
A Study of Process Arrival Patterns for
MPI Collective Operations

Ahmad Faraj
Blue Gene Software Development

IBM Corporation
Rochester, MN 55901
faraja@us.ibm.com

Pitch Patarasuk Xin Yuan
Department of Computer Science

Florida State University
Tallahassee, FL 32306

{patarasu, xyuan}@cs.fsu.edu

ABSTRACT
Process arrival pattern, which denotes the timing when dif-
ferent processes arrive at an MPI collective operation, can
have a significant impact on the performance of the opera-
tion. In this work, we characterize the process arrival pat-
terns in a set of MPI programs on two common cluster plat-
forms, use a micro-benchmark to study the process arrival
patterns in MPI programs with balanced loads, and investi-
gate the impacts of the process arrival pattern on collective
algorithms. Our results show that (1) the differences be-
tween the times when different processes arrive at a collec-
tive operation are usually sufficiently large to significantly
affect the performance; (2) application developers in gen-
eral cannot effectively control the process arrival patterns
in their MPI programs in cluster environments: balancing
loads at the application level does not balance the process
arrival patterns; and (3) the performance of the collective
communication algorithms is sensitive to process arrival pat-
terns. These results indicate that the process arrival pattern
is an important factor that must be taken into considera-
tion in developing and optimizing MPI collective routines.
We propose a scheme that achieves high performance with
different process arrival patterns, and demonstrate that by
explicitly considering process arrival pattern, more efficient
MPI collective routines than the current ones can be ob-
tained.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; D.0 [Software]: General

General Terms
Performance

Keywords
MPI, Collective Communication, Process arrival pattern

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS ’07 June 18-20, Seattle WA, USA
Copyright 2007 ACM 978-1-59593-768-1/07/0006 ...$5.00.

1. INTRODUCTION
MPI collective operations are used in most MPI applica-

tions and they account for a significant portion of the com-
munication time in some applications [21]. Yet, compared to
their point-to-point counterparts, MPI collective operations
have received less attention, and some fundamental issues in
collective operations are still not well understood [9].

The term process arrival pattern denotes the timing when
different processes arrive at an MPI collective operation (the
call site of the collective routine). A process arrival pattern
is said to be balanced when all processes arrive at the call
site roughly at the same time such that the arrival timing
does not dramatically affect the performance of the opera-
tion, and imbalanced otherwise. The terms, balanced and
imbalanced arrival patterns, are quantified in Section 3.

The process arrival pattern can have a profound impact
on the performance because it decides the time when each
process can start participating in an operation. Unfortu-
nately, this important factor has been largely overlooked by
the MPI developers community. We are not aware of any
study that characterizes process arrival patterns in appli-
cation programs. MPI developers routinely make the im-
plicit assumption that all processes arrive at the same time
(a balanced process arrival pattern) when developing and
analyzing algorithms for MPI collective operations [9, 26].
However, as will be shown in this paper, the process arrival
patterns in MPI programs, even well designed programs with
balanced loads, are more likely to be sufficiently imbalanced
to significantly affect the performance.

The imbalanced process arrival pattern problem is closely
related to the application load balancing problem. MPI
practitioners who have used a performance tool such as
Jumpshot to visually see the process arrival times for their
collectives should have noticed the imbalanced process ar-
rival pattern problem. However, these two problems are sig-
nificantly distinct in their time scales: the time differences
that cause load imbalance at the application level are usually
orders of magnitude larger than those causing imbalanced
process arrival patterns. It is often possible to “balance” ap-
plication loads by applying some load balancing techniques.
However, as will be shown later, it is virtually impossible
to balance the process arrival patterns in typical cluster en-
vironments: even programs with perfectly balanced loads
tend to have imbalanced process arrival patterns.

This work is concerned about efficient implementations
of MPI collective routines. Application load balancing, al-
though important, requires techniques in the application

level and is beyond the scope of this paper. For applica-
tions with balanced loads to achieve high performance, it
is essential that the MPI library can deliver high perfor-
mance with different (balanced and imbalanced) process ar-
rival patterns. Hence, from the library implementer point of
view, it is crucial to know (1) how application programs be-
have (the process arrival pattern characteristics); (2) whether
the application behavior can cause performance problems in
the library routines; and (3) how to deal with the problem
and make the library most efficient for the given application
behavior. These are the questions that we try to answer in
this paper. Note that for an MPI library, there is no differ-
ence in applications with different load balancing character-
istics. The library should try to deliver the best performance
to applications with or without balanced loads.

