
Oblivious Routing for Fat-Tree Based System
Area Networks with Uncertain Traffic Demands

Xin Yuan Wickus Nienaber Zhenhai Duan
Department of Computer Science

Florida State University
Tallahassee, FL 32306

{xyuan,nienaber,duan}@cs.fsu.edu

Rami Melhem
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

melhem@cs.pitt.edu

ABSTRACT
Fat-tree based system area networks have been widely adopted
in high performance computing clusters. In such systems,
the routing is often deterministic and the traffic demand is
usually uncertain and changing. In this paper, we study
routing performance on fat-tree based system area networks
with deterministic routing under the assumption that the
traffic demand is uncertain. The performance of a rout-
ing algorithm under uncertain traffic demands is charac-
terized by the oblivious performance ratio that bounds the
relative performance of the routing algorithm and the op-
timal routing algorithm for any given traffic demand. We
consider both single path routing where the traffic between
each source-destination pair follows one path, and multi-
path routing where multiple paths can be used for the traffic
between a source-destination pair. We derive lower bounds
of the oblivious performance ratio of any single path rout-
ing scheme for fat-tree topologies and develop single path
oblivious routing schemes that achieve the optimal oblivi-
ous performance ratio for commonly used fat-tree topologies.
These oblivious routing schemes provide the best perfor-
mance guarantees among all single path routing algorithms
under uncertain traffic demands. For multi-path routing,
we show that it is possible to obtain a scheme that is opti-
mal for any traffic demand (an oblivious performance ratio
of 1) on the fat-tree topology. These results quantitatively
demonstrate that single path routing cannot guarantee high
routing performance while multi-path routing is very effec-
tive in balancing network loads on the fat-tree topology.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-

sign

General Terms
Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’07, June 12–16, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-639-4/07/0006 ...$5.00.

Keywords
Oblivious routing, fat-tree, system area networks

1. INTRODUCTION
The fat-tree topology has many properties that make it

attractive for large scale interconnects and system area net-
works [8, 9]. Most importantly the bisection bandwidth of
the fat-tree topology scales linearly with the network size.
The topology is also inherently highly resilient with a large
number of redundant paths between two processing nodes.
The fat-tree topology is very popular for building medium
and large system area networks [6, 12]. In particular, it has
been widely adopted by high performance computing (HPC)
clusters that employ the off-the-shelf high speed system area
networking technology, such as Myrinet [13] and Infiniband
[7]. The fat-tree topology is used in many of the top 500
fastest supercomputers listed in the June 2006 release [16].

Although the fat-tree topology provides rich connectivity,
having a fat-tree topology alone does not guarantee high
network performance: the routing mechanism also plays a
crucial role. Historically, adaptive routing, which dynami-
cally builds the path for a packet based on the network con-
dition, has been used with the fat-tree topology to achieve
load balance in the network [9]. However, the routing in the
current major system area networking technology such as
Infiniband and Myrinet is deterministic [7, 13]. For a fat-
tree based system area network with deterministic routing,
it is important to employ an efficient load balance routing
scheme in order to fully exploit the rich connectivity pro-
vided by the fat-tree topology.

Traditional load balance routing schemes usually optimize
the network usage for a given traffic demand. Such demand

specific schemes may not be effective for system area net-
works where the traffic demand is usually uncertain and
changing. Consider, for example, the traffic demands in
a large HPC cluster. Since many users share such a sys-
tem and can run many different applications, the traffic de-
mand depends both on how the processing nodes are allo-
cated to different applications and on the communication
requirement within each application. Hence, an ideal rout-
ing scheme should provide load balancing across all possible
traffic patterns. This requirement motivates us to study
demand-oblivious load balance routing schemes, which have
recently been shown to promise excellent performance guar-
antees with changing and uncertain traffic demands in the
Internet environment [1, 2, 18].

In this paper, we investigate routing performance on fat-

tree based system area networks with deterministic routing
under the assumption that the traffic demand is uncertain
and changing. For a given traffic demand that can be rep-
resented by a traffic matrix, the performance of a routing
scheme is measured by the maximum link load metric. The
performance of a routing algorithm under uncertain traffic
demands is characterized by the oblivious performance ratio

[1]. The formal definition of the oblivious performance ratio
will be introduced in the next section. Informally, a rout-
ing algorithm, r, with an oblivious performance ratio of x
means that for any traffic demand, the performance (maxi-
mum link load) of r on the demand is at most x times that
of the optimal routing algorithm for this demand. An oblivi-
ous performance ratio of 1 means that the routing algorithm
is optimal for all traffic demands.

System area networks, including Infiniband and Myrinet,
typically support single path routing and some form of multi-
path routing. It is well known that single path routing is
simple, but may not be as effective as multi-path routing
in balancing network loads. On the other hand, multi-path
routing introduces complications such as packet reordering
that the network system must handle. However, the per-
formance difference between single path routing and multi-
path routing on the fat-tree topology is not well understood.
Without a clear understanding of the performance differ-
ence, it is difficult to make a wise decision about whether
a system should use single path routing for its simplicity or
multi-path routing for its performance. This paper resolves
this problem: it provides a concrete quantitative compar-
ison between the performance of single path routing and
multi-path routing on the fat-tree topology.

This study focuses on fat-tree topologies formed with m-
port switches, where m is a parameter that is restricted to
be a multiple of 2. Although the results are obtained for
this type of fat-trees, the results, as well as our analyzing
techniques, can be easily extended to other types of fat-tree
topologies. The major conclusions in this paper include the
following. For a 3-level fat-tree, we prove that the oblivious
performance ratio of any single path routing algorithm is at
least

p

m
2

. For a 4-level fat-tree, we prove that the oblivious
performance ratio of any single path routing algorithm is at
least m

2
. For a fat-tree of height H, H > 4, we show that

the oblivious performance ratio of any single path routing

algorithm is at least (m
2

)b
H−2

3
c. These lower bounds indi-

cate that single path routing cannot guarantee high routing
performance on the fat-tree topology. For example, for any
single path routing algorithm on a 4-level fat-tree formed by
16-port switches, there always exists a traffic demand such
that this routing algorithm is 16

2
= 8 times worse than the

optimal algorithm for that traffic demand. We show that the
lower bounds are tight for 3-level and 4-level fat-trees by de-
veloping optimal single path oblivious routing schemes that
achieve these bounds. These algorithms provide the best
performance guarantees among all single path routing algo-
rithms under uncertain traffic demands. It must be noted
that practical fat-tree topologies are usually no more than
4 levels: depending on the number of ports in the switches
forming the fat-tree, a 4-level fat-tree can easily support
more than ten thousands processing nodes. Hence, the single
path routing schemes developed in this paper are sufficient
for most practical fat-tree based networks. For multi-path
routing, we show that it is possible to obtain a scheme that
is optimal for any traffic demand (an oblivious performance

ratio of 1) on the fat-tree topology. This suggests that multi-
path routing is much more effective than single path routing
in providing the worst case performance guarantees on the
fat-tree topology.

The rest of the paper is organized as follows. In Section 2,
we formally define routing and the metrics for evaluating
routing schemes and specify the fat-tree topology. In Sec-
tion 3, we study the single path oblivious routing schemes
for the fat-tree topology. In Section 4, we present the re-
sults for multi-path routing. Section 5 reports the results
of our performance study of the proposed algorithms and
other routing algorithms designed for the fat-tree topology.
Section 6 describes the related work. Finally, Section 7 con-
cludes the paper.

2. BACKGROUND

2.1 Routing and its performance metrics
Let the system have N processing nodes, numbered from

0 to N − 1. The traffic demand is described by an N × N
Traffic Matrix, TM . Each entry tmi,j in TM , 0 ≤ i ≤ N−1,
0 ≤ i ≤ N − 1, denotes the amount of traffic from node i to
node j. Let A be a set, |A| denotes the size of the set.

The definitions of routing and the performance metrics in
this paper are modeled after [1]. A routing specifies how the
traffic of each Source-Destination (SD) pair is routed across
the network. We consider two types of routing schemes:
single path routing where only one path can be used for
each SD pair, and multi-path routing where multiple paths
can be used. In multi-path routing, each path for an SD
pair routes a fraction of the traffic for the SD pair.

The multi-path routing can be characterized by a set of

paths MPi,j = {MP 1
i,j , MP 2

i,j , ..., MP
|MPi,j |
i,j } for each SD

pair (i, j), and the fraction of the traffic routed through each

path fi,j = {fk
i,j |k = 1, 2, ..., |MPi,j |}.

P|MPi,j |
k=1 fk

i,j = 1.
Hence, a multi-path routing, mr, is specified by a set of
paths MPi,j and a vector representing the fraction of the
traffic routed through each path fi,j for each SD pair (i, j),
0 ≤ i ≤ N − 1 and 0 ≤ j ≤ N − 1. Let link l ∈ MP k

i,j ,
the contribution of the traffic tmi,j to link l through path
MP k

i,j is thus tmi,j ×fk
i,j . Notice that link l may be in more

than one path in MPi,j . In this case, multiple paths for the
same SD pair can contribute to the traffic on link l. Single
path routing is a special case of multi-path routing where
|MPi,j | = 1 and all traffic from node i to node j is routed
through MP 1

i,j (f1
i,j = 1). Hence, a single path routing can

be specified by a path MP 1
i,j for each SD pair (i, j).

A common metric for the performance of a routing scheme
with respect to a certain traffic matrix, TM , is the maxi-
mum link load. Since all links in a fat-tree network have
the same capacity, the maximum link load is equivalent to
the maximum link utilization. Let Links denote the set of
all links in the network. For a multi-path routing mr, the
maximum link load is given by

MLOAD(mr, TM) = max
l∈Links

{
X

i,j,k such that l∈MP k
i,j

tmi,j×fk
i,j}.

For a single path routing sr, the maximum link load for-
mula is degenerated to

MLOAD(sr, TM) = max
l∈Links

{
X

i,j such that l∈P 1
i,j

tmi,j}.

An optimal routing for a given traffic matrix TM is a
routing that minimizes the maximum link load. Formally,
the optimal load for a traffic matrix TM is given by

OPTU(TM) = min
r is a routing

{MLOAD(r, TM)}

The performance ratio of a given routing r on a given
traffic matrix TM measures how far r is from being optimal
on the traffic matrix TM . It is defined as the maximum link
load of r on TM divided by the minimum possible maximum
link load on TM [1].

