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Abstract

Recent advances in multicasting over the Internet present new opportunities for improving com-
munication performance for clusters of workstations. Realizing collective communication over reli-
able multicast can achieve higher performance than over reliable unicast primitives. The standard
IP multicast, however, only supports unreliable multicast, which is difficult to use for building high
level message passing routines. Thus, reliable multicast primitives must be implemented over the
standard IP multicast to facilitate the use of multicast for high performance communication on
clusters of workstations. Although many reliable multicast protocols have been proposed for the
wide area Internet environment, the impact of special features of local area networks (LANs) on the
performance of the reliable multicast protocols has not been thoroughly studied. Efficient reliable
multicast protocols for LANs must exploit these features to achieve the best performance. In this
paper, we present our implementation of four types of reliable multicast protocols: the ACK–based
protocols, the NAK–based protocols with polling, the ring–based protocols, and the tree–based
protocols. The protocols are implemented over IP multicast using the standard UDP interface.
We evaluate the performance of the protocols over Ethernet–connected networks, study the impact
of some special features of the Ethernet on the performance of the protocols, and investigate the
methods to exploit these features to improve communication performance.

Keywords: Reliable multicast, IP multicast, Clusters of workstations.

1 Introduction

As microprocessors become more and more powerful, clusters of workstations have become one of the
most common high performance computing environments. Many institutions have Ethernet–connected
clusters of workstations that can be used to perform high performance computing. One of the key
building blocks for such systems is the message passing library. Standard message passing libraries,
including MPI [14] and PVM [19], have been implemented for such systems. Current implementations,
such as MPICH[8] and LAM/MPI[22], focus on providing the functionality, that is, moving data across
processors, and addressing the portability issues. To achieve interoperability, these implementations are
built over point-to-point communication primitives supported by the TCP/IP protocol suite. However,
studies have shown that the current implementations of message passing libraries for networks of
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workstations are not tailored to achieve high communication performance over clusters of workstations
[2].

Recent advances in multicasting over the Internet present new opportunities for improving communi-
cation performance for clusters of workstations without sacrificing the functionality and the portability
of the message passing libraries. Specifically, coupling local area network (LAN) hardware, which
supports broadcast communication, with IP multicast [6], unreliable multicast communication is now
supported by the TCP/IP protocol suite and is currently available in many systems. For LANs,
although there is no mature reliable multicast software package, an efficient reliable multicast com-
munication layer can be built over the unreliable IP multicast. Using reliable multicast primitives to
realize collective communication routines can greatly improve the communication performance since
multicast reduces both the message traffic over the networks and the CPU processing at end hosts.

While many reliable multicast protocols have been proposed [1, 3, 4, 7, 9, 11, 13, 15, 23, 25, 26], mostly
for multicasting in the general wide area Internet environment, the impacts of special features of LANs
on the performance of the protocols have not been thoroughly studied. The features may affect, among
others, the flow control, buffer management and error control mechanisms in the reliable multicast
protocols. In addition, these existing reliable multicast protocols generally assume their applications to
be Internet applications, such as video conferencing, which have different traffic patterns than parallel
programs. Thus, the existing protocols may not be efficient for high performance computing clusters.
To develop efficient reliable multicast protocols for such systems, the implication of running parallel
applications over LAN clusters must be examined and the special features of LANs must be taken into
consideration.

This paper focuses on studying the impacts of LAN features on the reliable multicast protocols. Four
types of reliable multicast protocols are used in the study, the ACK–based protocols, the NAK–based
protocols with polling, the ring–based protocols, and the tree–based protocols. The ACK–based protocols
are an extension of the reliable unicast protocols. In the ACK–based protocols, each packet sent by
the sender is acknowledged by each receiver to ensure reliability. As a result, the ACK–based protocols
suffer from the ACK implosion problem since the sender must process all acknowledgments for each
packet sent. In the NAK–based protocols, the receivers send non-acknowledgments (NAKs) only when
a retransmission is required. By reducing the number of transmissions from the receivers, the ACK
implosion problem can be overcome. However, the NAK–based protocols require large buffers and
must use additional techniques, such as polling [20], to guarantee reliability. The ring–based protocols
combine the features of the ACK–based and NAK–based protocols. In the ring–based protocols, a
designated site is responsible for acknowledging packets to the source. Receivers send NAKs to the
sender when a retransmission is required. These protocols also require large buffers. In the tree–
based protocols, receivers are grouped into sets with each set containing a leader. The group members
send acknowledgments to the group leader, while each group leader summarizes the acknowledgments
within its group and sends the summary to the sender. Hence, the tree–based protocols overcome the
ACK–implosion problem. Furthermore, by imposing a logical structure (group) on the receivers, the
tree–based protocols control the number of simultaneous transmissions at the protocol level. Limiting
the number of simultaneous transmissions can be significant in LANs since the media access protocols
in LANs may or may not be able to efficiently handle many simultaneous transmissions.

One important feature of Ethernet-connected networks is that the transmission error rate is very low.
Hence, an efficient multicast protocol must essentially perform well in the cases with no transmission
errors. Intuitively, the NAK-based protocols should offer the best performance. However, this intuition
may or may not be true since the NAK-based protocols by themselves are not complete. Additional
mechanisms such as polling must be used to perform flow control and guarantee the reliability. NAK-
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based protocols with the additional mechanism may not be more efficient than other schemes such as
the ring-based and tree-based protocols, which offer different ways to reduce the control traffic and the
sender processing load. Hence, extensive evaluations must be carried out in order to decide the most
efficient reliable multicast protocol for a given system.