We study the process arrival patterns of a set of MPI
benchmarks on two commercial off-the-shelf (COTS) clus-
ters: a high-end Alphaserver cluster and a low-end Beowulf
cluster with Gigabit Ethernet connection. These two clus-
ters are representative and our results can apply to a wide
range of practical clusters. We characterize the process ar-
rival patterns in MPI programs, use a micro-benchmark to
examine the process arrival patterns in applications with
balanced loads and to study the causes of the imbalanced
process arrival patterns, and investigate the impacts of dif-
ferent process arrival patterns on some commonly used algo-
rithms for MPI collective operations. The findings include:

• The process arrival patterns for MPI collective op-
erations are usually imbalanced. Even in a micro-
benchmark with a perfectly balanced load, the process
arrival patterns are still imbalanced.

• In cluster environments, it is virtually impossible for
application developers to control the process arrival
patterns in their programs without explicitly invoking
a global synchronized operation. Many factors that
can cause imbalance in computation and communica-
tion are beyond the control of the developers. Balanc-
ing the loads at the application level is insufficient to
balance the process arrival patterns.

• The performance of the MPI collective communica-
tion algorithms is sensitive to the process arrival pat-
tern. In particular, the algorithms that perform better
with a balanced process arrival pattern tend to per-
form worse when the process arrival pattern becomes
more imbalanced.

These findings indicate that for an MPI collective rou-
tine to be efficient in practice, it must be able to achieve
high performance with different (balanced and imbalanced)
process arrival patterns. Hence, MPI library implementers
must take process arrival pattern into consideration in de-
veloping and optimizing MPI collective routines. We pro-
pose a scheme that uses a dynamic adaptive mechanism to
deal with the imbalanced process arrival pattern problem,
and demonstrate that by explicitly considering process ar-
rival pattern, more robust MPI collective routines than the
current ones can be developed.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 formally describes the
process arrival pattern and the parameters we use to charac-
terize it. Section 4 presents the statistics of process arrival
patterns in a set of benchmark programs. In Section 5, we

study a micro-benchmark that has a perfectly balanced load
and investigate the causes for such a program to have im-
balanced process arrival patterns. In Section 6, we evaluate
the impacts of process arrival patterns on some common al-
gorithms for MPI collective operations. In Section 7, we
propose and evaluate a potential solution to the imbalanced
process arrival pattern problem. Finally, Section 8 concludes
the paper.

2. RELATED WORK
Understanding the application/system behavior is critical

for developing an efficient MPI library. Due to its impor-
tance, there are numerous research efforts focusing on ana-
lyzing MPI communication behavior. Examples include [5,
6, 11, 24, 25, 30]. In [30], the performance of parallel applica-
tions is analyzed using a technique that automatically clas-
sifies inefficiencies in point-to-point communications. The
study analyzes the usage of MPI collective communication
routines and their elapsed times. The studies in [6, 11] per-
formed quantitative measures of the static and dynamic MPI
routines in parallel applications. Work in [24] performed
statistical analysis of all-to-all elapsed communication time
on the IBM SP2 machine to understand the causes of per-
formance drop as the number of processors increases. The
researchers in [25, 5] examined the NAS parallel benchmarks
[16] to quantitatively describe the MPI routines usage and
distribution of message sizes. The analysis performed on
the parallel applications in these studies (and other similar
studies) often involves the investigation of communication
attributes such as the type of MPI routines, message size,
message volume, message interval, bandwidth requirement,
and communication elapsed time. Our study focuses on a
specific communication attribute for collective operations,
the process arrival pattern, which to the best of our knowl-
edge, has not been studied before. It must be noted that the
process arrival pattern is affected not only by the applica-
tion, but also by the operating system, the system hardware,
and the communication library.

3. PROCESS ARRIVAL PATTERN

exit time

1

δ 0
δ 2

e2
δ 1 δ 3

�����
�����
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
���
���

���
���
���
���

	�	�	
	�	�	
	�	�	

�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
��
��

1 2 3

e3

0

p
0

p p p

ω

e

average
arrival time

1a

a

a

f f
f

f

a0

2

3

0 1

2

3

arrival time

e

Figure 1: Process arrival pattern

Let n processes, p0, p1, ..., pn−1, participate in a collective
operation. Let ai be the time when process pi arrives at
the collective operation. The process arrival pattern can
be represented by the tuple (a0, a1, ..., an−1). The average

process arrival time is ā =
a0+a1+...+a

n−1

n
. Let fi be the

time when process pi finishes the operation. The process
exit pattern can be represented by the tuple (f0, f1, ..., fn−1).
The elapsed time that process pi spends in the operation is
thus ei = fi − ai, the total time is e0 + e1 + ... + en−1,

and the average per node time is ē =
e0+e1+...+e

n−1

n
. In

an application, the total time or the average per node time
accurately reflects the time that the program spends on the
operation. We will use the average per node time (ē) to
denote the performance of an operation (or an algorithm).