PERF (r, TM) =
MLOAD(r, TM)

OPTU(TM)

The value for PERF (r, TM) is always at least 1. It is ex-
actly 1 if and only if the routing is optimal for TM . When
a routing is optimized for a specific traffic matrix, it does
not provide any guarantees for other traffic matrices. The
definition of the performance ratio follows the “competitive
analysis” framework where performance guarantees of a cer-
tain solution are provided relative to the best possible so-
lution. The definition of performance ratio of a routing is
extended to be with respect to a set of traffic matrices [1].
Let Γ be a set of traffic matrices, The performance ratio of
a routing r on Γ is defined as

PERF (r,Γ) = max
TM∈Γ

{PERF (r, TM)}

When the set Γ includes all possible traffic matrices, the
performance ratio is referred to as the oblivious perfor-
mance ratio [1]. The oblivious performance ratio of a rout-
ing r is denoted by PERF (r). The oblivious performance
ratio is the worst performance ratio that a routing obtains
with respect to all traffic matrices. A routing with a mini-
mum oblivious ratio is an optimal oblivious routing scheme
and its oblivious ratio is the optimal oblivious ratio of the
network.

2.2 Fat-tree topology
In a fat-tree network, all links are bidirectional with the

same capacity. Figure 1 compares a binary tree with a bi-
nary fat-tree topology. In the binary tree, the number of
links (and thus the aggregate bandwidth) is reduced by half
at each level from the leaves to the root. This can cause
serious congestion towards the root. The binary fat-tree
topology remedies this situation by maintaining the same
bandwidth at each level of the network.

(a) Binary tree (b) Binary fat−tree

Figure 1: Binary tree and binary fat-tree topologies

The fat-tree topology shown in Figure 1 (b) is not prac-
tical for building large networks due to the large nodal de-
gree of the root. Alternatives were proposed to approximate
such a topology using multi-stage networks that are formed
by nodes with small nodal degrees [6, 17]. For example, the

fat-tree in Figure 1 (b) can be approximated by the topology
in Figure 2. These alternatives trade the connectivity with
the implementation simplicity. In this paper, we focus on
one of such alternatives: the fat-tree topologies formed by
m-port switches, where m is a parameter that is restricted
to a multiple of 2. Let an internal node in the fat-tree topol-
ogy be a node with a degree more than 1. All internal nodes
in our fat-tree topology has a degree of m (so that they can
be realized by m-port switches). Such a topology is a minor
generalization of the topology proposed in [6]. The tech-
nique we developed for this topology can easily be extended
for other fat-tree variations.

Figure 2: Approximate the topology in Figure 1 (b)

We will follow the naming convention in [6]: the fat-tree is
called m-port n-tree and denoted as FT (m,n). The param-
eter m in FT (m,n), which must be a multiple of 2, specifies
the nodal degree of all internal nodes in the topology. The
parameter n specifies the number of levels of internal nodes
in the topology. Thus, the height of FT (m,n) is n +1, that
is, FT (m,n) is an n + 1 level tree. FT (m,n) is a minor
generalization of the topology in [6] in that we allow m to
be a multiple of 2 while in [6], m must be a power of 2. In
the rest of this paper, internal nodes in FT (m,n) may also
be referred to as switches since each of the internal nodes
is realized by a switch when the topology is constructed.
Similarly, leaf nodes may also be referred to as processing

nodes. A 4-port 3-tree, FT (4, 3), is shown in Figure 3. No-
tice that in practice a processing element may have multiple
network adapters and have multiple connections to the net-
work. From the network point of view, however, supporting
such a processing element is the same as supporting mul-
tiple processing nodes, each having one connection to the
network with the combined traffic representing the traffic
for the processing element. Hence, we will assume that each
processing node has one connection to the network. Notice
also that the topology in Figure 2 is not an m-port n-tree
since there are two types of switches in the topology: top-
level switches have a degree of 2 and the lower-level switches
have a degree of 4.

Next, we will describe how FT (m,n) is formed. More de-
tails can be found in [6]. FT (m,n) is formed by connecting
the root level switches to m sub-fat-trees with n−1 levels of
switches. We will use the notion SUBFT (m, n−1) to denote
the sub-fat-trees with n−1 levels of switches. SUBFT (m, l)
is different from FT (m, l) in that SUBFT (m, l) must pro-
vide (open ended) up links for the sub-fat-tree while FT (m, l)
does not have up links. SUBFT (m, l) is recursively con-
structed as follows.

When l = 1, SUBFT (m, 1) contains 1 m-port switch. m
2

of the ports in the switch connect to m
2

processing nodes,
and m

2
ports remain open. We will call these opened ports

up-link ports since they will be used to connect to the upper
level switches. We denote the number of up-link ports in

2
a b

0 1 2 3

0 1 2 30 1 2 3

SUBFT(4, 2)

level
link
level

0

1

2

switch

0

1

Figure 3: The 4-port 3-three (FT (4, 3))

SUBFT (m, l) as nu(m, l). nu(m, 1) = m
2

. As will be shown

later, nu(m, l) = (m
2

)l. The up-link ports in SUBFT (m, l)
are numbered from 0 to nu(m, l) − 1.

SUBFT (m, l) is formed by having nu(m, l− 1) = (m
2

)l−1

m-port top level (of the sub-fat-tree) switches connecting
with m

2
SUBFT (m, l − 1)’s. Each of the top level switches

uses m
2

ports to connect to all m
2

of the SUBFT (m, l−1)’s.
Let us number top level switches from 0 to nu(m, l− 1)− 1.
The up-link ports i, 0 ≤ i < nu(m, l − 1), in all of the
SUB(m, l − 1)’s are connected to top level switch i. The
rest m

2
ports in a top level switch are up link ports of

SUBFT (m, l). Top level switch i provides up-link ports
m
2
×i to m

2
×(i+1)−1 for SUBFT (m, l). Figure 4 (a) shows

SUBFT (m, 1) and (b) shows the structure of SUBFT (m, l).
Clearly, nu(m, l) = nu(m, l − 1) × m

2
= (m

2
)l. Hence, each

SUBFT (m, l) has (m
2

)l up-link ports and connects to (m
2

)l

processing nodes.

���
�
���
�
���
�

���
�
��	
	

�
�

��

���
�
���
�

���
�
���
�
���
�

���
�
���
�
���
�

���������������
 � �
 �
!�!�!!�!�!!�!�!
"�""�"
"�"

##$
$
%%&
&
''(
(

)�))�)
)�)
*�**�*
�
+�+�++�+�++�+�+
,�,,�,
,�,

-�--�-
-�-
.�..�.
.�.

//0
0
112
2
334
4

556
6
778
8
99:
:

;;<
<
==>
>

?�??�?
?�?
@�@@�@
@�@

A�AA�A
A�A
B�BB�B
B�B

C�CC�C
C�C
D�DD�D
D�D

E�E�EE�E�EE�E�E
F�FF�F
F�F

G�GG�G
G�G
H�HH�H
H�H

I�I�II�I�II�I�I
J�J�JJ�J�JJ�J�J

KKL
L

MMN
N

OOP
P

QQR
R
SST
T

UUV
V
WWX
X
YYZ
Z

[[\
\

]]^
^

__`
`

aab
b
ccd
d

eef
f
ggh
h

iij
j

kkl
l

mmn
n

oop
p

qqr
r
sst
t

uuv
v
wwx
x
yyz
z

{{
{{
||
||

}}
}}

m
2() switches01 m

2() −1
1

m
2() −10 m/2−1

(a) SUBFT(m, 1)

10 10 10
m
2() −1 m

2() −1 m
2() −1

m/2 sub−fat−trees

l

l−1

l−1 l−1 l−1

SUBFT(m, l−1) SUBFT(m, l−1) SUBFT(m, l−1)

(b) SUBFT(m, l)

Figure 4: SUBFT (m, 1) and SUBFT (m,n)

FT (m,n) is formed by having nu(m, n−1) = (m
2

)n−1 root
level switches connecting with m SUBFT (m,n−1)’s. Let us
number top level switches from 0 to (m

2
)n−1−1. The up-link

port i, 0 ≤ i < nu(m, n − 1), in all of the SUB(m, n − 1)’s
is connected to top level switch i. Each of the m ports
in the root level switch connects to one SUBFT (m,n −
1). The structure of FT (m,n) is shown in Figure 5. Note
that FT (m,n) does not need to maintain any open ended
link and hence, each of the m ports in a root level switch
can connect to a sub-fat-tree. FT (m,n) supports m(m

2
)n−1

processing nodes. It has n levels of switches. The root level
contains nu(m, n − 1) = (m

2
)n−1 switches and each of the

other n − 1 layers has 2 × (m
2

)n−1 switches. Hence, the

total number of switches in FT (m,n) is (2n− 1)× (m
2

)n−1.
Figure 3 shows the complete topology of FT (4, 3) that has
(2 × 3 − 1) × (4

2
)3−1 = 20 switches and 4 × (4

2
)3−1 = 16

processing nodes.

m sub−fat−trees

m
2(n−1) −1

~~�
�

���
�

���
�

���
�
���
�

���
�
���
�

���
�
��
�
��
�

��
�

10

SUBFT(m, n−1)

m
2(n−1) −1

���
�

���
�

���
�

���
�
���
�

���
�
���
�

��

¡¡
¡

¢¢
¢

10

SUBFT(m, n−1)

m
2(n−1) −1

££¤
¤

¥¥¦
¦

§§¨
¨

©©ª
ª
««¬
¬

­­®
®
¯¯°
°

±±²
²
³³
³
´´
´

µµ
µ

10

SUBFT(m, n−1)

¶·¶¶·¶
¶·¶
¸·¸¸·¸
¸·¸

¹·¹¹·¹
¹·¹
º·ºº·º
º·º

»·»»·»
»·»
¼·¼¼·¼
¼·¼

½·½½·½
½·½
¾·¾¾·¾
¾·¾

¿·¿¿·¿
¿·¿
À·ÀÀ·À
À·À

ÁÁÂ
Â
ÃÃÄ
Ä
ÅÅÆ
Æ

ÇÇÈ
È
ÉÉÊ
Ê
ËËÌ
Ì

ÍÍÎ
Î
ÏÏÐ
Ð
ÑÑÒ
Ò

m
2(n−1) top level switches

Figure 5: The structure of FT (m,n)

FT (m,n) has n levels of switches, which are numbered
from 0 to n − 1 (root level switches being level 0 switches).
Similarly, we will classify the links according to the levels.
For 0 ≤ i < n − 1, the links connecting level i switches
with level i + 1 switches are called level i links. The links
connecting level n − 1 switches with the processing nodes
are level n−1 links. All links in FT (m,n) are bi-directional
links: with an up channel for communication from a lower
level switch to an upper level switch, and a down channel for
communication from an upper level switch to a lower level
switch. We will use the term level i up link to denote an up
channel from a level i+1 switch to a level i switch, and level

i down link to denote a down channel from a level i switch to
a level i+1 switch. A path between two processing nodes in
FT (m,n) has two phases: the first phase contains only up
channels and the second phase contains only down channels.

From the definition of FT (m,n), one can easily derive the
following properties.
Property 1: FT (m,n) contains m SUBFT (m,n − 1)’s,
m×m

2
SUBFT (m,n−2)’s, ..., m×(m

2
)n−2 SUBFT (m, 1)’s.