In this paper, we present our implementation of the protocols, evaluate the performance of the
protocols over Ethernet–connected networks, study the impact of special features of the Ethernet on
these protocols, and investigate the methods to achieve the best multicast performance on Ethernet
using these protocols. The protocols are implemented using the standard UDP interface over IP
multicast. The main contributions of this paper are the following. First, we study the impacts of
Ethernet features on each of the four types of protocols and identify the conditions to achieve the best
performance using each of the protocols in the Ethernet-connected network environment. Second, we
compare the four types of protocols and determine the most efficient multicast schemes in different
situations.

The rest of the paper is structured as follows. Section 2 describes the related work. Section 3 discusses
the differences between multicasting in the general wide area Internet environment and multicasting on
LANs for parallel applications. This section then presents the four reliable multicasting protocols used
in the study. Section 4 details the implementation of the protocols. Section 5 reports the performance
study and Section 6 concludes the paper.

2 Related work

Extensive research has been conducted in the area of reliable multicast over the Internet [1, 3, 4, 7,
9, 11, 13, 15, 23, 25, 26]. A summary of recent development of reliable multicast protocols can be
found in [12]. These protocols in general focus on a number of issues including group management,
flow control and the scalability issues. The protocols can be classified into four types, the ACK–based
protocols [23, 15] where all receivers send positive acknowledgments for each packet that they receive,
the NAK–based protocols [4, 7, 9, 11, 26] where the receivers monitor the sequence of packets they
receive and send negative acknowledgments on the detection of a gap in the sequence number, the ring-
based protocols [3, 25] where the receivers are organized as a logical ring and the receivers take turns
to acknowledge the packets received to ensure reliability, and the tree–based protocols [15, 26] where
the receivers are organized as subgroups to release the sender from processing all control messages from
all receivers. Each has its own advantages and disadvantages. ACK–based protocols are extensions of
traditional reliable unicast protocols. They suffer from the ACK–implosion problem and are, in general,
not scalable. NAK–based protocols overcome the ACK–implosion problem. However, such protocols
require large buffers and need other techniques, such as polling [20], to ensure reliability. Ring–based
protocols combine the reliability of the ACK–based protocols and the efficiency of the NAK–based
protocols. These protocols also need large buffers and may not be efficient for small messages. Tree–
based protocols release the sender from the burden of processing acknowledgments from all of the
receivers and are more scalable than other protocols. Such protocols may incur longer communication
delays since the acknowledgment packets may pass multiple hops to reach the sender.

Our work does not intend to invent new reliable multicast protocols. Instead, we investigate the im-
pact of architectural features of the most popular LAN, the Ethernet, on the performance of the reliable
multicast protocols, study how these features affect flow control, buffer management and retransmission
mechanisms in the reliable multicast protocols, and attempt to determine the most efficient methods
to perform reliable multicast over the Ethernet. This paper presents a comprehensive study of most of
the existing reliable multicast protocols. The results can be used in the development of more advanced
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communication systems [10, 27]. Notice that most of the existing protocols were proposed for wide-area
networks and targeted Internet applications and, therefore, these protocols may not be efficient in the
LAN environment for running parallel applications.

3 Reliable multicast over the Ethernet

In the general Internet environment, reliable multicast for general Internet applications is difficult for
three main reasons. First, providing reliability requires feedback from each of the receivers, which may
overwhelm the sender [5]. Second, maintaining the membership and enforcing the semantics of reliable
multicast over dynamic multicast groups, where members can join and leave a group dynamically, is
difficult. Third, implementing flow control that is acceptable to all receivers is complicated by the
presence of heterogeneous receivers.

The situation is different when developing reliable multicast protocols in the LAN environment for
parallel applications. First, communication patterns in parallel applications exhibit locality, that is,
the communication pattern changes very slowly during the execution of a program [21]. This indicates
that for most communication patterns in parallel programs, multicast groups are static, that is, group
members do not join and leave a group dynamically. In this paper, we will ignore the membership
management issue and assume that a multicast group, once created, will not change. Second, parallel
applications usually communicate with small message sizes. Thus, to achieve high performance, the
protocols must be able to handle small messages efficiently.

This paper considers homogeneous clusters, that is, all workstations have the same network con-
nection speed and processing power. In homogeneous clusters, efficient flow control is possible. Mul-
ticasting on heterogeneous clusters may require different techniques and is beyond the scope of this
paper. As discussed earlier, the main challenge in designing efficient reliable multicast protocols for
high performance LAN clusters is to exploit special features of LANs. Next, we will discuss some LAN
features that may affect the performance of reliable multicast.

• LAN hardware typically supports broadcast, which means that sending a packet to one receiver
costs almost the same bandwidth as sending a packet to the whole group. This might affect the
retransmission and acknowledgment strategy in multicast protocols. However, it must be noted
that using multicast for retransmission and acknowledgment may introduce extra CPU overhead
for unintended receivers (to process the unintended packets).

• Traditional LANs use shared media for communication, which implies that all transmitters com-
pete for the shared resource. For such systems, the media access protocol, such as the CSMA/CD
protocol with binary exponential backoff in the Ethernet, may or may not resolve contentions
effectively. When the media access protocol cannot resolve contentions effectively, it may be
desirable for the reliable multicast protocol to impose a limit on the number of simultaneous
transmissions at a given time. However, since the cost of Ethernet switches is fairly low, most
Ethernet-connected networks employ switches, which alleviate or totally eliminate the network
contention problem in the Ethernet. For such systems, the mechanism to limit the number of
simultaneous transmissions may not be necessary.