We will use the term imbalance in the process arrival
pattern to signify the differences in the process arrival times
at a collective communication call site. Let δi be the time
difference between pi’s arrival time ai and the average arrival
time ā, δi = |ai − ā|. The imbalance in the process arrival
pattern can be characterized by the average case imbalance

time, δ̄ =
δ0+δ1+...+δ

n−1

n
, and the worst case imbalance time,

ω = maxi{ai} − mini{ai}. Figure 1 depicts the described
parameters in a process arrival pattern.

An MPI collective operation typically requires each pro-
cess to send multiple messages. A collective algorithm or-
ganizes the messages in the operation in a certain way. For
example, in the pair algorithm for MPI Alltoall [26], the mes-
sages in the all-to-all operation are organized in n−1 phases:
in phase i, 0 ≤ i ≤ n − 1, process pj exchanges a message
with process pj ⊕ i (⊕ is the exclusive or operator). The
impact of an imbalanced process arrival pattern is mainly
caused by the early completions or late starts of some mes-
sages in the operation. In the pair algorithm, early arrivals
of some processes will cause some processes to complete a
phase and start the next phase while other processes are still
in the previous phase, which may cause system contention
and degrade the performance. Hence, the impacts of an
imbalanced process arrival pattern can be better character-
ized by the number of messages that can be sent during the
period when some processes arrive while others do not. To
capture this notion, we normalize the worst case and average
case imbalance times by the time to communicate one mes-
sage. The normalized results are called the average/worst
case imbalance factor. Let T be the time to communicate
one message in the operation, the average case imbalance
factor equals to δ̄

T
and the worst case imbalance factor equals

to ω
T

. A worst case imbalance factor of 20 means that by
the time the last process arrives at the operation, the first
process may have sent twenty messages. In general, a pro-
cess arrival pattern is balanced if the worst case imbalance
factor is less than 1 (all processes arrive within a message
time) and imbalanced otherwise.

4. PROCESS ARRIVAL PATTERNS IN MPI
PROGRAMS

4.1 Platforms
The process arrival pattern statistics are collected on two

representative platforms. The first is the Lemieux machine
located in Pittsburgh Supercomputing Center (PSC) [20].
The machine consists of 750 Compaq Alphaserver ES45 nodes
connected by Quadrics, each of the nodes includes four 1-
GHz SMP processors with 4GB of memory. The system runs
Tru64 Unix operating system. All benchmarks are compiled
with the native mpicc and linked with the native MPI and
ELAN library. ELAN is a low-level internode communica-
tion library for Quadrics. On Lemieux, the experiments are
conducted with a batch partition of 32, 64, and 128 pro-
cessors (4 processors per node). The second platform is a
16-node Beowulf cluster, whose nodes are Dell Dimension
2400, each with a 2.8GHz P4 processor and 128MB of mem-
ory. All machines run Linux (Fedora) with the 2.6.5-1.358

kernel. These machines are connected by a Dell Powercon-
nect 2624 1Gbps Ethernet switch. This system uses MPICH
2-1.0.1 for communication. All programs are compiled with
the mpicc that comes with the MPICH package.

Some of the times and the corresponding bandwidths (BW)
for one way point-to-point communications with different
message sizes on the two platforms are summarized in Ta-
ble 1. These numbers, which are obtained using a pingpong
program, are used to compute imbalance factors.

Table 1: One way point-to-point communication
time and bandwidth on Lemieux and Beowulf