Level 0 (root level) switches do not belong to any sub-fat-
trees. Each level 1 switch is in a SUBFT (m,n − 1); each
level 2 switch is in a SUBFT (m,n−1) and a SUBFT (m,n−
2); and so on. A level i switch, 1 ≤ i ≤ n − 1, is in a
SUBFT (m,n − 1), a SUBFT (m,n − 2), ..., and a
SUBFT (m,n − i). In FT (m,n), we will call switches in
levels 0, 1, ..., and n − i − 1 the upper level switches for
SUBFT (m, i). The upper level switches for SUBFT (m, i)
provide connectivity among all SUBFT (m, i)’s.
Property 2: Through upper level switches for SUBFT (m, i),
1 ≤ i ≤ n − 1, an up-link port in a SUBFT (m, i) is only
connected with the up-link ports with the same port number
in other SUBFT (m, i)’s. More specifically, up-link port j,
0 ≤ j ≤ nu(m, i)−1 in one SUBFT (m, i) is only connected
with the up-link port j of other SUBFT (m, i)’s (but not
other ports) through upper level switches for SUBFT (m, i).

It is clear that this property is true for SUBFT (m,n−1).
The property for general SUBFT (m, i), 1 ≤ i < n − 1,
can be formally proven by induction on i (with base case
i = n − 1) and by examining how the top level switches in
SUBFT (m, i)’s are connected.
Property 3: Let SUBFT (m, i) be the smallest sub-fat-
trees in FT (m,n) that contains two processing nodes a and
b, there exist (m

2
)i−1 different shortest paths from a to b.

If such a sub-tree does not exist, there are (m
2

)n−1 different
shortest paths from a to b. In this case, a and b are in
different top level sub-fat-trees (SUBFT (m,n − 1)’s).

Figure 3 shows an example. From node a to node b in
FT (4, 3), there are (m

2
)n−1 = 22 = 4 shortest paths. In both

cases in Property 3, the number of shortest paths between

any two nodes can be represented as (m
2

)x with the value of
x, 0 ≤ x ≤ n − 1, depending on the positions of the source
and the destination.
Property 4: In FT (m,n), let there exist (m

2
)x different

shortest paths from processing node s to processing node d.
Each of the level n − 1 − i up/down links that carry traffic
from s to d is used by (m

2
)x−i shortest paths, 0 ≤ i ≤ x.

This property is intuitive. For example, level n − 1 links
are the links connecting processing nodes. Hence, all paths
from the processing node connected by a level n−1 link must
use the link. This is the case when i = 0: all (m

2
)x shortest

paths use the link. For the next level (i = 1), a source will
have m

2
choices (the fan-out from the first switch) to go to

another node (when the path uses such a link). Thus, each of
such links will be used by (m

2
)x/m

2
= (m

2
)x−1 shortest paths.

The cases for links in other levels are similar. Consider the 4
paths from node s to node d in Figure 3, all 4 paths use the
level 2 up/down links (the link connecting the processing
node), 2 paths use each of the level 1 up/down links that
carries traffic from a to b, and 1 path uses each of the level
0 up/down links carrying traffic from a to b.
Property 5: In FT (m,n), a level i, 0 ≤ i ≤ n − 1, up link
carries traffic from at most (m

2
)n−1−i source nodes. A level

i down link carries traffic to at most (m
2

)n−1−i destination
nodes.

This property is also intuitive. For example, when i =
n − 1, a level i = n − 1 link directly connects to a process-
ing nodes. So such a link carries traffic to/from at most

(m
2

)n−1−(n−1) = 1 node. When i = n − 2, the link con-
nects to a level n − 1 switch; and such a link carries traffic
to/from the (m

2
)n−1−(n−2) = m

2
nodes directly connected to

that switch.

3. SINGLE PATH OBLIVIOUS ROUTING

3.1 Lower bounds of oblivious performance
ratio for single path routing

In this section, we derive the lower bounds of oblivious
performance ratio for single path routing on FT (m,n). The
following concepts will be used in the derivation of the lower
bounds. Let A = {(s1, d1), (s2, d2), ...} be a set of SD pairs.
Definition 1: The set of SD pairs, A = {(s1, d1), (s2, d2), ...},
is said to be node disjoint if for any (si, di) ∈ A and
(sj , dj) ∈ A, i 6= j, si 6= sj and di 6= dj .

Basically, in a node disjoint set of SD pairs, each source
(in the source-destination pair) appears in the set as a source
exactly once; and each destination appears in the set as a
destination exactly once. It must be noted that a node may
appear as a source and as a destination in a node disjoint
set. For example, {(1, 2), (1, 3)} is not a node disjoint set
while {(1, 2), (3, 1)} is.
Definition 2: For a given set of SD pairs A, a set of SD
pairs B is said to be a node disjoint subset of A when
the following conditions are met: (1) B ⊆ A; and (2) B is a
node disjoint set.
Definition 3: For a given set of SD pairs A, a set of SD
pairs B is said to be a largest node disjoint subset of
A when the following two conditions are met: (1) B is a
node disjoint subset of A; and (2) let C be a node disjoint
subset of A, |B| ≥ |C|. Let L(A) be the size of a largest
node disjoint subset of A.

Let SA
s = {(s, x)|(s, x) ∈ A} be the set of SD pairs in

A with source node s and DA
d = {(x, d)|(x, d) ∈ A} be the

set of SD pairs in A with destination node d. SRC(A) =
{s|∃(s, d) ∈ A} is the set of source nodes in A and DST (A) =
{d|∃(s, d) ∈ A} is the set of destination nodes in A. We de-
note LS(A) the largest number of SD pairs in A either with
the same source or with the same destination. Formally,

LS(A) = max{ max
s∈SRC(A)

|SA
s |, max

d∈DST (A)
|DA

d |}.

For any node i, |SA
i | and |DA

i | are at most LS(A).
Consider for example A = {(1, 2), (1, 3), (2, 1), (2, 4), (3, 1)}.

The set {(1, 2), (2, 1)} is a node disjoint subset of A, but not
a largest node disjoint subset. Both {(1, 2), (2, 4), (3, 1)} and
{(1, 3), (2, 4), (3, 1)} are largest node disjoint subsets of A.
Hence, L(A) = 3. SRC(A) = {1, 2, 3}; and DST (A) =
{1, 2, 3, 4}. SA

1 = {(1, 2), (1, 3)}; SA
2 = {(2, 1), (2, 4)}; and

SA
3 = {(3, 1)}. DA

1 = {(2, 1), (3, 1)}; DA
2 = {(1, 2)}; DA

3 =
{(1, 3)}; and DA

4 = {(2, 4)}. Hence, LS(A) = 2.
The following lemmas give some properties of these con-

cepts.
Lemma 1: Let A be a set of SD pairs, |SRC(A)| ≥ L(A)
and |DST (A)| ≥ L(A).
Proof: Straight-forward from the largest node disjoint sub-
set definition. 2

Lemma 2: Let A and B be two sets of SD pairs, L(A) +
L(B) ≥ L(A

S

B).
Proof: Let C be a largest node disjoint subset of A

S

B.
|C| = L(A

S

B). Each element in C must either be in A, or
in B (or in both A and B). Let CA = {(s, d)|(s, d) ∈ C ∩A}
and CB = {(s, d)|(s, d) ∈ C ∩ B}. We have |CA| + |CB | ≥
|C| = L(A

S

B). Since CA is a node disjoint subset of A and
CB is a node disjoint subset of B, by definition, L(A) ≥ |CA|
and L(B) ≥ |CB|. Hence, L(A) + L(B) ≥ L(A

S

B). 2

Lemma 3: Let A be a set of SD pairs. If there is a source
node s such that |SA

s | > L(A), then L(A−SA
s) = L(A)− 1.

Proof: Since SA
s has only one source node, L(SA

s) = 1.
From Lemma 2, we have L(A − SA

s) + L(SA
s) ≥ L((A −

SA
s)

S

SA
s) = L(A). Hence, L(A − SA

s) ≥ L(A) − 1.
Next, we will prove L(A − SA

s) ≤ L(A) − 1 by contra-
diction. Let B = {(s1, d1), (s2, d2), ..., (sk, dk)} be a largest
node disjoint subset of A − SA

s . Assume that |B| = k =
L(A − SA

s) > L(A) − 1. Since A − SA
s is a subset of A,

k ≤ L(A). Hence, k must be exactly equal to L(A). Since
|SA

s | > L(A) = k, there exists at least one (s, d) ∈ SA
s such

that d 6= di, 1 ≤ i ≤ k. Hence, the set C = B
S{(s, d)} is

node disjoint and |C| = L(A)+1. Since C is a node disjoint
subset of A, |C| ≤ L(A). This is the contradiction. Hence,
L(A − SA

a) = L(A) − 1. 2

Lemma 3a: Let A be a set of SD pairs. If there is a
destination node d such that |DA

d | > L(A), then L(A −
DA

d) = L(A) − 1. 2

Lemma 4: Let A be a set of SD pairs. If there exist k
source nodes si, 1 ≤ i ≤ k, such that |SA

si
| > L(A), and l

destination nodes aj , 1 ≤ j ≤ l, such that |DA
dj
| > L(A),

then L(A − Sk

i=1 SA
si

− Sl

j=1 DA
dj

) = L(A) − k − l.
Proof: The conclusion in this lemma is obtained by repeat-
edly applying Lemma 3 and Lemma 3a. 2.
Lemma 5: Let A be a set of SD pairs. |A| ≤ L(A)×LS(A).
Proof: See Appendix. 2

Besides using the concepts introduced in the above defi-
nitions and lemmas, we will use a topology, called extended
2-layer fat-tree, in the derivation of the lower bounds for
oblivious performance ratio on FT (m,n). The extended 2-

layer fat-tree, denoted as EFT2(m,k), contains two levels
of switches. The top level contains m

2
k-port switches. The

bottom level contains k m-port switches. Half of the m ports
in the bottom level switches are used to connect process-
ing nodes and the other half connecting top level switches.
There is a link between each top level switch and each bot-
tom layer switch. The structure of EFT2(m,k) is similar
to FT (m, 2), which is shown in Figure 6. The difference is
that FT (m, 2) uses the same kind of switches in both levels
while EFT2(m,k) has more flexibility: the switches in the
top level can be different from the switches in the bottom
level. The FT (m, 2) topology is the same as EFT2(m,m).
We will also use a sub-graph of EFT2(m,k), which we
call SEFT2(m, k). SEFT2(m,k) contains all lower level
switches and processing nodes in EFT2(m,k), but only one
root level switch. Figure 7 shows the SEFT2(m,k) topol-
ogy, which is basically a regular tree topology with the root
having k children and each level 1 switch having m

2
children.

In this figure, we separate the two directional channels.

������
���
������
���

������
���
������
���

������
���
������
���

���
�

		

���
�

�
�

���
�

������
���
������
���

������
���
������
���

������
���
������
���

���
�
���
�
���
�

���
�

��

!!"
" ##

$$ %%&& ''((

))*
*

+�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�+

,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,

-�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�--�-�-�-�-�-�-�-�-�-�-�-

.�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�..�.�.�.�.�.�.�.�.�.�.�.