• The sender and the receivers are close to each other in LANs and the communication propagation
delay is small. This might affect the choice of flow control and buffer management schemes. For
example, since the sender can receive the acknowledgments from the receivers quickly in such
systems, large buffers may not be necessary to achieve good performance.
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• In a wired LAN, such as the Ethernet-connected networks, the transmission error rate is very
low. In such systems, packets are lost mainly due to the overflow of buffers at end hosts. With a
proper transmission pacing scheme, the retransmission mechanism may not be as critical as that
in the general Internet environment.

This paper studies the impacts of these features on the reliable multicast protocols. Four types of
protocols will be used in the study, the ACK–based protocols, the NAK–based protocols with polling,
the ring–based protocols, and the tree–based protocols. Next, we will describe the four types of reliable
multicast protocols. The implementation details will be presented in the next section.

ACK–based protocols

sender

receivers

ACK ACK ACK
NAK

Figure 1: The ACK–based protocol

The ACK–based protocols [7, 15, 23] require the sender to maintain the state of all receivers to whom
it has to send information and from whom it has to receive acknowledgments (ACKs). The sender uses
multicast to transmit data to the receivers and the receivers unicast ACKs or non–acknowledgments
(NAKs) to the sender. Note that like reliable unicast protocols, NAK packets may speedup the packet
retransmission when transmission errors occur, but are not necessary for the correctness of the ACK–
based protocols. The sender releases the buffer for a data packet only after positive acknowledgments
from all receivers for that packet are received. Figure 1 illustrates the ACK–based protocols. Vari-
ations in transmission pacing and retransmission exist. For example, retransmission can be either
sender-driven, where the retransmission timer is managed at the sender, or receiver-driven, where the
retransmission timer is managed at the receivers [7]. The flow control can either be rate–based or
window–based. The main limitation of the ACK–based protocols is that the sender must process all
acknowledgment packets from all receivers. This ACK implosion problem limits the scalability of the
ACK–based protocols.

NAK–based protocols

The NAK–based protocols [4, 7, 9, 11, 26] avoid the ACK implosion problem as receivers only send
non-acknowledgments (NAKs) to the sender when a retransmission is necessary. A retransmission is
required when there is a transmission error, a skip in the sequence numbers of the packets received, or
a timeout. No acknowledgments are used. Since the sender only receives feedback from the receivers
when packets are lost, and not when they are delivered, the sender is unable to ascertain when data
can safely be released from memory. In order to ensure reliability, an infinite buffer space would be
required. Thus, in practice when the buffer space is limited, some mechanism, such as polling [20], must
be incorporated into the NAK–based protocols to guarantee reliability. Polling requires the sender to
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sender

receivers

NAK

Figure 2: The NAK–based protocol

periodically flag packets to be acknowledged by the receivers, thereby allowing the sender to determine
when data can safely be released from memory, without having to process ACKs for every packet.

NAK-based protocols can potentially suffer from the NAK implosion problem if many receivers
detect errors. To remedy this problem, a NAK suppression scheme can be developed [16]. In the NAK
suppression scheme, when a receiver detects an error, it waits for a random period of time and then
multicasts a NAK to the sender and other receivers. When a receiver obtains a NAK for a packet
which it intends to send a NAK for, the receiver behaves as if it had sent the NAK. The advantage that
NAK–based protocols have over ACK–based protocols is that the sender does not process ACKs from
the receivers. Since transmission errors rarely occur, the number of NAKs the sender must process is
significantly less than the number of ACKs. Thus, the NAK–based protocols provide more scalability.
The limitation, however, is that other mechanisms must be incorporated into a NAK–based protocol
to offer reliable multicast service. Figure 2 illustrates the NAK–based protocols.

In our implementation, the NAK-based protocols with polling utilize a different NAK suppression
scheme than the one in [16]. Our NAK suppression scheme is implemented at the sender side. A retrans-
mission will happen only after a designated period of time has passed since the previous transmission.
Thus, the receivers may send multiple NAKs to the sender while the sender performs retransmission
only once.

Ring-based protocols

receivers

sender

1

2

3 4

5

ACK 1, 6, 11, ...

ACK 2, 7, 12, ...

ACK 3, 8, 13, ...

ACK 4, 9, 14, ...

ACK 5, 10, 15, ...

Figure 3: A typical ring structure

The ring-based protocols [3, 25] are a combination of the NAK–based protocols and the ACK–based
protocols. These protocols aim at combining the throughput advantage of the NAK–based protocols
with the reliability of the ACK–based protocols. Figure 3 shows a ring–based protocol. In ring–based
protocols, among all receivers, only one token site is responsible for sending acknowledgment packets
to the source. The source maintains timers and retransmits packets if an ACK is not received from
the token site within the timeout period. Receivers send NAKs to the token site for lost packets which
were originally multicast from the source. The ACK sent to the source (and multicast to the other
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receivers) also serves as a token passing mechanism. Each receiver will serve as the token site in a
round-robin fashion. The rotating token passing scheme enables the source to know the status of each
of the receivers once all receivers send ACKs back. For example, assuming that there are N receivers
organized by node numbers 0, 1, ..., N − 1, using the ring–based scheme, receiver 0 will ACK packet
0, receiver 1 will ACK packet 1 (and, implicitly, packet 0), and so on. After the sender sends packet
N and receives the acknowledgment for packet N from receiver 0, it can safely release packet 0 from
memory (if it has also received acknowledgments for all packets up to packet N) since an ACK from
receiver 0 for packet N implies that receiver 0 has received all packets 0-N . The receipt of ACKs from
the other receivers would also imply the receipt of packet 0 by all receivers. Note that a receiver will
only send the ACK it is responsible for if it has received that packet and all packets in order up to that
packet. Therefore when receiver 1 ACKs packet 1, it is also implicitly acknowledging receipt of packet
0. This scheme also implies that the number of buffers must be greater than the number of receivers
since receipt of an ACK for packet X (and all packets preceding it) only releases packet X − N from
memory. Hence, there will always be at least N packets buffered in case a retransmission is required.