message Lemieux Beowulf
size time BW time BW

(ms) (MB/s) (ms) (MB/s)
4B 0.008 0.50 0.056 0.07

256B 0.008 32.0 0.063 4.10
1KB 0.021 49.5 0.088 11.6
4KB 0.029 141 0.150 27.3

16KB 0.079 207 0.277 59.1
32KB 0.150 218 0.470 69.7
64KB 0.291 225 0.846 77.5

128KB 0.575 228 1.571 83.4

4.2 Benchmarks
Table 2 summarizes the seven benchmarks. For reference,

we show the code size as well as the execution and collective
communication elapsed times for running the programs on
n = 64 processors on Lemieux. Table 3 shows the major
collective communication routines in the benchmarks and
their dynamic counts and message sizes (assuming n = 64).
There are significant collective operations in all programs.
Next, we briefly describe each benchmark and the related
parameters/settings used in the experiments.
FT (Fast-Fourier Transform) is one of the parallel kernels
included in NAS parallel benchmarks [16]. FT solves a par-
tial differential equation using forward and inverse FFTs.
The collective communication routines used in FT include
MPI Alltoall, MPI Barrier, MPI Bcast, and MPI Reduce with
most communications being carried out by MPI Alltoall. We
used class B problem size supplied by the NAS benchmark
suite in the evaluation.
IS (Integer Sort) is a parallel kernel from NAS parallel
benchmarks. It uses bucket sort to order a list of inte-
gers. The MPI collective routines in IS are MPI Alltoall,
MPI Alltoallv, MPI Allreduce, and MPI Barrier with most
communications carried out by the MPI Alltoallv routine.
We also used class B problem size.

Table 2: Summary of benchmarks (times are mea-
sured on Lemieux with 64 processors)

benchmark #lines total time comm. time
FT 2234 13.4s 8.3s
IS 1091 2.2s 1.6s
LAMMPS 23510 286.7s 36.1s
PARADYN 6252 36.6s 33.1s
NBODY 256 59.5s 1.5s
NTUBE 1 4480 894.4s 32.3s
NTUBE 2 4570 852.9s 414.1s

LAMMPS (Large-scale Atomic/Molecular Massively Par-
allel Simulator) [13] is a classical parallel molecular dynam-

Table 3: The dynamic counts of major collective
communication routines in the benchmarks (n = 64)

benchmark routine msg size dyn. count
FT alltoall 131076 22

reduce 16 20
IS alltoallv 33193∗ 11

allreduce 4166 11
alltoall 4 11

LAMMPS allreduce 42392 2012
bcast 4-704 48779
barrier 4055

PARADYN allgatherv 6-1290∗ 16188
allreduce 4-48 13405

NBODY allgather 5000 300
NTUBE 1 allgatherv 16000∗ 1000
NTUBE 2 allreduce 8 1000

* the average of all message sizes in the v-version routines.

ics code. It models the assembly of particles in a liquid, solid,
or gaseous state. The code uses MPI Allreduce, MPI Bcast,
and MPI Barrier. We ran the program with 1720 copper
atoms for 3000 iterations.
PARADYN (Parallel Dynamo) [18] is a molecular dynam-
ics simulation. It utilizes the embedded atom method po-
tentials to model metals and metal alloys. The program uses
MPI Allgather, MPI Allgatherv, MPI Allreduce, MPI Bcast,
and MPI Barrier. In the experiments, we simulated 6750
atoms of liquid crystals in 1000 time steps.
NBODY [17] simulates over time steps the interaction, in
terms of movements, positions and other attributes, among
the bodies as a result of the net gravitational forces exerted
on one another. The code is a naive implementation of the
nbody method and uses MPI Allgather and MPI Gather col-
lective communications. We ran the code with 8000 bodies
and for 300 time steps.
NTUBE 1 performs molecular dynamics calculations of
thermal properties of diamond [22]. This version of the
code uses MPI Allgatherv and MPI Reduce. In the evalu-
ation, the program ran for 1000 steps and each processor
maintained 100 atoms.
NTUBE 2 is a different implementation of the Nanotube
program. The functionality of NTUBE 2 is exactly the same
as NTUBE 1. The collective communication routines used
in this program are MPI Allreduce and MPI Reduce. In the
evaluation, the program ran for 1000 steps with each pro-
cessor maintaining 100 atoms.

4.3 Data collection
To investigate process arrival patterns and other statis-

tics of MPI collective communications, we develop an MPI
wrapper library. The wrapper records an event at each MPI
process for each entrance and exit of an MPI collective com-
munication routine. An event records information about the
timing, the operation, the message size, etc. The times are
measured using the MPI Wtime routine. Events are stored
in memory during program execution until MPI Finalize is
called, when all processors write the events to log files for
post-mortem analysis. The functionality of our wrapper is
similar to PMPI, we use our own wrapper for future exten-
sion. Accurately measuring the time on different machines
requires a globally synchronized clock. On Lemieux, such a

synchronized clock is available. On the Beowulf cluster, the
time on different machines is not synchronized. We resolve
the problem by calling an MPI Barrier after MPI Init and
having all measured times normalized with respect to the
exit time of the MPI Barrier. Basically, we are assuming
that all (16) machines exit a barrier operation at the same
time. This introduces inaccuracy that is roughly equal to
the time to transfer several small messages.