/�//�//�//�//�//�//�//�//�//�//�//�//�//�/

0�00�00�00�00�00�00�00�00�00�00�00�00�00�0

1�11�11�11�11�11�11�11�11�11�11�11�11�1

2�22�22�22�22�22�22�22�22�22�22�22�22�2

3�3�3�3�3�3�3�3�3�3�3�3�33�3�3�3�3�3�3�3�3�3�3�3�33�3�3�3�3�3�3�3�3�3�3�3�33�3�3�3�3�3�3�3�3�3�3�3�33�3�3�3�3�3�3�3�3�3�3�3�33�3�3�3�3�3�3�3�3�3�3�3�33�3�3�3�3�3�3�3�3�3�3�3�33�3�3�3�3�3�3�3�3�3�3�3�33�3�3�3�3�3�3�3�3�3�3�3�33�3�3�3�3�3�3�3�3�3�3�3�33�3�3�3�3�3�3�3�3�3�3�3�33�3�3�3�3�3�3�3�3�3�3�3�3

4�4�4�4�4�4�4�4�4�4�4�4�44�4�4�4�4�4�4�4�4�4�4�4�44�4�4�4�4�4�4�4�4�4�4�4�44�4�4�4�4�4�4�4�4�4�4�4�44�4�4�4�4�4�4�4�4�4�4�4�44�4�4�4�4�4�4�4�4�4�4�4�44�4�4�4�4�4�4�4�4�4�4�4�44�4�4�4�4�4�4�4�4�4�4�4�44�4�4�4�4�4�4�4�4�4�4�4�44�4�4�4�4�4�4�4�4�4�4�4�44�4�4�4�4�4�4�4�4�4�4�4�44�4�4�4�4�4�4�4�4�4�4�4�4

5�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�55�5�5�5

6�6�6�66�6�6�66�6�6�66�6�6�66�6�6�66�6�6�66�6�6�66�6�6�66�6�6�66�6�6�66�6�6�66�6�6�66�6�6�6

77
7 88

8
99
9

(0, 0) (0, m/2−1) (1, 0) (1, m/2−1) (m−1, 0) (m−1, m/2−1)

(0, 1) (1, 1) (m−1, 0)

(0, 0) (1, 0) (m/2−1, 0)

Figure 6: FT (m, 2) topology

:;::;:
:;:
<;<<;<
<;<

==>
>
??@
@
AAB
B

CCD
D

EEF
F

GGH
H II

JJ KKLL MMNN

O;OO;O
O;O
P;PP;P
P;P

Q;QQ;Q
Q;Q
R;RR;R
R;R

SST
T
UUV
V

W;W;W;W;W;W;W;W;W;W;W;WW;W;W;W;W;W;W;W;W;W;W;WW;W;W;W;W;W;W;W;W;W;W;WW;W;W;W;W;W;W;W;W;W;W;WW;W;W;W;W;W;W;W;W;W;W;WW;W;W;W;W;W;W;W;W;W;W;WW;W;W;W;W;W;W;W;W;W;W;WW;W;W;W;W;W;W;W;W;W;W;WW;W;W;W;W;W;W;W;W;W;W;WW;W;W;W;W;W;W;W;W;W;W;WW;W;W;W;W;W;W;W;W;W;W;WW;W;W;W;W;W;W;W;W;W;W;WW;W;W;W;W;W;W;W;W;W;W;W

X;X;X;X;X;X;X;X;X;X;X;XX;X;X;X;X;X;X;X;X;X;X;XX;X;X;X;X;X;X;X;X;X;X;XX;X;X;X;X;X;X;X;X;X;X;XX;X;X;X;X;X;X;X;X;X;X;XX;X;X;X;X;X;X;X;X;X;X;XX;X;X;X;X;X;X;X;X;X;X;XX;X;X;X;X;X;X;X;X;X;X;XX;X;X;X;X;X;X;X;X;X;X;XX;X;X;X;X;X;X;X;X;X;X;XX;X;X;X;X;X;X;X;X;X;X;XX;X;X;X;X;X;X;X;X;X;X;XX;X;X;X;X;X;X;X;X;X;X;X

Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;YY;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;YY;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;YY;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;YY;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;YY;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;YY;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;YY;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;YY;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;YY;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;YY;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y;Y

Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;ZZ;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;ZZ;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;ZZ;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;ZZ;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;ZZ;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;ZZ;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;ZZ;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;ZZ;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;ZZ;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;ZZ;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z;Z

[[
[
\\
\

]]
]
^^
^ __

_

``
`

a;a;a;a;a;a;a;a;a;a;a;aa;a;a;a;a;a;a;a;a;a;a;aa;a;a;a;a;a;a;a;a;a;a;aa;a;a;a;a;a;a;a;a;a;a;aa;a;a;a;a;a;a;a;a;a;a;aa;a;a;a;a;a;a;a;a;a;a;aa;a;a;a;a;a;a;a;a;a;a;aa;a;a;a;a;a;a;a;a;a;a;aa;a;a;a;a;a;a;a;a;a;a;aa;a;a;a;a;a;a;a;a;a;a;aa;a;a;a;a;a;a;a;a;a;a;aa;a;a;a;a;a;a;a;a;a;a;aa;a;a;a;a;a;a;a;a;a;a;a

b;b;b;b;b;b;b;b;b;b;b;bb;b;b;b;b;b;b;b;b;b;b;bb;b;b;b;b;b;b;b;b;b;b;bb;b;b;b;b;b;b;b;b;b;b;bb;b;b;b;b;b;b;b;b;b;b;bb;b;b;b;b;b;b;b;b;b;b;bb;b;b;b;b;b;b;b;b;b;b;bb;b;b;b;b;b;b;b;b;b;b;bb;b;b;b;b;b;b;b;b;b;b;bb;b;b;b;b;b;b;b;b;b;b;bb;b;b;b;b;b;b;b;b;b;b;bb;b;b;b;b;b;b;b;b;b;b;bb;b;b;b;b;b;b;b;b;b;b;b

c;c;c;c;c;c;c;c;c;c;c;c;cc;c;c;c;c;c;c;c;c;c;c;c;cc;c;c;c;c;c;c;c;c;c;c;c;cc;c;c;c;c;c;c;c;c;c;c;c;cc;c;c;c;c;c;c;c;c;c;c;c;cc;c;c;c;c;c;c;c;c;c;c;c;cc;c;c;c;c;c;c;c;c;c;c;c;cc;c;c;c;c;c;c;c;c;c;c;c;cc;c;c;c;c;c;c;c;c;c;c;c;cc;c;c;c;c;c;c;c;c;c;c;c;cc;c;c;c;c;c;c;c;c;c;c;c;c

d;d;d;d;d;d;d;d;d;d;d;d;dd;d;d;d;d;d;d;d;d;d;d;d;dd;d;d;d;d;d;d;d;d;d;d;d;dd;d;d;d;d;d;d;d;d;d;d;d;dd;d;d;d;d;d;d;d;d;d;d;d;dd;d;d;d;d;d;d;d;d;d;d;d;dd;d;d;d;d;d;d;d;d;d;d;d;dd;d;d;d;d;d;d;d;d;d;d;d;dd;d;d;d;d;d;d;d;d;d;d;d;dd;d;d;d;d;d;d;d;d;d;d;d;dd;d;d;d;d;d;d;d;d;d;d;d;d

ee
e
ff
f

gg
gg

hh
hh ii

i
jj
j
kk
k

(0, 0) (0, m/2−1) (1, 0) (1, m/2−1) (k−1, 0) (k−1, m/2−1)

sw(0) sw(1)

R

sw(k−1)

Figure 7: SEFT2(m,k) topology

Lemma 6: Let the processing nodes in EFT2(m,k) be
numbered from 0 to N−1. Let A = {(s1, d1), ..., (s|A|, d|A|)}
be a set of node disjoint SD pairs (for 1 ≤ i ≤ |A|, si ∈
{0, ..., N − 1} and di ∈ {0, ..., N − 1}). When |A| ≤ k, the
SD pairs in A can be routed in EFT2(m,k) with |A| link
disjoint paths.
Proof: In EFT2(m,k), each of the top level switches has a
link with each of the bottom level switches. Since |A| ≤ k,
we can assign a different top level switch for each SD pair
(si, di) ∈ A. For each (si, di), if si and di are in the same
switch, there is only one path between si and di (from si to
the switch connecting both si and di, and then to di). Since
A is node disjoint, these links are not used by other paths
for other SD pairs. If si and di are not in the same switch,
the path for (si, di) is: from si to the bottom level switch
connecting si to the top level switch assigned to (si, di) to
the bottom level switch connecting di to di. This way, all
the SD pairs in A are routed with link disjoint paths. 2

Lemma 7: Let sr be a single path routing on EFT2(m,k).
Assume that under routing sr, there exists a link l that
carries traffic for a set A of node disjoint SD pairs, |A| ≤ k,
Then, PERF (sr) ≥ |A|.
Proof: To show that PERF (sr) ≥ |A|, we must show that

there exists a traffic matrix TM such that MLOAD(sr,TM)
OPTU(TM)

≥
|A|. Consider a traffic matrix TM where tmi,j = 1 for
all (i, j) ∈ A and all other entries are 0 (no other traf-
fic). From Lemma 6, there exists a routing scheme sr′ that
routes the SD pairs in A using link disjoint paths. Hence,
MLOAD(sr′, TM) = 1 and OPTU(TM) ≤ 1. Since using
routing sr, the load on link l is |A| and MLOAD(sr, TM) ≥
|A|. Hence,

PERF (sr) ≥ MLOAD(sr, TM)

OUTU(TM)
≥ |A|

1
= |A|.2

For a single path routing r, let us define the maximum

disjoint size on link l, mds(r, l), to be the size of the largest
node disjoint subset of the set of SD pairs routed on l. The
maximum disjoint size of routing r, mds(r), is defined as
mds(r) = maxl∈Links mds(r, l). Notice that in EFT2(m,k)
and SEFT2(m, k), a level 1 link directly connected to a
processing node. From Lemma 1, the maximum disjoint
size on such a link is at most 1.
Lemma 8: Consider using the SEFT2(m, k) topology to
route a subset of all possible SD pairs. If the largest of the
maximum disjoint sizes of all links is at most X, the number
of SD pairs routed through the root is at most k(k − 1)X2

when X ≥ m
k

.

Proof: In SEFT2(m,k), at most k(k − 1)(m
2

)2 SD pairs
can be routed through the root. The lemma is always true
when X ≥ m

2
.