Three modifications were made to this scheme to adapt the protocol to the LAN environment. First,
the receivers unicast the ACK packets to the sender, rather than using multicast. This modification
reduces the computational load at the receiving nodes and decreases the number of out-of-order packets
that are received. Second, since the last N packets can not be acknowledged by an ACK N greater, the
last packet of the message is acknowledged by all receivers. Third, NAKs are sent directly to the source
and not to a token site. This modification has a minimal effect on the source since retransmissions in
Ethernet-connected LANs are rare due to the low transmission error rate.

Tree-based protocols

The tree–based protocols were designed to solve the scalability problem. The tree–based protocols are
essentially ACK–based protocols in the sense that the sender releases the buffer for a packet only after
it is certain that all receivers have received the packet. The difference is that the sender only processes
the aggregated acknowledgments instead of individual acknowledgments from each receiver as in the
ACK–based protocols.

The tree–based protocols are characterized by dividing the receiver set into groups with each group
having a group leader. In the existing tree–based protocols [15, 26], which were designed for the Internet
environment, the sender only interacts with the group leaders while the group leaders interact with
their group members. In these protocols, the group leaders not only aggregate the acknowledgments in
the group, but also are responsible for packet retransmissions within their groups. We adapt tree–based
protocols for the LAN environment for two reasons. First, tree–based protocols overcome the ACK
implosion problem and reduce the computational requirements at the sender in comparison to the ACK–
based protocols. Second, tree–based protocols can control the number of simultaneous transmissions
at the protocol level, which may be essential to achieve good communication performance in the LAN
environment.

group leader

sender

receivers

Figure 4: A binary tree structure
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r2 r4

r7 r8 r10

r13
r16
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r9 r11 r12

r16r15r14

r1 r2 r16r3

(a) Flat tree with H = N (16) (b) Flat tree with H = 3
(c) Flat tree with H=1

Figure 5: The flat tree structure

We made two modifications to the existing tree–based protocols to adapt such protocols for the
LAN environment. First, the group leaders in our protocol only aggregate the acknowledgments within
their groups, but do not perform packet retransmission. The sender is responsible for all data packet
transmissions and retransmissions. Since in the LAN environment, all nodes are close to each other, one
node is sufficient for all retransmissions. This modification does not increase the computational load at
the sender since the transmission error rate is very low in Ethernet–connected LANs and retransmission
is rarely needed. This modification greatly reduces the implementation complexity. Second, we use a
logical structure called a flat tree to organize the receivers. The existing tree–based protocols impose
a logical tree that “grows”. One example is the binary tree structure as shown in Figure 4. Such a
logical structure is not effective in controlling the number of simultaneous transmissions. For example,
using the binary tree structure, the maximum number of simultaneous transmissions is roughly N

2
with

the tree height equal to lg(N), where N is the number of receivers. The flat tree structure controls
the simultaneous transmissions more effectively. The logical structure of a flat tree is determined by
two parameters, the number of receivers, N , and tree height, H. Examples of flat trees of different
heights for N = 16 are shown in Figure 5. In a flat tree, a node will wait for the acknowledgment for
a packet from its successor before it sends the acknowledgment to its predecessor. Thus, each subtree
can at most have one active transmission at a given time and the maximum number of simultaneous
transmissions at a given time is N

H
. Notice that the ACK–based protocol is a special case of the

tree–based protocols, a flat tree with H = 1.

Comparison of the four protocols

Each type of protocol has its own advantages and limitations. ACK–based protocols provide reliability,
but suffer from the ACK implosion problem. NAK–based protocols alleviate the ACK implosion
problem but require an infinite buffer size or other mechanisms to ensure reliability. Ring–based
protocols are efficient, but require a large buffer size when the number of receivers is large and are
complicated to implement. Tree-based protocols are scalable but more complicated compared to the
other protocols. Different types of protocols may have different requirements for system resources.
Table 1 summarizes the memory requirement and implementation complexity of the protocols.

Table 2 breaks down the processing and network load (the number of control packets) for each data
packet sent. We assume that NAK-based protocols are augmented with a polling mechanism that polls
acknowledgment packets for every i data packets (polling interval = i). We also assume that tree-based
protocols use flat-tree topologies with height H. As can be seen from the table, the NAK-based protocol
depends heavily on the polling interval. Both ACK-based and tree-based protocols introduce N control
messages for each data packet sent, which indicates that when the network is under heavy load, these
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Table 1: Memory requirement and implementation complexity

memory implementation
requirement complexity

ACK-based low low
NAK-based high low
Ring-based high high
Tree-based low high

Table 2: Processing and network requirement

processing requirement No. of control packets
per data packet per data packet

sender others
ACK-based N receives 1 send N

NAK-based (polling interval = i) N

i
receives 1

i
send N

i

Ring-based 1 receive 1

N
send 1

Tree-based (flat tree with height H) N

H
receives 1 send, 1 receive N

two protocols will be affected more than the NAK-based and ring based protocols. The processing
requirement on the receivers is low in all protocols. For the sender, ACK-based protocols require more
processing than tree-based protocols, which in turn, require more processing than ring-based protocols.
Hence, the order of the impacts of a heavy CPU load on the sender is ACK-based, tree-based, and
ring-based protocols. The processing requirement in the NAK-based protocol depends on the polling
interval.