4.4 Process arrival pattern statistics
In this sub-section, we focus on presenting the process ar-

rival pattern statistics. The causes for MPI applications to
have such behavior will be investigated in the next section.
Table 4 shows the average of the worst/average case imbal-
ance factors among all collective routines in each benchmark
on Lemieux and the Beowulf cluster. The table reveals sev-
eral notable observations. First, the averages of the worst
case imbalance factors for all programs on both clusters are
quite large, even for FT, whose computation is fairly bal-
anced. Second, the process arrival pattern depends heavily
on the system architecture. For example, the imbalance
factors for NTUBE 1 and NTUBE 2 are much larger on
Lemieux than on the Beowulf cluster. This is because these
two programs were designed for single CPU systems. When
running them on Lemieux, an SMP cluster, the process ar-
rival patterns become extremely imbalanced. Overall, the
imbalance factors for all programs on both platforms are
large: the best average worst case imbalance factor is 19 for
Lemieux (LAMMPS) and 17 for Beowulf (NTUBE 1).

Table 4: The average of worst case (ω̄
T
) and aver-

age case (δ̄
T
) imbalance factors among all collective

routines on two the platforms

imbalance factor
benchmark Lemieux (n = 128) Beowulf

average worst average worst
FT 91.0 652 278 1.2K
IS 61.0 358 1.4K 11K

LAMMPS 4.00 19.0 273 630
PARADYN 9.10 46.0 12.0 79.0

NBODY 13.0 132 12.0 50.0
NTUBE 1 4.8K 38K 4.30 17.0
NTUNE 2 85K 347K 9.00 39.0

Operations that account for most of the communication
times typically have large message sizes. In Figure 2, we
distinguish operations with medium/large message sizes (>
1000B) from those with small message sizes (≤ 1000B). Part
(a) of Figure 2 shows the distribution of the worst case im-
balance factors for the results on Lemieux (128 processors)
while part (b) shows the results on the Beowulf cluster. All
benchmarks are equally weighted when computing the dis-
tribution. As expected, arrival patterns for operations with
large messages are in general less imbalanced than those
for operations with small messages. This is mainly due to
the way the imbalance factors are computed: larger mes-
sages mean larger per message time (T). However, as can
be seen from the figure, there is a significant portion of oper-
ations with both small sizes and medium/large sizes having
large imbalance factors and only a small fraction of the op-
erations are balanced. In particular, for operations with
medium/large messages, only a small percentage (21% on
Lemieux and 6% on Beowulf) have balanced process arrival

patterns (a worst case imbalance factor less than 1). The
percentage is smaller for operations with small messages.
This indicates that imbalanced process arrival patterns are
much more common than balanced process arrival patterns.

(a) Lemieux (128 processors)

(b) Beowulf cluster

Figure 2: The distribution of worst case imbalance
factors (ω̄

T
)

In Table 5, we further narrow our focus on the imbalance
factors for collective operations that are important in the
benchmarks. These are the operations that appear in the
main loop and account for a significant amount of appli-
cation time. Compared with the imbalance factors shown
in Table 4, we can see that the process arrival patterns for
these important routines are generally less imbalanced than
the average of all routines in the applications, which re-
flects the fact that programmers are more careful about the
load balancing issue in the main loop. However, the pro-
cess arrival patterns for these important routines are still
quite imbalanced. On both platforms, only MPI Alltoallv in
IS can be classified as having balanced process arrival pat-
terns. Examining the source code reveals that this routine
is called right after another MPI collective routine.

Another interesting statistics is the characteristics of pro-
cess arrival patterns for each individual call site. If the pro-
cess arrival patterns for each call site in different invocations
exhibit heavy fluctuation, the MPI routine for this call site
must achieve high performance for all different types of pro-
cess arrival patterns to be effective. On the other hand, if
the process arrival patterns for the same call site is statis-
tically similar, the MPI implementation will only need to
optimize for the particular type of process arrival patterns.
In the experiments, we observe that the process arrival pat-
terns for different invocations of the same call site exhibit

Table 5: The imbalance factor for major routines

imbalance factor
major Lemieux (128) Beowulf
routine ave. worst ave. worst

FT alltoall 2.90 24.0 26.0 124
IS alltoallv 0.00 0.20 0.20 0.80

allreduce 145 756 4.4K 34K
LAMMPS bcast 0.20 3.40 299 671

allreduce 16.3 91.3 24 132
barrier 28.6 157.3 106 442

PARADYN allgatherv 0.80 6.50 10.0 66.5
allreduce 15.7 73.3 14.0 93.0

NBODY allgather 13.0 132 12.0 50.0
NTUBE 1 allgatherv 78.8 345 3.50 14.0
NTUBE 2 allreduce 83K 323K 9.00 39.0

a phased behavior: the process arrival patterns are statis-
tically similar for a period of time before they change. In
some cases, the process arrival patterns for the same call
site are statistically similar in the whole program. Figure 3
depicts a representative case: the imbalance factors for the
MPI Allgather routine in NBODY. As can be seen from the
figure, the majority of the calls have similar worst case and
average case imbalance factors despite some large spikes that
occur once in a while. This indicates that it might be feasi-
ble to customize the routine for each MPI call site and get
good performance.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