Let (s, d) be a SD pair. The pair must be routed through
the root only when nodes s and d are connected to differ-
ent switches. We will call the root switch in SEFT2(m, k)
switch R and the k level 1 switches sw(0), sw(1), ..., sw(k−
1) as shown in Figure 7. Let S be a largest set of SD pairs
that are routed through the root when the largest of the
maximum disjoint sizes of all links is at most X. Let Si,j ,
0 ≤ i 6= j ≤ k − 1, be the set of SD pairs in S with source
nodes in switch sw(i) and destination nodes in switch sw(j).
S =

S

i,j such that 0≤i6=j≤k−1 Si,j . Let us denote

LXsrc
i,j =

[

a such that a∈SRC(Si,j) and |S
Si,j
a |>X

S
Si,j
a

Let Ei,j = |SRC(LXsrc
i,j)|. For the SD pairs in Si,j , Ei,j is

the number of source nodes in switch sw(i), each of which
has more than X destination nodes in switch sw(j). LXsrc

i,j

contains all such SD pairs. Similarly, we will denote

LXdst
i,j =

[

d such that d∈DST (Si,j) and |D
Si,j
d

|>X

D
Si,j

d

Let Fi,j = |DST (LXdst
i,j)|. For the SD pairs in Si,j , Fi,j

is the number of destination nodes in switch sw(j), each of
which has more than X source nodes in switch sw(i). LXdst

i,j

contains all such SD pairs.
All SD pairs in Si,j must pass through links sw(i) → R

and R → sw(j). First, let us consider link sw(i) → R.
Let all SD pairs with source nodes in sw(i) be Alli→R =
S

j 6=i
Si,j . All SD pairs in Alli→R must go through link

sw(i) → R. Hence, L(Alli→R) ≤ X. From Lemma 4,
L(Alli→R − S

x6=i
LXsrc

i,x) ≤ X − P

x6=i
Ei,x. Since Si,j −

LXsrc
i,j ⊆ Alli→R − S

x6=i
LXsrc

i,x , we have L(Si,j −LXsrc
i,j) ≤

L(Alli→R−S

x6=i
LXsrc

i,x) ≤ X−P

x6=i
Ei,x. Hence, applying

Lemma 4,

L(Si,j − LXsrc
i,j − LXdst

i,j) ≤ X −
X

x6=i

Ei,x − Fi,j .

Using the similar logic, by considering link R → sw(j),
we can obtain

L(Si,j − LXsrc
i,j − LXdst

i,j) ≤ X − Ei,j −
X

x6=j

Fx,j .

Combining these two in-equations, we obtain L(Si,j −
LXsrc

i,j −LXdst
i,j) ≤ X−(

P

x6=i
Ei,x+Fi,j+Ei,j+

P

x6=j
Fx,j)/2.

Each source or destination node in Si,j − LXsrc
i,j − LXdst

i,j

can have no more than X SD pairs in the set (otherwise,
these SD pairs would be included in either LXsrc

i,j or LXdst
i,j).

Hence, LS(Si,j − LXsrc
i,j − LXdst

i,j) ≤ X. From Lemma
5, |Si,j − LXsrc

i,j − LXdst
i,j | ≤ L(Si,j − LXsrc

i,j − LXdst
i,j) ×

LS(Si,j −LXsrc
i,j −LXdst

i,j) ≤ (X− (
P

x6=i
Ei,x +Fi,j +Ei,j +

P

x6=j Fx,j)/2) × X. Hence, 9

|Sk−1
i=0

S

j 6=i
(Si,j − LXsrc

i,j − LXdst
i,j)|

≤ Pk−1
i=0

P

j 6=i
|Si,j − LXsrc

i,j − LXdst
i,j |

≤ Pk−1
i=0

P

j 6=i
X × (X−(

P

x6=i
Ei,x + Fi,j

+Ei,j +
P

x6=j
Fx,j)/2)

≤ k(k − 1)X2 − kX
2

Pk−1
i=0

P

j 6=i
Ei,j − kX

2

Pk−1
i=0

P

j 6=i
Fi,j

Since each switch connects to m
2

processing nodes, LXsrc
i,j ≤

Ei,j × m
2

and LXdst
i,j ≤ Fi,j × m

2
. Hence,

|S| = |Sk−1
i=0

S

j 6=i
Si,j |

≤ |Sk−1
i=0

S

j 6=i((Si,j − LXsrc
i,j − LXdst

i,j)
S

LXsrc
i,j

S

LXdst
i,j)|

≤ |Sk−1
i=0

S

j 6=i
(Si,j − LXsrc

i,j − LXdst
i,j)|

+|Sk−1
i=0

S

j 6=i
LXsrc

i,j | + |Sk−1
i=0

S

j 6=i
LXdst

i,j |
≤ k(k − 1)X2 − kX

2

Pk−1
i=0

P

j 6=i
Ei,j − kX

2

Pk−1
i=0

P

j 6=i
Fi,j

+m
2

Pk−1
i=0

P

j 6=i
Ei,j + m

2

Pk−1
i=0

P

j 6=i
Fi,j

= k(k − 1)X2

−(kX
2

− m
2

)(
Pk−1

i=0

P

j 6=i
Ei,j +

Pk−1
i=0

P

j 6=i
Fi,j)

When X ≥ m
k

, kX
2

≥ m
2

. Thus, |S| ≤ k(k − 1)X2. 2

Let us denote the maximum number of SD pairs routed
through SEFT2(m,k) when the largest of the maximum
disjoint sizes of the links in SEFT2(m, k) is X by T(X).
Obviously, when X > Y and T (Y) is a subset of all SD
pairs that can be routed, T (X) > T (Y) regardless of the
relation among X, m, and k. Lemma 8 states that when
X ≥ m

k
, T (X) ≤ k(k−1)X2. Hence, when X < m

k
, T (X) <

T (m
k

) ≤ k(k − 1)(m
k

)2.
Lemma 9: Let r be a single path routing algorithm on
EFT2(m,k). If k ≥

√
2m, PERF (r) ≥

p

m
2

.
Proof: Regardless of the single path routing algorithm r
used, k(k−1)(m

2
)2 SD pairs must be routed through top level

switches. Since there are m
2

top level switches in EFT2(m,k),

at least one top level switch must carry
k(k−1)(m

2
)2

m
2

= k(k−
1)m

2
SD pairs. Consider the SEFT2(m,k) formed by that

particular top level switch (with k(k − 1) m
2

SD pairs pass-
ing through) with all level 1 switches and all processing
nodes. Let the maximum disjoint size of the links connect-
ing to this switch be X. Under the assumption k ≥

√
2m, if

X < m
k

≤ m√
2m

=
p

m
2

, T (X) < k(k − 1)(m
k

)2 ≤ k(k− 1)m
2

.

Since there are k(k− 1)m
2

SD pairs must be routed through

the switch (T (X) = k(k − 1) m
2

), X <
p

m
2

cannot be true.

Thus, X ≥
p

m
2

. Since k ≥
√

2m ≥
p

m
2

, from Lemma 7,

PERF (r) ≥
p

m
2

. 2

The following three lemmas are the main results in this
section.
Lemma 10: Let r be a single path routing algorithm for
FT (m, 2) (m ≥ 2), PERF (r) ≥

p

m
2

.
Proof: FT (m, 2) is equivalent to EFT2(m,m). Since in
FT (m, 2), m > 2 and m ≥

√
2m. From Lemma 9, PERF (r) ≥

p

m
2

. 2

Lemma 11: Let r be a single path routing algorithm for
FT (m, 3), PERF (r) ≥ m

2
.

Proof: FT (m, 3) is composed by top level switches (m-port)
with m SUBFT (m, 2)’s. Let us consider the maximum dis-
joint sizes on the links that connect the SUBFT (m, 2)’s
with the root level switches (Level 0 links). By treating
each SUBFT (m, 2) as one 2(m

2
)2-port switch, FT (m, 3) is

approximated as EFT2(2(m
2

)2, m). Following the proof of

Lemma 9, since m ≥
p

2 × 2(m
2

)2, the largest of the maxi-

mum disjoint sizes of the level 0 links is at least

q

2×(m
2

)2

2
=

m
2

. From Lemma 7, PERF (r) = m
2

. 2

Lemma 12: Let r be a single path routing algorithm for

FT (m,n), PERF (r) ≥ (m
2

)b
n−1

3
c.

Proof: Let us consider the maximum disjoint sizes on links
connecting the to up-link ports of SUBFT (m, i)’s, 1 ≤ i ≤
n − 1, in FT (m,n). From Property 1 and Property 2 of
FT (m,n), the connectivity in FT (m,n) can be partitioned
into two levels (with respective to such links): the lower
level connectivity provided by SUBFT (m, i)’s and the up-
per level connectivity provided by the upper level switches
for SUBFT (m, i)’s. The connectivity in SUBFT (m, i) can
be approximated as a 2(m

2
)i-port switch; and the upper level

switches the connects the up-link ports with the same port
number in each of the SUBFT (m, i) (Property 2), which
approximates a m(m

2
)n−1−i-port switch. Consider the case

when i = b 2(n−1)
3

c, the topology can be approximated by

EFT2(2(m
2

)b
2(n−1)

3
c, m(m

2
)d

n−1
3

e). Since

m(
m

2
)d

n−1
3

e ≥
r

2 × 2(
m

2
)b

2(n−1)
3

c,

following the proof in Lemma 9, the largest of the maximum
disjoint sizes on such links is at least

s

2(m
2

)b
2(n−1)

3
c

2
= (

m

2
)b

n−1
3

c.

From Lemma 7, PERF (r) ≥ (m
2

)b
n−1

3
c. 2

Note that the tree height of FT (m,n) is n+1: FT (m, 2) is
a 3-level fat-tree; FT (m, 3) is a 4-level fat-tree; and FT (m,n)
is n + 1-level. This sub-section establishes that the lower
bounds of the oblivious performance ratio for any single
path routing is

p

m
2

for a 3-level fat-tree, m
2

for a 4-level fat-

tree, and (m
2

)b
H−2

3
c for an H-level fat-tree, H > 4. Notice

also that while our results are obtained for m-port n-trees
(FT (m,n)), the techniques can be easily extended to other
types of tree (e.g. the ones with root level switches being
different from switches in other levels such as the fat-tree
shown in Figure 2).

3.2 Optimal single path oblivious routing for
FT (m, 2) and FT (m, 3)

Most practical fat-tree topologies have no more than three
levels of switches. This is because it is common to use 32-
port or 48-port switches to construct large fat-tree topolo-

gies. Using 32-port switches, FT (32, 2) supports up to 512
processing nodes while FT (32, 3) support up to 8192 pro-
cessing nodes. With 48-port switches, FT (48, 3) can sup-
port 24×24×48 = 27648 processing nodes. Hence, optimal
oblivious routing schemes for FT (m, 2) and FT (m, 3) bear
most practical significance. Moreover, the development of
these algorithms also bears theoretical significance by mak-
ing the lower bounds on the oblivious performance ratio for
FT (m, 2) and FT (m, 3) (Lemma 10 and Lemma 11) tight
bounds.