4 Implementation issues

We implement the four protocols over IP multicast using the UDP interface in the Linux operating
system. The protocols are executed as user processes. All protocols use a window based flow con-
trol scheme and maintain a timer at the sender side to implement the sender–driven error control
mechanism. Some implementation issues are discussed next.

Sender receiver

allocation request

response

data transfer

acknowledge

buffer allocation

Figure 6: Buffer management

• Buffer management. The implementation assumes limited buffer space on the receiver side.
The buffer allocation is done by sending the size of the message to the receivers first before the
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actual message is transmitted so that the receiver can allocate the necessary buffer to receive the
message. The messaging protocol is depicted in Figure 6. Both the request message and the data
message are sent using the same reliable multicast protocol. At least two round–trips of messaging
are necessary for each data transmission. Note that this buffer management scheme is not the only
one that can be used. For example, receivers may dynamically handle the buffering requirement.
We choose this scheme for a number of reasons. First, this is a typical buffer management scheme
for large messages. For example, it is used in MPICH point-to-point communication when the
message size is larger than 64KB [8]. Second, this scheme isolates the errors caused by buffer
management, which simplifies the protocol implementation.

• Packet Header. The reliable multicasting protocol is implemented over the UDP interface. The
sender/receiver identity information in the UDP and IP header, such as the machine IP address
and the port number, are used as the identity information for the reliable multicast protocols. In
addition to the identity information, the packet header has another two fields, a one-byte packet
type and a four-byte sequence number which is used to implement the window based flow control
mechanism. There are three types of packets used in the protocols, the data packet, the ACK
packet and the NAK packet.

• Timer management. A timer must be maintained in the protocols. Since we implement the
protocol in the user domain, the system call gettimeofday() is called every time when we need
to know the time. The time precision of this system call is in the order of microseconds (10−6

second), which is more than sufficient for the protocol. However, since the system call is an
expensive operation, we only maintain the approximate time by making the system call only at
(1) the beginning of the main iteration (to check whether a timeout has occurred), and (2) every
time a packet is sent (to set the retransmission timer).

• Flow control. The reliable multicast protocols use a window based flow control scheme. The
sender and the receivers maintain a window of buffers. The Go–back-N sliding window protocol
[24] is implemented, which requires the sender to retransmit all packets once an error occurs.
Theoretically, this protocol may perform worse than the selective–repeat sliding window protocol
[24], which only requires the retransmission of the packets that incur transmission errors. In
practice, transmission errors almost never occur in the Ethernet connected networks and thus, the
Go–Back–N protocol performs as well as the selective–repeat protocol. Since the logic in the Go–
Back–N protocol is much simpler than that in the selective–repeat protocol, the implementation
of the Go–back–N protocol is more efficient. One of the purposes of the sliding window protocol is
to allow pipelined communication, that is, multiple data packets are in the course of transmission
in a pipeline fashion before the acknowledgment packet is received. The window size and the
propagation delay dictate the effective of the pipelined communication. This is one of the issues
to be studied in the performance study. More details about the sliding window protocol and how
it enables pipelined communication can be found in [24].

• Error control. Sender–driven error control is implemented in all protocols. A timer is associated
with each packet in the sender window. If the sender does not receive acknowledgments (which
may be aggregated) from all receivers, the timer goes off and the packet is retransmitted by
multicasting the packet to all receivers. The retransmission may also be triggered when a NAK
packet is received. A retransmission suppression scheme is implemented to avoid retransmitting
too eagerly. A retransmission will happen only after a designated period of time has passed
since the previous transmission. The sender may process a number of NAK packets and perform

10



retransmission only once. It must be noted that the efficiency of error recovery schemes makes
little difference in the communication performance in the wired LAN environment since errors
almost never happen in such environment.

5 Performance

Ethernet
Switch

Ethernet
Switch

P1

P15

P16

P17

P18

P30

P2

P0

Figure 7: Network configuration

The performance of the protocols is evaluated in a cluster with 31 Pentium III–650MHz processors.
Each machine has 128MB memory and 100Mbps Ethernet connection via a 3Com 3C905 PCI EtherLink
Card. All machines run RedHat Linux version 6.2, with 2.2.16 kernel. The machines are connected by
two 3Com SuperStack II baseline 10/100 Ethernet switches as shown in Figure 7. In the figure, P0 is
used as the sender and all other machines are receivers. Communication in Ethernet can sometimes be
quite random. To deal with this problem and obtain more accurate experimental results, we measure the
communication time three times for each experiment and report the average of the three measurements.
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Figure 8: ACK–based protocol .vs. TCP

Figure 8 compares the communication time for transferring a 426502 byte file to different numbers of
receivers using TCP, the standard reliable unicast protocol, and using the ACK–based reliable multicast
protocol. As can be seen in the figure, using TCP, the communication time grows almost linearly with
the number of receivers, while using multicast, the communication time grows only slightly as the
number of receivers increases. In this particular experiment, using multicast, transferring the file to 30
receivers only needs about 6% more time than transferring the file to one receiver (from 0.060 second
to 0.064 second). Even though our protocol is implemented in the user domain and introduces other
overheads, the protocol outperforms TCP when the number of receivers is larger than 1.