Im
ba

la
nc

e
fa

ct
or

Invocation #

average
worst case

Figure 3: The imbalance factors for MPI Allgather

in NBODY on Lemieux (n = 128)

4.5 Summary
While we expect to see some imbalance process arrival

patterns in MPI programs, it is surprising to see the very
low percentage of balanced process arrival patterns. The low
percentage applies to applications whose loads are fairly bal-
anced, to collective operations in the main loops where load
balancing is critical for the performance of the applications,
and to operations with all different message sizes.

5. PROCESS ARRIVAL PATTERNS IN A
MICRO-BENCHMARK

Since a well designed MPI program typically has a bal-
anced computation load, understanding the process arrival
patterns in this type of programs is particularly important.
In this section, we study a simple micro-benchmark, shown
in Figure 4, where all processes perform exactly the same
amount of computation and communication (the load is per-
fectly balanced). The goal is (1) to determine whether appli-

cation programmers can control the critical process arrival
patterns in their MPI programs by balancing the load at the
application level, and (2) to investigate the causes of the im-
balanced process arrival patterns. In this micro-benchmark,
a barrier is called before the main loop that is executed 1000
times. There are two components inside the loop: lines 4-6
simulating the computation and an MPI Alltoall() opera-
tion in line 8 after the computation. The computation time
can be adjusted by changing the parameter XTIME.

(1) MPI Barrier(...);
(2) for (i=0; i<1000; i++) {
(3) /* compute for roughly X milliseconds */
(4) for (m=0; m< XTIME; m++)
(5) for (k=1, k<1000; k++)
(6) a[k] = b[k+1] - a[k-1] * 2;
(7) arrive[i] = MPI Wtime();
(8) MPI Alltoall(...);
(9) leave[i] = MPI Wtime()
(10)}

Figure 4: Code segment for a micro-benchmark

We measured the process arrival patterns for the all-to-all
operation. Due to space limitation, we will only report re-
sults for message size 64KB. Smaller message sizes result in
larger imbalance factors. The average computation time in
each node is set to 200ms for both clusters. Figure 5 shows
the worst and average case imbalance factors in each invoca-
tion in a typical execution on each of the two platforms. In
both clusters, there is a substantial imbalance in the process
arrival patterns even though all processors perform exactly
the same operations. The imbalance factors on Lemieux are
larger than those on the Beowulf cluster for several reasons.
First, Lemieux has more processes and thus has a higher
chance to be imbalanced. Second, on Lemieux, different
jobs share the network in the system, the uncertainty in
messaging can cause the imbalance. Third, Lemieux has a
faster network, the same imbalance time results in a larger
imbalanced factor.

We further investigate the causes of the imbalanced pro-
cess arrival patterns in this simple benchmark. For the
MPI Alltoall routine to have the imbalanced process arrival
patterns shown in Figure 5, there can be only two poten-
tial causes. First, it might take different processors different
times to run the (same) computation. An earlier study [19]
has shown that this is indeed happening in some clusters
and has attributed this phenomenon to the asynchronous
operating system events. Second, it might take different
processors different times to perform the communication
(MPI Alltoall). This imbalance in the communication is re-
flected in the process exit patterns. In the following, we
study the relationship among the imbalance in process ar-
rival patterns, computation times, and process exit patterns
in the micro-benchmark. The worst case imbalance factor
for a process exit pattern is defined similarly to that of a
process arrival pattern. The computation imbalance time is
defined as the maximum time among all processes to execute
the computation minus the minimum time among all pro-
cesses. To be consistent, we use the imbalance factor in the
comparison, which is equal to the imbalance time divided
by the time to send one message (64KB).

We change the XTIME parameter such that the average
computation time lasts for 50, 100, 200, 400, and 800ms.

Due to the nondeterministic nature in the imbalance, we
repeat each experiment 5 times, each on a different day. In
each experiment, we collect data from the 1000 invocations
of the all-to-all routine. We then use the data from the 5000
samples (5 experiments, 1000 samples per experiment) to
compute the average values and the 95% confidence intervals
of imbalance factors for process arrival patterns, process exit
patterns, and computation.