Let N be the number of processing nodes. Let the traffic
matrix be TM with entries tmi,j , 0 ≤ i ≤ N − 1 and 0 ≤
j ≤ N − 1, specifying the amount of traffic from node i
to node j. The total traffic sent from node i is

P

j tmi,j

and the total traffic received by node i is
P

j
tmj,i. Since

there is only one link connecting each processing node to the
network, such traffic must be carried on that link regardless
of the routing scheme. Hence, for any routing scheme (single
path or multi-path) the load on the link (which has two
directions) connecting to node i is max{P

j
tmi,j ,

P

j
tmj,i}.

We define the base load of a traffic matrix TM as

baseload(TM) = max
0≤i≤N−1

{max{
X

j

tmi,j ,
X

j

tmj,i}}.

The minimum maximum link load on the fat-tree topology
using any routing scheme, single path or multi-path, is at
least baseload(TM) for any traffic matrix TM . In other
words,

OPTU(TM) ≥ baseload(TM).

Our optimal single path oblivious routing schemes are based
on the following Lemma.
Lemma 13: If a single path routing scheme r routes SD
pairs such that the SD pairs in each of the links in FT (m,n)
are either from at most X sources or towards at most X
destinations, then PERF (r) ≤ X.
Proof: As discussed earlier, for any traffic demand TM ,
on FT (m,n), OPTU(TM) ≥ baseload(TM). Since each
link carries traffic either from at most X sources or towards
X destinations, the load of the link is no more than X ×
baseload(TM), hence, PERF (r, TM) ≤ X×baseload(TM)

baseload(TM)
=

X. Since this applies for any traffic demand TM , PERF (r) ≤
X. 2

Optimal oblivious routing for FT (m, 2)

As defined in Section 2, FT (m, 2) contains 3m
2

switches and

supports m2

2
processing nodes. In this topology, m

2
switches

are in the level 0 and m switches are in level 1. There is one
link from each switch in level 1 to each of the switch in level
0. In order to describe the oblivious routing algorithm, we
will give a non-recursive description of FT (m,2). The m

2
top

level switch are labeled switches (0, 0), (1, 0), ..., (m
2
− 1, 0).

The m level 1 switches are labeled switches (0, 1), (1, 1),
..., (m − 1, 1). Each level 1 switch (i, 1), 0 ≤ i ≤ m − 1,
is connected with m

2
processing nodes numbered as (i, 0),

(i, 1), ..., (i, m
2
− 1). There is a link between switch (i, 0),

0 ≤ i ≤ m
2

− 1 and switch (j, 1), 0 ≤ j ≤ m − 1. For
0 ≤ i ≤ m − 1, there is a link between processing node
(i, x), 0 ≤ x ≤ m

2
− 1, and switch (i, 1). Figure 6 depicts

the FT (m, 2) topology as well as the switch and processing
node labeling.

Lemma 10 states that any single path routing r, PERF (r) ≥

p

m
2

for FT (m, 2). To ease exposition, let us assume that
p

m
2

is an integer. The cases when
p

m
2

is not an integer
can be handled with some minor modifications. We give
the algorithm that deals with the cases when

p

m
2

is not an
integer in Figure 8. Following Lemma 13, the optimal obliv-
ious routing algorithm schedules the SD pairs such that the
traffic in each up link from a bottom level switch to a top
level switch has exactly

p

m
2

sources while each down from

a top level switch to a bottom level switch has exactly
p

m
2

destinations. Note that in FT (m,2), each of the level 1 links
carries traffic either to 1 node or from 1 node (the node that
the link is connected to) and we do not have to consider
such links in the design of the optimal oblivious routing al-
gorithm. Let Z =

p

m
2

. The routing algorithm partitions

the m
2

= Z2 processing nodes in each bottom level switch
into Z groups, each group having Z nodes. More specif-
ically, the m

2
processing nodes connected to switch (i, 1),

0 ≤ i ≤ m− 1, are partitioned into Z =
p

m
2

groups: group
j, 0 ≤ j ≤ Z − 1, includes nodes (i, j ∗ Z), (i, j ∗ Z + 1), ...,
(i, j ∗ Z + Z − 1).

The SD pairs are scheduled as follows. The up-link (i, 1) →
(j, 0), 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ m

2
− 1, carries SD

pairs with sources nodes in group j/Z in switch (i, 1) and
destination nodes in group j mod Z in all other switches.
More specifically, The up-link (i, 1) → (0, 0) carries traffic
from group 0 processing nodes (in switch (i, 1)) to group
0 processing nodes in other switches; (i, 1) → (1, 0) carries
traffic from group 0 processing nodes to group 1 processing
nodes in other switches; ...; (i, 1) → (Z − 1, 0) carries traffic
from group 0 processing nodes to group Z − 1 processing
nodes in other switches; (i, 1) → (Z, 0) carries traffic from
group 1 processing nodes to group 0 processing nodes in
other switches; ...; (i, 1) → (2Z − 1, 0) carries traffic from
group 1 processing nodes to group Z − 1 processing nodes
in other switches; ...; (i, 1) → ((Z − 1)Z, 0) carries traf-
fic from group Z − 1 processing nodes to group 0 processing
nodes in other switches; ...; (i, 1) → (Z2−1, 0) carries traffic
from group Z − 1 processing nodes to group Z − 1 process-
ing nodes in other switches. The traffic in the down link
(j, 0) → (i, 1), 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ m

2
− 1, which is

fixed once the traffic in the up-link is decided, carries traffic
with source nodes in group j/Z in all other switches than
switch (i, 1) to destination nodes in group j mod Z in switch
(i, 1). Hence, each of the up-links carries traffic from exactly
Z source nodes and each of the down links carries traffic to
exactly Z destination nodes.

The detailed routing algorithm, called OSRM2, is shown
in Figure 8. When

p

m
2

is an integer, the algorithm works

exactly as just described. When
p

m
2

is not an integer,
the algorithm partitions the m

2
sources attached with each

of the level 1 switch into Zs = d
p

m
2
e groups and the m

2

destinations into Zd = b
p

m
2
c groups. It then uses the same

logic as the cases when
p

m
2

is an integer to schedule the
SD pairs.
Theorem 1: When

p

m
2

is an integer, PERF (OSRM2) =
p

m
2

.
Proof: As discuss earlier, using OSRM2, each link carries
traffic either from

p

m
2

sources or to
p

m
2

destinations. From

Lemma 13, PERF (OSRM2) ≤
p

m
2

. From Lemma 10,

PERF (OSRM2) ≥
p

m
2

. Hence, PERF (OSRM2) =
p

m
2

and OSRM2 is an optimal oblivious routing algorithm for

Algorithm OSRM2:

Route from node (s0, s1) to node (d0, d1)
Let m2 = m

2
;

Let Zs = d
√

m2e, Zd = b
√

m2c;
Let Ns = dm2

Zs
e, Nd = dm2

Zd
e;

if (s0 == d0)
use route: node(s0, s1) → switch(s0, 1) → node(d0, d1)

if (s0! = d0)
use route: node(s0, s1) → switch(s0, 1)

→ switch(s1/Ns ∗ Nd + d1/Nd, 0)
→ switch(d0, 1) → node(d0, d1)

Figure 8: Optimal oblivious routing for FT (m, 2)

FT (m, 2) when
p

m
2

is an integer. 2

Optimal oblivious routing for FT (m, 3)

We will now consider FT (m,3). From Section 2, FT (m, 3)
contains three levels of switches, with the top level hav-
ing nu(m, 2) = m

2
× m

2
switches and each of the other

levels having m × m
2

switches (m SUBFT (m, 2)’s, each
SUBFT (m, 2) having m

2
switches at each level). We label

the switches by ((i0, i1), level): the top level switches are
labeled as ((i0, i1), 0), 0 ≤ i0 ≤ m

2
− 1 and 0 ≤ i1 ≤ m

2
− 1;

the level 1 switches are labeled as ((i0, i1), 1), 0 ≤ i0 ≤
m − 1, and 0 ≤ i1 ≤ m

2
− 1; the level 2 switches are

labeled as ((i0, i1), 2), 0 ≤ i0 ≤ m − 1 and 0 ≤ i1 ≤
m
2

− 1. Notice that in the switch labeling, for levels 1
and 2, i0 identifies the columns corresponding to the i0-th
SUBFT (m, 2) and i1 identifies the column corresponding
to the i1-th SUBFT (m, 1) within the i0-th SUBFT (m, 2).
A FT (m, 3) has m × m

2
× m

2
processing nodes, which are

labeled as (p0, p1, p2), 0 ≤ p0 ≤ m− 1, 0 ≤ p1 ≤ m
2
− 1, and

0 ≤ p2 ≤ m
2
− 1. A processing node (p0, p1, p2) is attached

to switch ((p0, p1), 2), 0 ≤ p0 ≤ m− 1, 0 ≤ p1 ≤ m
2
− 1, and

0 ≤ p2 ≤ m
2
−1. A level 2 switch ((i0, i1), 2), 0 ≤ i0 ≤ m−1

and 0 ≤ i1 ≤ m
2
−1, has a link to each of the level 1 switches

((i0, X), 1), 0 ≤ X ≤ m
2
− 1. A level 1 switch ((i0, i1), 1),

0 ≤ i0 ≤ m − 1 and 0 ≤ i1 ≤ m
2
− 1, has a link to each of

the level 0 switches ((i1, X), 0), 0 ≤ X ≤ m
2
− 1.

From Lemma 11, we can see that for any single path rout-
ing algorithm r on FT (m, 3), PERF (r) ≥ m

2
. Like in

the FT (m, 2) case, our optimal routing algorithm ensures
that the SD pairs in each link are either from at most m

2
sources or towards at most m

2
destinations. From Property

5 in Section 2.2, each level 1 or level 2 link in FT (m, 3)
carries traffic either from no more than m

2
sources or to

no more than m
2

destinations. Hence, routing within each
SUBFT (m, 2) does not affect the performance oblivious ra-
tio. Hence, we only need to focus on level 0 links (the links
connecting layer 0 and layer 1 switches). The idea is similar
to that in OSRM2: the routing algorithm ensures that each
up link out of the sub-fat-tree SUBFT (m, 2) carries traffic
from m

2
sources and each down link to a SUBFT (m, 2) car-

ries traffic to m
2

destinations. Basically, we can treat each

SUBFT (m, 2) as if it is a 2(m
2

)2-port switch that connects

to (m
2

)2 processing nodes and has (m
2

)2 up-links. The rout-

ing algorithm partitions the (m
2

)2 = Z2 processing nodes
in a SUBFT (m, 2) into Z = m

2
groups, each group having

Z = m
2

nodes. Node (p0, p1, p2) is in group p2 of the p0-th
SUBFT (m, 2).