Figure 9 compares our protocol with raw UDP. The raw UDP performance is measured by using UDP
with IP multicast to send all of the data and having the receivers reply upon receipt of the last packet.
This comparison shows the protocol overhead we introduce in our implementation of the ACK–based
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Figure 9: ACK–based protocol .vs. raw UDP

protocol. As can be seen in the figure, our protocol introduces substantial overhead compared to raw
UDP. When the message size is small, our protocol requires two round–trips for buffer management.
When the message size is large, our protocol introduces an additional copy of the data from the user
space to the protocol buffer, and this copy incurs most of the overhead when the message size is large.
For comparison purposes, the figure also shows the protocol without the copy (which is an incorrect
protocol).
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Figure 10: Performance of ACK–based protocols with different packet sizes and window sizes

Figure 10 shows the performance of the ACK–based protocols with different packet sizes and different
window sizes. This experiment is done with 30 receivers receiving 500KB data from the sender. Notice
that the total amount of buffer memory is equal to packet size times window size. As can be seen from
the figure, the performance of the ACK–based protocol is very sensitive to the packet size, the larger
the packet size, the better the performance. Using UDP, the maximum packet size is 64K including
the UDP and IP header. Two reasons contribute to this result. First, a large packet size reduces the
number of acknowledgments that the receivers send, which reduces both the network load and the CPU
processing in the sender. Second, the transmission error rate is very low in such systems, therefore,
increasing the packet size does not really increase the chance of retransmission. Another interesting
observation from this experiment is that for any given packet size, the best performance can be achieved
with a window size of 2, which indicates that the ACK–based protocol is not sensitive to the amount of
buffer space. The short propagation time in the networks does not give much opportunity for pipelined
communication using the ACK–based protocol.

Figure 11 shows the scalability of the protocol. The experiment is done with a maximum packet
size of 50KB and thus, when the message size is less than 50KB, only one data packet is sent. When
the message size is small (< 4KB), the protocol is not scalable as the communication time increases
almost linearly with the number of receivers as shown in Figure 11 (a). This is because the total
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Figure 11: The scalability of ACK–based protocols

number of messages increases linearly as the number of receivers increases since each receiver will send
acknowledgment packets. In order for the protocol to be scalable, the message size must be large
enough so that the data transmission time dominates the time for acknowledgments. Figure 11 (b)
shows this case when the message size is large (> 8KB). In this case, the acknowledgment overhead is
negligible and the protocol is scalable.
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Figure 12: Performance of NAK–based protocols with polling at different poll intervals

The NAK–based protocols with polling provide better communication performance than the ACK–
based protocols by avoiding the ACK implosion problem and the overhead of processing ACKs from all
receivers for every packet. The cost of this advantage is the need for additional buffer space. Figure 12
shows the performance of the NAK–based protocols with polling at different poll intervals with different
packet sizes. This experiment is done with 30 receivers receiving 500KB data from the sender and a
window size of 20. Notice that the total amount of buffer memory is equal to the packet size times
the window size of 20. The poll interval refers to the interval between packets that are flagged to be
acknowledged by the receivers. As shown in the figure, the best performance is achieved when the
poll interval is 16-18, or about 80-90% of the window size, regardless of the packet size. Although not
shown here, other experiments with different window sizes demonstrate a similar trend. There are two
reasons for this result. First, at a small poll interval, the protocol essentially becomes an ACK–based
protocol and increases the network load and the CPU processing in the sender. As in the ACK–based
protocols, this overhead is more pronounced at smaller packet sizes. Second, at poll intervals too close
to the window size, the protocol again behaves like the ACK–based protocols. A large amount of data
close to the buffer size is sent before any acknowledgments are received. The result is similar to using
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a very large packet size in the ACK–based protocols. The pipelined communication is affected due to
the fact that the buffer becomes nearly full before ACKs are received to safely release the data from
memory.
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Figure 13: Performance of NAK–based protocols with polling for different buffer sizes

Figure 13 shows the performance of the NAK–based protocols with different packet sizes and different
buffer sizes. This experiment is done with 30 receivers receiving 500KB data from the sender with the
poll interval set to 80-85% of the window size. Notice that the window size can be determined by
dividing the buffer size by the packet size. These results show that if the packet size is too small or too
large the performance will suffer. Two reasons contribute to this result. If the packet size is too small,
there is increased overhead due to the number of packets and ACKs that need to be transmitted. If the
packet size is too large, the pipeline is affected by the increase in the amount of time required to copy
the data from the user space to the protocol buffer. In general, unlike the ACK–based protocols, smaller
packet sizes tend to result in better performance, as long as the packet size is not excessively small.
This can be attributed to the fact that smaller packet sizes assist in creating pipelined communication.
This figure also shows that when the window size is too small, the pipelined communication cannot
be maintained efficiently and the communication performance suffers. A final observation is that the
performance of the protocol is not strictly increasing or decreasing relative to the packet size. This
would indicate that the performance depends on a number of factors, including the buffer size, the
packet size, and the poll interval.
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Figure 14: The scalability of NAK–based protocols with polling

The scalability of the NAK–based protocols with polling is shown in Figure 14. The experiment is
done with various packet sizes ranging from 500B to 50KB and a message size of 500KB. The window
size and the poll interval were set to provide the best performance based on the previous experiments.
For example, when an 8KB packet size was used, the window size was set to 25 with a poll interval
of 21. Overall the protocol is quite scalable with an average increase of only about 5.5% for sending
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to 30 receivers in comparison to sending to just one receiver. The larger the packet size, the more
scalable the protocol becomes. As shown in the figure, the increase for a 500B packet size is about 11%
(from 0.059 second to 0.066 second) while the increase for a 50KB packet size is only 1% (from 0.061
second to 0.062 second). The reason for this is that as the packet size increases, the number of packets
that are sent decreases. As fewer packets are sent, the number of ACKs required also decreases. By
having even fewer ACKs to process, the protocol becomes more scalable. In general, the NAK–based
protocols with polling are scalable due to the fact that data transmission time is able to dominate the
time required to process acknowledgments.