 20

 40

 60

 80

 100

 120

 140

 160

10008006004002000

Im
ba

la
nc

e
fa

ct
or

invocation

Worst case
Average case

(a) Lemieux (128 processors)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

10008006004002000

Im
ba

la
nc

e
fa

ct
or

invocation

Worst case
Average case

(b) Beowulf cluster

Figure 5: Process arrival patterns in the micro-
benchmark (64KB message size, 200ms computation
time) on the two platforms

Tables 6 and 7 show the worst case imbalance factors
for exit patterns, computation, and arrival patterns in the
micro-benchmark for different computation times on the two
platforms. In the tables, for each worst case (exit, com-
putation, arrival) imbalance factor, we show the average
value along with the confidence interval in the format of
ave ± interval

2
, which denotes that the 95% confidence in-

terval is [ave − interval
2

, ave + interval
2

]. There are a num-
ber of observations in the tables. First, when changing the
computation time from 50ms to 800ms, the computation
imbalance in both clusters increases almost linearly. Such
imbalance in computation is inherent to the system and is
impossible for application developers to overcome. This ex-
plains why in our benchmark study of the previous section,
we only observe balanced process arrival patterns in con-
secutive collective routine calls. Second, the worst case im-
balance factors for process arrival patterns are consistently
larger than the computation imbalance factors, which indi-
cates that the imbalances in both computation and com-
munication are contributing to the imbalance in the process
arrival patterns. Third, on Lemieux, the imbalance factors

for process exit patterns are almost the same with different
process arrival patterns while on the Beowulf cluster, the
imbalance factors for process exit patterns are quite differ-
ent. This is because different algorithms are used to imple-
ment MPI Alltoall on the two clusters. On the Beowulf clus-
ter, since the imbalance factors for process exit patterns are
somewhat related to those for process arrival patterns, the
imbalance effect may be accumulated as the simple bench-
mark executes. This explains the slight upward trend in the
worst case imbalance factor in Figure 5 (b). Nonetheless,
the imbalance in communication, which is directly affected
by the library implementation, is beyond the control of ap-
plication developers.

Table 6: Effects of process exit patterns and com-
putation imbalance on process arrival patterns on
Lemieux (32 processors)

comp. worst case imbalance factor(ω̄
T

)
time exit computation arrival
50ms 15.2 ± 0.7 23.4 ± 0.3 32.5 ± 0.8
100ms 15.2 ± 0.6 46.8 ± 1.6 54.5 ± 1.9
200ms 15.0 ± 0.3 87.4 ± 1.8 92.7 ± 1.9
400ms 15.1 ± 0.8 160 ± 1.9 164 ± 2.0
800ms 15.0 ± 0.3 320 ± 3.6 322 ± 3.6

Table 7: Effects of process exit patterns and compu-
tation imbalance on process arrival patterns on the
Beowulf cluster

comp. worst case imbalance factor (ω̄
T

)
time exit computation arrival
50ms 5.07 ± 1.29 3.16 ± 0.02 7.02 ± 1.29
100ms 4.32 ± 1.00 7.52 ± 0.02 9.53 ± 0.99
200ms 3.71 ± 0.11 14.18 ± 0.02 15.17 ± 0.06
400ms 6.22 ± 0.23 31.41 ± 0.30 33.17 ± 0.35
800ms 11.62 ± 0.41 56.24 ± 0.05 56.29 ± 0.20

5.1 Summary
The way a program is coded is only one of many fac-

tors that can affect process arrival patterns. Other factors,
such as system characteristics and library implementation
schemes that can introduce the inherent imbalance in com-
putation and communication, are beyond the control of ap-
plication developers. Hence, it is unrealistic to assume that
application programmers can balance the load at the appli-
cation level to make the process arrival patterns balanced.
The process arrival patterns in MPI programs are and will
be imbalanced in most cases in a cluster environment.

6. IMPACTS OF IMBALANCED PROCESS
ARRIVAL PATTERNS

We study the impact of the process arrival pattern on
commonly used algorithms for MPI Alltoall and MPI Bcast.
MPI Alltoall and MPI Bcast represent two types of MPI col-
lective operations: MPI Alltoall is an inherently synchro-
nized operation, that is, a process can complete this opera-
tion only after all processes arrive; while MPI Bcast is not
an inherently synchronized operation. The impacts of im-
balanced process arrival patterns on the algorithms are not
clear. For example, some communication algorithms such as

some MPI Bcast algorithms, may be able to tolerate some
degrees of imbalanced process arrivals while others may not.
This section tries to systematically study the impacts of im-
balanced process arrival patterns on different types of algo-
rithms.