Algorithm OSRM3:

Route from node (s0, s1, s2) to (d0, d1, d2):
if (s0 == d0 and s1 == d1)
/* within one SUBFT (m, 2)*/
/* routing won’t affect the oblivious ratio */
Use route: node(s0, s1, s2) → switch((s0, s1), 2)

→ node(d0, d1, d2)
else if (s0 == d0)
/* within one SUBFT (m, 2) */
/* routing won’t affect the oblivious ratio */
Use route: node(s0, s1, s2) → switch((s0, s1), 2)

→ switch((s0, s2), 1)
→ switch((s0, d1), 2)
→ node(d0, d1, d2)

else
/* must be careful about links to/from level 0 switches */
Use route: node(s0, s1, s2) → switch((s0, s1), 2)

→ switch((s0, s2), 1)
→ switch((s2, d2), 0)
→ switch((d0, s2), 1)
→ switch((d0, d1), 2)
→ node(d0, d1, d2)

Figure 9: Optimal oblivious single routing for
FT (m, 3)

The routing for links between SUBFT (m, 2) and the top
level switch is similar to that for links between level 1 switches
to level 0 switches in FT (m,2): the up-link ((i0, 0), 1) →
((0, 0), 0) carries traffic from group 0 processing nodes (in
the i0-th SUBFT (m, 2))to group 0 processing nodes in other
SUBFT (m, 2)’s; ((i0, 0), 1) → ((0, 1), 0) carries traffic from
group 0 processing nodes to group 1 processing nodes in
other SUBFT (m, 2)’s; ...; ((i0, 0), 1) → ((0, Z−1), 0) carries
traffic from group 0 processing nodes to group Z−1 process-
ing nodes in other SUBFT (m, 2)’s; ((i0, 1), 1) → ((1, 0), 0)
carries traffic from group 1 processing nodes to group 0 pro-
cessing nodes in other SUBFT (m, 2)’s; ...; ((i0, 1), 1) →
((1, Z − 1), 0) carries traffic from group 1 processing nodes
to group Z − 1 processing nodes in other SUBFT (m, 2)’s;
...; ((i0, Z − 1), 1) → ((Z − 1, 0), 0) carries traffic from group
Z − 1 processing nodes to group 0 processing nodes in other
SUBFT (m, 2)’s; ...; ((i0, Z−1), 1) → ((Z−1, Z−1), 0) car-
ries traffic from group Z−1 processing nodes to group Z−1
processing nodes in other SUBFT (m, 2)’s. This way, each
up-link only carries SD pairs with exactly Z = m

2
sources.

Similarly, each down link only carries SD pairs with ex-
actly Z destinations. The detailed routing algorithm, called
OSRM3, is shown in Figure 9
Theorem 2: PERF (OSRM3) = m

2
and OSRM3 is an

optimal oblivious routing algorithm for FT (m, 3).
Proof: From above discussion, using OSRM3, the SD pairs
in each link have either at most m

2
source nodes or at most

m
2

destination nodes. From Lemma 13, PERF (OSRM3) ≤
m
2

. From Lemma 11, an performance oblivious ratio of m
2

is the low bound for any single path routing scheme on
FT (m, 3). Hence, OSRM3 is an optimal oblivious routing
algorithm for FT (m,3). 2

4. MULTI-PATH OBLIVIOUS ROUTING
In the previous section, it is shown that any single path

routing would have at best a (m
2

)b
n−1

3
c oblivious perfor-

mance ratio on FT (m,n). This indicates that single path

routing may not be effective in exploiting the fat-tree topol-
ogy when the traffic pattern is uncertain since any single

path algorithm may perform (m
2

)b
n−1

3
c times worse than

the optimal routing algorithm on some traffic matrix. In
this section, we show that it is almost trivial to obtain a
multi-path routing algorithm with an oblivious performance
ratio equal to 1. This not only indicates that the multi-path
routing algorithm is optimal for any traffic matrix, but also
means that multi-path routing is much more effective than
single path routing in providing performance guarantees on
the fat-tree topology.

The optimal oblivious multi-path routing algorithm for
FT (m,n), OMRMN , works as follows: Let the X different
shortest paths between nodes i and j be P 1

i,j , P 2
i,j , ..., P X

i,j

(From Property 3 in Section 2.2, these paths can be easily
found). OMRMN makes use of all the paths and allocates
exactly the same amount of traffic on each path. That is,
MPi,j = {P 1

i,j , P 2
i,j , ..., P X

i,j} and f1
i,j = ... = fX

i,j = 1
X

.
Theorem 3: PERF (OMRMN) = 1.
Proof: Since in FT (m,n) the up links and down links are
symmetrical, it is sufficient to show that, for any traffic
matrix TM , the load on each up link l is no more than
baseload(TM). Consider a source s in FT (m,n). Let us
denote L(s) =

P

j 6=s
ds,j the total amount of traffic sent

from node s. For each source node s, using OMRMN , each
level n − 1 − i link carries at most L(s)/(m

2
)i traffic since

the traffic is evenly distributed among the (m
2

)i links at level
n − 1 − i that can carry traffic from node s (derived from
Property 4). In addition, each level n − 1 − i link carries
traffic from at most (m

2
)i source node (Property 5). Let

the nodes be s0, s1, ..., s(m
2

)i−1 and the load on a level

n−1− i link l be load(l), we have load(l) ≤ P(m
2

)i−1

j=0
L(sj)

(m
2

)i .

Since L(sj) ≤ baseload(TM), 0 ≤ j ≤ (m
2

)i − 1, we have
load(l) ≤ baseload(TM). Note that there is no restriction
on the link l and traffic matrix TM . Hence, for all links
and all traffic matrices, we have load(l) ≤ baseload(TM).
Hence, PERF (OMRMN) = 1. 2

Notice that OMRMN uses all the shortest paths between
two processing nodes. We will refer to it as an unrestricted

multi-path routing scheme. It is unrestricted in that the
number of paths used for each SD pair is not limited. As
can be seen from theorem 3, with unrestricted multi-path
routing, the optimal multi-path routing scheme that min-
imizes the maximum link load can be obtained. The per-
formance of multi-path routing is much better than that of
single path routing. These results argue strongly that on a
large fat-tree based system area network, the unrestricted
multi-path routing should be used to alleviate the network
contention problem. Moreover, these results raise questions
in the current system area network design that only sup-
ports a limited form of multi-path routing. One example is
the Infiniband, where only a limited number of paths (128)
between any two processing nodes are supported. With such
a restriction, it is difficult to achieve optimal load balancing
with multi-path routing on the fat-tree topology.

5. PERFORMANCE STUDY
We compare the performance of several known single path

routing algorithms designed for the fat-tree topology. The
algorithms used in the comparison include the Multiple LID
algorithm (MLID) in [6] and the widest shortest routing

FT (m, 2) FT (m,3)
OMRMN 1 1

OSRM2
p

m
2

-
OSRM3 - m

2

MLID m
2

m − 1
WSR m

2
m − 1

Table 1: Oblivious performance ratios of different
routing algorithms

(WSR) algorithm. The details about the MLID algorithm
can be found in [6]. WSR was designed to achieve load
balancing in the Internet environment. It works as follows.
We first generate a traffic matrix where each SD pair has one
unit of traffic. All links in the network are initialized with
the same weight. The algorithm then computes routes for
each SD pair in the following order (0, 1), (0, 2), ..., (0, N −
1), (1, 0), (1, 2), ..., (1, N − 1),, (N − 1, 1), (N − 1, 1),
..., (N − 1, N − 2). Every time a route is computed, the
weight of each of the links along the route is increased by
1. When computing the route for each SD pair, the path
with the smallest accumulated weight is selected. Note that
the “shortest” heuristic enforces that only the shortest paths
between two nodes are selected; and the “widest” heuristic
spreads traffic from the same source among all links in the
fat-tree.

Table 1 shows the oblivious performance ratio for differ-
ent routing algorithms. In this table, the worst case obliv-
ious performance ratio for MLID and WSR is obtained
by analyzing the paths computed by the algorithms. This
table shows (1) that our optimal single path oblivious rout-
ing algorithms provides better performance guarantees than
other existing single path routing algorithms for the fat-tree
topology; and (2) that multi-path routing (OMRMN) is
significantly better than single path routing.

The next experiment is designed to investigate the per-
formance of single path routing algorithms with practical
traffic patterns. In particular, our optimal oblivious rout-
ing algorithms (OSRM2 and OSRM3) group SD pairs in
a certain way so as to guarantee worst case performance.
This might hinder their performance on typical traffic de-
mands. Notice that both MLID and WSR fully spread
traffic among all links in the fat-tree topology and should
perform well (among single path routing schemes) for typi-
cally traffic demands. We perform simulation on FT (32, 2)
and FT (16, 3). FT (32, 2) supports 512 processing nodes and
FT (16, 3) supports 1024 processing nodes.

We will show the results for two types of traffic demands:
random uniform traffic demands and clustered traffic de-
mands. In a random uniform traffic demand, each entry in
the traffic matrix has an equal probability to send 1 unit
of traffic (or not send any traffic). In a clustered traffic de-
mand, the processing nodes are partitioned into groups of
the same size (size = 2, 4, 8, 16, 32, 64, 128 nodes). Each
processing node in the system is in one group. The mem-
bers in each group are randomly selected from all processing
nodes. 1 unit of data is communicated between each pair of
nodes in one group (all-to-all communication pattern within
each group). For each data point, we produce 50 random
instances and report the average performance ratio for the
50 instances.

The results for the random uniform traffic demands on
FT (16, 3) are depicted in Figure 10. The results for FT (32, 2)

have a very similar trend. For this type of traffic (with
different probability values), all of the single path routing
algorithms achieve a similar performance and their perfor-
mance ratios are very close to 1. This indicates that single
path routing is effective in dealing with such demands on the
fat-tree topology. Notice that all of the single path routing
algorithms are designed to be optimal (with a performance
ratio of 1) when each of the SD pairs has 1 unit of traf-
fic. The average performance ratio increases (very slightly)
when the random traffic is more sparse.

 0.995

 1

 1.005

 1.01

 1.015

 1.02

10.750.50.250.05

A
ve

ra
ge

 p
er

fo
rm

an
ce

 r
at

io

Probability

MLID
OSRM3

WSR
OMRMN

Figure 10: Random uniform traffic on FT (16, 3)

Figure 11 shows the results for clustered traffic on FT (32, 2).
For such traffic demands, WSR has exactly the same per-
formance as MLID. As can be seen in the figure, the single
path routing algorithms are not effective in dealing with such
traffic demands: the average performance ratios for all sin-
gle path routing schemes are much larger than 1, especially
when the group size is small. This indicates that with single
path routing, the network contention can be a problem with
such traffic demands. The advantage of our optimal oblivi-
ous routing scheme manifests in this experiment: OSRM2
performs noticeable better than MLID/WSR. Notice that
when the group size is equal to 2, the average performance
ratio for MLID/WSR is larger than 4. OSRM2 guaran-
tees that the performance ratio for any traffic pattern is no

more than
q

32
2

= 4. We have also performed many other

experiments with different topologies and traffic demands.
In all our experiments, our optimal oblivious routing algo-
rithms are either comparable to or better than MLID and
WSR on average, which indicates that our optimal single
path oblivious routing algorithms can provide performance
guarantees without sacrificing the average case performance.