The ring–based protocols also limit the number of acknowledgments that the sender must process.
By reducing the ACK processing overhead, the ring–based protocols seem to offer better performance
than the ACK–based protocols, particularly for large message sizes. Another advantage is that by
rotating the acknowledgments amongst the receivers, contention in the network is limited. The next
part of the study will focus on the ring–based protocols.
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Figure 15: Performance of ring–based protocols with different packet sizes

Figure 15 demonstrates the performance of the ring–based protocols with different packet sizes. The
experiment was conducted by sending a 2MB message to 30 receivers. The window size was set at 35.
As can be seen from the figure, the best results were obtained when the packet size was between 5KB

and 10KB. Once again, this can be attributed to the fact that extra overhead is introduced at smaller
packet sizes, while the pipelined communication is not efficient at larger packet sizes.
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Figure 16: Performance of ring–based protocols with different window sizes

Figure 16 shows the performance of the protocol with different window sizes. The experiment was
performed by sending 2MB of data to 30 receivers. As can be seen in the figure, the window size that
achieves the best performance is related to the size of the packets. In comparison to the other protocols,
the ring–based protocols generally require more buffers in the window to provide better performance.
The protocols require at least one more buffer than the number of receivers, however, the protocols
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can achieve better performance with an even larger buffer size. This results from the fact that the
ring–based protocols allow more pipelined communication as the sender isn’t required to process ACKs
from every receiver for each packet.
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Figure 17: The scalability of ring–based protocols

The scalability of the ring–based protocols is shown in Figure 17. The results were obtained from
transmitting 2MB of data with a window size of 50. However, at large message sizes, scalability is
not really an issue since all of the four protocols appear to be scalable. As demonstrated in the figure,
the difference between sending a large message to one receiver and 30 receivers is negligible. The
communication time increases less than one percent, from 0.188 second to 0.190 second.

The tree–based protocols may offer better communication performance than the ACK–based proto-
cols since (1) they reduce the processing at the sender and (2) they limit the contention in the networks
at the protocol level. These advantages are obtained at the cost of maintaining a logical structure on
the set of receivers, which can cost extra communication delay since communications are sequential-
ized at the protocol level. Whether the advantages can out–weigh the costs depends on many factors,
including the number of receivers, the logical structure, the size of messages and the buffer sizes. Next,
we will study the tree–based protocols and compare the tree–based protocols with the ACK–based
protocols.
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Figure 18: Performance of tree–based protocol for different logical structures

Figure 18 shows the performance of different trees when transferring 500KB data to 30 receivers with
packet sizes of 50KB and 8KB and with a sufficiently large window size (20). As can be seen from the
figure, the two extreme cases (Height = 1 and Height = 30) do not produce the best communication
performance for either packet size. Unlike the ACK–based protocols where a large packet size results in
better communication performance, the performance of the flat tree depends on both the tree structure
and the packet size. For example, when packet size = 8KB, the tree structure with Height = 15 results
in the best performance. When packet size = 50KB, the tree structure with Height = 6 performs
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the best. In all cases except Height = 1, using an 8KB packet size performs better than using a
50KB packet size. There are two reasons for this observation. First, small packets help in creating the
pipelined communication, which can result in better communication performance. Second, using small
packets requires more acknowledgments. However, this does not have a significant impact on the tree–
based protocols since in these protocols, the sender only processes the aggregated acknowledgments.
The accumulated effect is that using 8KB packets performs better than using 50KB packets for most
cases.
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Figure 19: Performance of tree–based protocols for different window sizes

Figure 19 shows the relation between the logical tree structure and the memory requirement. This
experiment transfers 500KB data to 30 receivers with a packet size of 8KB. Comparing Figure 19
and Figure 10, we can see that the tree–based protocol requires different window management than
the ACK–based protocols. Essentially, when the tree grows higher, more buffers are necessary for the
protocols to achieve the best performance. For example, when the tree height is 30, we need buffers for
about 10 packets in the window for the protocol to achieve close to the best performance in comparison
to buffers for just 2 packets in the ACK–based protocols. Another conclusion from this experiment is
that the tree–based protocol can offer better communication performance than the simple ACK–based
protocol when the message is large. As shown in the figure, the ACK–based protocol performs worse
than other tree protocols with sufficient window size. Two factors contribute to the performance gain,
first the tree–based protocol reduces the load on the sender which is the bottleneck in the multicast
communication and second, tree–based protocols allow more pipelined communication as the round-
trip delay becomes larger. While the second factor may allow the tree–based protocol to out–perform
the ACK–based protocol for large messages, it might hurt the performance when the message size is
small. This is demonstrated in the next experiment.
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Figure 20: Performance of tree–based protocols for small messages

Figure 20 shows the performance of different trees when the message size is small. As shown in the
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figure, when the tree height is small (< 6), all the protocols have similar performance, however, when
the tree height is larger (≥ 15) the delay for transferring the small message increases dramatically. This
is mainly due to the relay of the messages at the user level. These results indicate that the tree-based
protocols are not efficient for small messages compared to the ACK–based protocol.
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Figure 21: Performance with different window size and packet sizes

Figure 21 shows the performance of a tree with 30 receivers and Height = 6. As shown in the figure,
the performance of the tree–based protocol not only depends on the packet size, but also the window
size. Unlike the ACK–based protocol where a larger packet size always results in better performance,
to achieve better performance, the packet size must be carefully selected. As shown in the figure, when
the packet size is too large (packet size = 50000), the pipelined communication will be affected, while
a small packet size (packet size = 1300) may result in excessive overhead.

