topology
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(b) Results for Topology (3)

Figure 8: Sender-based synchronization versus receiver-based synchronization

(2) with msize = 64KB) and to degrade the performance in some other situations. Due to

the complexity of AAPC, it is unclear whether adding dummy communications is effective

in maintaining the phase structure. The fully synchronized scheme with barriers incurs very

large overheads when the message size is small. Even when the message size is large, barrier

all still performs slightly worse than sender all in most cases. The 128KB case in Figure 9 (a)

where barrier all out-performs sender all is an exception. It is difficult to decide the rea-

son for this case: there are too many factors that can contribute to the performance. Yet,

the trend clearly shows that the pair-wise synchronization is more efficient than the barrier

synchronization in the implementation of the phased all-to-all communication algorithm.

Figure 10 compares the performance of partially synchronized schemes with sender-based

pair-wise synchronizations, including sender partial (2), sender partial (8), and sender partial

(16) with that of no-sync. and sender all. The trend in the figures is that as the message

size increases, more synchronizations are needed to achieve high performance. The fully

synchronized scheme performs the best when the message size is large (≥ 32KB). However,

the partially synchronized schemes are more efficient for medium sized messages (2KB to

16KB) than both no-sync. and sender all.

Figure 11 shows the performance of different schemes with barrier synchronizations. When

the message size is large, Barrier partial & none (4) performs similar to the no-sync. scheme.
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(a) Results for topology (2)
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Figure 9: Message scheduling based schemes with different synchronization mechanisms
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Figure 10: Partially synchronized schemes with sender-based pair-wise synchronizations
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(a) Results for topology (2)
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Figure 11: Schemes with barrier synchronizations
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Figure 12: Performance of Sender all and tuned scheduling based
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Figure 13: Performance of different fully synchronized schemes for large messages

When the message size is small, Barrier partial & none (4) incurs significant overheads.

These results indicate that partially synchronized schemes with no synchronizations within

each block are not effective. In all experiments, the hybrid barrier and sender-based pair-wise

synchronizations never perform better than both barrier all and sender all, which indicates

that such a combination may not be effective. The sender all scheme consistently achieves high

performance when the message size is reasonably large. Figure 12 compares the performance

of sender all and tuned scheduling based. The performance of sender all is very close to tuned

scheduling based when the message size is larger than 16KB.

Figure 13 shows the performance of different synchronization schemes for large messages.

As discussed earlier, for large messages, fully synchronized schemes are more effective than

27



partially synchronized schemes. Figure 13 shows the results for sender all, barrier all, barrier

partial & sender (4), barrier partial & sender (8), and barrier partial & sender (16). As can

be seen from the figure, when the message size is larger than 512KB, the relative performance

of these fully synchronized schemes is quite stable. Ordering the synchronization schemes

based on the performance from high to low yields: sender all, barrier partial & sender (16),

barrier partial & sender (8), and barrier partial & sender (4), and barrier all. These results

indicate that the sender-based pair-wise synchronization is sufficient even for large messages

in the implementation. The heavy weight MPI barrier introduces more overheads without

tangible benefits in realizing the phased all-to-all communication.

7 Conclusion

In this paper, we introduce a message scheduling algorithm for AAPC on Ethernet switched

clusters that computes contention-free AAPC phases, and investigate practical issues in mes-

sage scheduling based AAPC implementations, including various synchronization mechanisms

and various methods for incorporating synchronizations into the contention-free phases. We

demonstrate that the message scheduling based AAPC implementations with proper syn-

chronization consistently achieve high performance on clusters with many different network

topologies when the message size is sufficiently large. The performance may be further im-

proved with hardware support for efficient barrier operation such as Purdue PAPERS [2].
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