 0

 1

 2

 3

 4

 5

128643216842

A
ve

ra
ge

 p
er

fo
rm

an
ce

 r
at

io

Group size

MLID/WSR
OSRM2

OMRMN

Figure 11: Clustered traffic on FT (32, 2)

6. RELATED WORK
The research most related to this work falls into three ar-

eas: the development of system area networks, routing on
fat-tree, and oblivious routing. System area networks with
the off-the-shelf networking technology such as Infiniband
[7] and Myrinet [13] have become more common recently.
The load balance problems in such networks motivated this
research. Most routing research for system area networks
(see for example, [3, 4, 10, 14, 15]) has focused on develop-
ing techniques for computing and establishing routes. In [6],
a routing algorithm was developed for fat-tree based Infini-
band networks. It can be shown that the algorithm in [6]
is not an optimal oblivious routing scheme. Routing perfor-
mance with various routing algorithms, such as randomized
routing and adaptive routing, and various performance met-
rics on the fat-tree topology has also been studied [5, 8, 9].
However, we are unaware of any work studying the routing
performance on fat-trees with deterministic routing when
the traffic demand is uncertain and changing.

Oblivious routing has recently attracted much attention
[1, 2, 18] due to its effectiveness in guaranteeing routing
performance under uncertain and changing traffic demands
in the Internet environment. In [1], it was shown that the
problem of finding (unrestricted) optimal oblivious routing
can be formulated as a linear programming problem. In
this paper, we apply the idea of oblivious routing to the
fat-tree topology and use the same performance metrics for
evaluating routing schemes with uncertain traffic demands.
The linear programming formulation in [1, 2] can only be
used to compute optimal oblivious routing for unrestricted
multi-path routing, but cannot be used to compute optimal
oblivious single path routing. We also show that on the
fat-tree topology, optimal oblivious routing for unrestricted
multi-path routing can be obtained without solving the large
linear programming formulation.

7. CONCLUSION
We study the routing performance on fat-tree based sys-

tem area networks with deterministic routing under the as-
sumption that the traffic demand is uncertain and chang-
ing. We show that single path routing cannot provide good
performance guarantees while unrestricted multi-path rout-
ing is effective in balancing network load in such situations.
These results extend the basic understanding of fat-tree based
networks and may directly influence the design of systems
with large scale fat-tree based networks such as large HPC
clusters.

Acknowledgement
This work is supported in part by National Science Founda-
tion (NSF) grants: CCF-0342540, CCF-0541096, and CCF-
0551555.

8. REFERENCES
[1] D. Applegate and E. Cohen, “Making Intra-Domain

Routing Robust to Changing and Uncertain Traffic
Demands: Understanding Fundamental Tradeoffs.”
ACM SIGCOMM, pages 313-324, 2003.

[2] D. Applegate, L. Breslau, and E. Cohen, “Coping with
Network Failures: Routing Strategies for Optimal
Demand Oblivious Restoration.” ACM

SIGMETRICS, pages 270-281, 2004.

[3] A. Bermudez, R. Casado, F. J. Quiles, and J. Duato,
“Use of Provisional Routes to Speed-up Change
Assimilation in Infiniband Netrworks,” Proc. 2004

IEEE International Workship on Communication

Architecture for Clusters (CAC’04), April 2004.
[4] A. Bermudez, R. Casado, F. J. Quiles, and J. Duato,

“Fast Routing Computation on Infiniband Networks,”
IEEE Trans. on Parallel and Distributed Systems, Vol.
17, No. 3, pp 215-226, March 2006.

[5] R. I. Greenberg and C. E. Lerserson, “Ramdonzied
Routing on Fat-trees.” In 26th Annual IEEE

Symposium on Foundations of Computer Science,
pages 241-249, Oct. 1985.

[6] X. Lin, Y. Chung, and T. Huang, “A Multiple LID
Routing Scheme for Fat-Tree-Based Infiniband
Networks.” Proceedings of the 18th IEEE International

Parallel and Distributed Processing Symposium

(IPDPS’04), p. 11a, Sana Fe, NM, April 2004.
[7] InfinibandTM Trade Association, Infiniband TM

Architecture Specification, Release 1.2, October 2004.
[8] C. E. Leiserson, “Fat-Trees: Universal Networks for

Hardware-Efficient Supercomputing.” IEEE

Transactions on Computers, 34(10)892-901, October
1985.

[9] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C.
R. Feynman, M. N. Ganmukhi, J. V. Hill, W. D.
Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells,
M. C. Wong-Chan, S-W. Yang, and R. Zak, “The
network architecture of the Connection Machine
CM-5.” Journal of Parallel and Distributed

Computing, 33(2):145–158, Mar 1996.
[10] P. Lopez, J. Flich, and J. Duato, “Deadlock-Free

Routing in Infiniband through Destination
Renaming,” Proc. 2001 International Conference on

Parallel Processing (ICPP), Sept. 2001.
[11] J.C. Martinez, J. Flich, A. Robles, P. Lopez, and J.

Duato, “Supporting Fully Adaptive Routing in
Infiniband Networks.” Proceedings of the 17th IEEE

International Parallel and Distributed Processing

Symposium (IPDPS’03), p44a, Nice, France, April
2003.

[12] Mellanox Technologies, “Infiniband in the Enterprise
Data Center.” White Paper, 2006. Available at
http://www.mellanox.com/pdf/whitepapers
/scaling10gbsclusters.pdf.

[13] Myricom home page, http://www.myri.com.
[14] J. C. Sancho, A. Robles, and J. Duato, “Effective

Strategy to Computing Forwarding Tables for
Infiniband Networks,” Proc. International Conference

on Parallel Processing (ICPP), Sept. 2001.
[15] J. C. Sancho, A. Robles, and J. Duato, “Effective

Methodology for Deadlock-Free Minimal Routing in
Infiniband Networks,” Proc. International Conference

on Parallel Processing (ICPP), 2002.
[16] Top 500 supercomputer sites. http://www.top500.org
[17] M. Valerio, L. Moser, and P. Melliar-Smith,

“Recursively Scalable Fat-trees as Interconnect
Networks.” Proceedings of the 13th IEEE

International Phoenix Conference on Computers and

Communications, pages 40-46, 1994.
[18] H. Wang, H. Xie, L. Qiu, Y.R. Yang, Y. Zhang, and

A. Greenberg, “COPE: Traffic Engineering in
Dynamic Networks.” ACM SIGCOMM, 2006.

Appendix
Lemma 5: Let A be a set of SD pairs. |A| ≤ L(A)×LS(A).
Proof: We will prove this lemma by induction on L(A).

Base case: when L(A) = 1, |A| ≤ LS(A). Let B =
{(s1, d1)} be one largest node disjoint subset of A. If A
only contains (s1, d1), the case is proven. Otherwise, there
exists another SD pair (s2, d2) in A. Since L(A) = 1, either
s1 = s2 or d1 = d2. We will show that if s1 = s2, A = SA

s1
.

Similar logic can be used to show that if d1 = d2, A = DA
d1

.
In both case, |A| ≤ L(A) × LS(A) = LS(A).

Let us now prove that if s1 = s2, A = SA
s1

. Assume that

A 6= SA
s1

, there exists a SD pair (s, d) such that s 6= s1. In
this case, if d 6= d1, then {(s1, d1), (s, d)} is a node disjoint
subset of A; otherwise, d = d1 and {(s1, d2), (s, d)} is a node
disjoint subset of A. Hence, L(A) ≥ 2, which contradicts
the fact that L(A) = 1.

Induction case: Assume that |A| ≤ L(A) × LS(A) when
L(A) ≤ k (induction hypothesis), we will prove that |A| ≤
L(A) × LS(A) when L(A) = k + 1.

Let B = {(s1, d1), (s2, d2), ..., (sk+1, dk+1)} be a largest
node disjoint subset of A. If SRC(A) = {s1, s2, ..., sk+1},
|A| ≤ (k + 1)×LS(A) (since each source nodes can at most
have LS(A) SD pairs in A and there are k +1 source nodes)
and the theorem is proven.

If SRC(A) ⊃ {s1, s2, ..., sk+1}, there must exist a source
node s ∈ SRC(A) such that s 6= si, 1 ≤ i ≤ k + 1. Let
(s, d) ∈ A. We have d ∈ DST (B) (Otherwise, (s, d)

S

B is
node disjoint and B is not a largest node disjoint subset).
Without loss generality, let d = d1. We have
{(s, d1), (s1, d1)} ⊆ DA

d1
. Obviously L(DA

d1
) = 1, LS(DA

d1
) ≤

LS(A), and LS(A − DA
d1

) ≤ LS(A).

Next, we will show that L(A − DA
d1

) = k. From Lemma

2, L(A − DA
d1

) ≥ L(A) − L(DA
d1

) = k + 1 − 1 = k. Since

L(A) = k + 1 ≥ L(A −DA
d1

), to show that L(A− DA
d1

) = k,

we only need to show that L(A − DA
d1

) 6= k + 1. We prove

this by contradiction. Assume that L(A−DA
d1

) = k+1. Let
C = {(s′1, d′

1), (s
′
2, d

′
2), ..., (s

′
k+1, d

′
k+1)} be a largest node dis-

joint subset of A −DA
d1

. We have s1 ∈ SRC(C) (otherwise,
C

S{(s1, d1)} is a node disjoint subset of A and L(A) ≥
k + 2). Similarly, s ∈ SRC(C). Let us assume that s1 = s′1
and s = s′2. d′

2 must be in DST (B) − {d1} (otherwise,
(s, d′

2)
S

B is node disjoint and B is not the largest node
disjoint subset). Similarly, d′

1 must be in DST (B) − {d1}.
Let dk+1 = d′

1 and d2 = d′
2. We have s2 ∈ SRC(C) (oth-

erwise, C − {(s′2, d′
2)} + {(s2, d2), (s, d1)} is a node disjoint

subset of A and L(A) ≥ k + 2). This process (finding that
a source node si in B belongs to SRC(C) and then finding
that destination node d′ such that (si, d

′) ∈ C belongs to
DST (B)) can be repeated. Once the process cannot con-
tinue, one can construct a node disjoint subset of A whose
size is k+2 similar to the cases for d′

2 ∈ B and s2 ∈ C. Since
there are a finite number of elements in B and C, this pro-
cess will stop at some point (in the worst case, one of B or C
runs out of elements). Thus, L(A) ≥ k+2, which contradicts
the assumption that L(A) = k + 1. Hence, L(A−DA

d1
) = k.

By the induction hypothesis,

|A − DA
d1
| ≤ L(A − DA

d1
) × LS(A − DA

d1
) ≤ k × LS(A)

|DA
d1
| ≤ L(DA

d1
) × LS(DA

d1
) ≤ LS(A).

Hence, |A| = |A − DA
d1
| + |DA

d1
| ≤ (k + 1) × LS(A). 2