Next, we will compare the performance of the four types of protocols for transferring different size
messages. For small messages that can be transferred in one packet, the ACK–based protocols, the
NAK–based protocols with polling, and the ring–based protocols have exactly the same behavior. All
these protocols will perform better than the tree–based protocols as shown in Figure 20. This is because
the tree–based protocols relay ACK packets at the user level while the other protocols do not.

Table 3: Throughput achieved when sending 2MB of data

Throughput
ACK-based 68.0Mbps
NAK-based 89.7Mbps
Ring-based 84.6Mbps
Tree-based 77.3Mbps

(Height = 6)
Tree-based 81.2Mbps

(Height = 15)

For large message sizes, the performance of the protocols is ordered as follows:
NAK–based ≥ ring–based ≥ tree–based ≥ ACK–based

The results of transmitting a large message (2MB) are shown in Table 3. In this experiment, we
try to compare the “best” protocol for each type of protocol. The data are obtained by probing the
parameter space for each type of protocol and selecting the ones that can provide the best performance.
Specifically, the ACK–based protocol uses a packet size of 50KB with a window size of 5; the NAK–
based protocol with polling has a packet size of 8KB, a window size of 50 (giving a buffer size of
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400KB), and a poll interval of 43; the ring–based protocol also has an 8KB packet size and a window
size of 50; the tree–based protocols of different heights (H = 6 and H = 15) use a packet size of 8KB

and a window size of 20. The NAK–based protocol with polling is able to achieve the best performance
due to the fact that it does not require ACKs to be processed for every packet. Since retransmissions
are rare in Ethernet-connected LANs, it is not necessary to process NAKs, either. Thus, the NAK
based protocol could perform efficient pipelined communication without interruption. The ring–based
protocol also achieves high performance due to the fact that the sender only has to process one ACK
for each packet, which allows it to maintain pipelined communication and achieve better performance
than the other two protocols. However, the NAK–based protocol still processes fewer ACKs and
could attain a higher throughput. The tree–based protocol out–performs the ACK–based protocol for
large messages. The factors that contribute to the performance gain include a reduced load of ACK
processing at the sender, and more pipelined communication due to the longer round trip delay. The
communication delay of relaying the messages at the user level prevents the protocol from achieving
the throughput of the NAK–based and ring–based protocols. The ACK–based protocol exhibits poor
performance due to the overhead of processing ACKs from every receiver for every packet. The results
support the conclusion that the NAK–based protocol with polling is the most efficient protocol for
large messages, although the ring–based protocol also shows potential for high performance.

6 Conclusion

In this paper, we evaluate the performance of four types of reliable multicast protocols, the ACK–
based protocols, the NAK–based protocols with polling, the ring–based protocols, and the tree–based
protocols, over Ethernet–connected networks and studied the impact of some features of the Ethernet on
the flow control, buffer management and error control schemes in the protocols. The main conclusions
we obtained for reliable multicast over Ethernet connected networks are the following.

• ACK–based protocols. First, the traditional window–based flow control mechanism is not
effective. In the studies, the ACK–based protocols only require buffers for two packets to achieve
the best performance for any given packet size (and regardless of the packet size). A larger buffer
size does not result in better performance. Second, the performance of ACK–based protocols is
quite sensitive to the packet size. In general, the larger the packet size, the better the performance.

• NAK–based protocols with polling. First, although the performance of the NAK–based
protocols is also quite sensitive to the packet size, smaller packet sizes may perform better than
larger packet sizes. Second, the window–based flow control mechanism is effective for the NAK–
based protocols. A large buffer size is necessary for the NAK–based protocols to achieve good
performance. Third, the poll interval plays an important role in the performance of the NAK–
based protocols. The best performance can be achieved when the poll interval is about 80-90%
of the window size, regardless of the packet size.

• Ring–based protocols. First, the performance of the ring–based protocols is also sensitive to
the packet size. The packet size must be carefully selected as performance suffers if the packet
size is too small or too large. Second, the window–based flow control mechanism is effective. The
buffer size to obtain the best performance depends on the packet size.

• Tree–based protocols. First, the window–based flow control mechanism is effective for the
tree–based protocols. A large window size is necessary for the tree–based protocols to achieve
good performance. The window size depends on a number of factors including the packet size and
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the tree structure. Second, unlike the ACK–based protocols, the packet size that can achieve the
best communication performance for the tree–based protocols depends on many factors including
the logical tree structure.

• Comparison of the protocols. For small messages, the ACK–based, NAK–based with polling,
and ring–based protocols have the same behavior and performance. All of these protocols perform
better than the tree–based protocols. For large messages, the performance of the protocols is
ordered as follows:

NAK–based ≥ ring–based ≥ tree–based ≥ ACK–based
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