The evaluated MPI Alltoall algorithms include the simple,
Bruck, pair, and ring algorithms. The simple algorithm ba-
sically posts all receives and all sends, starts the communica-
tions, and waits for all communications to finish. The Bruck
algorithm [4] is a lg(n)-step algorithm that is designed for
achieving efficient all-to-all with small messages. The pair
algorithm only works when the number of processes, n, is a
power of two. It partitions the all-to-all communication into
n − 1 steps. In step i, process pj exchanges a message with
process pj ⊕ i. The ring algorithm also partitions the all-
to-all communication into n − 1 steps. In step i, process pj

sends a messages to process p(j+i) mod n and receives a mes-
sage from process p(j−i) mod n. More detailed description of
these algorithms can be found in [26]. We also consider the
native algorithm used in MPI Alltoall on Lemieux, which is
unknown to us.

The evaluated MPI Bcast algorithms include the flat tree,
binomial tree, scatter-allgather, and the native algorithm on
Lemieux, which is unknown to us. In the flat tree algorithm,
the root sequentially sends the broadcast message to each
of the receivers. In the binomial tree algorithm [15], the
broadcast follows a hypercube communication pattern and
the total number of messages that the root sends is lg(p).
The scatter-allgather algorithm, used for broadcasting large
messages in MPICH [15], first distributes the msize-byte
message to all nodes by a scatter operation (each node gets
msize

p
bytes), and then performs an all-gather operation to

combine the scattered messages to all nodes.

(1) r = rand() % MAX IF;
(2) for (i=0; i<ITER; i++) {
(3) MPI Barrier (...);
(4) for (j=0; j<r; j++) {
(5) ... /* computation time equal to one msg time */
(6) }
(7) t0 = MPI Wtime();
(8) MPI Alltoall(...);
(9) elapse += MPI Wtime() - t0;
(10)}

Figure 6: Code segment for measuring the impacts
of imbalanced process arrival patterns

Figure 6 outlines the code segment we use to measure the
performance with a controlled imbalance factor in the ran-
dom process arrival patterns. The worst case imbalance fac-
tor is controlled by a variable MAX IF (maximum imbalance
factor). Line 1 generates a random number r that is bounded
by MAX IF. Before the all–to–all routine (or broadcast) is
measured (lines 7-9), the controlled imbalanced process ar-
rival pattern is created by first calling a barrier (line 3) and
then introducing some computation between the barrier and
all-to-all routines. The time to complete the computation is
controlled by r. The time spent in the loop body in line 5 is
made roughly equal to the time for sending one message (see
Table 1), and the total time for the computation is roughly
equal to the time to send r messages. Hence, the larger
the value of MAX IF is, the more imbalanced the process
arrival pattern becomes. Note that the actual worst case im-

balance factor, especially for small message sizes, may not
be bounded by MAX IF since the process exit patterns of
MPI Barrier may not be balanced.

For each process arrival pattern, the routine is measured
100 times (ITER = 100) and the average elapsed time on
each node is recorded. For each MAX IF value, we perform
32 experiments (32 random process arrival patterns with
the same value of MAX IF). The communication time is
reported by the confidence interval with a 95% confidence
level, computed from the results of the 32 experiments.

Figure 7 (a) shows the results for 1B all-to-all communi-
cation on Lemieux (32 processors). When MAX IF ≤ 9,
the Bruck algorithm performs better than the ring and pair
algorithms, and all three algorithms perform significantly
better than the simple algorithm. However, when the im-
balance factor is larger (16 ≤ MAX IF ≤ 129), the sim-
ple algorithm shows better results. The native algorithm
performs much better than all algorithms in the case when
MAX IF ≤ 129. When MAX IF = 257, the native algo-
rithm performs worse than the ring and simple algorithms.
These results show that under different process arrival pat-
terns with different worst case imbalance factors, the al-
gorithms have different performance. When the imbalance
factor increases, one would expect that the communication
time should increase. While this applies to the Bruck, ring,
pair and the native algorithms, it is not the case for the sim-
ple algorithm: the communication time actually decreases
as MAX IF increases when MAX IF ≤ 17. The reason is
that, in this cluster, 4 processors share the network interface
card. With moderate imbalance in the process arrival pat-
tern, different processors initiate their communications at
different times, which reduces the resource contention and
improves communication efficiency.

 0

 1

 2

 3

 4

 5

 6

 7

 8

25712965331795321

C
om

m
un

ic
at

io
n

tim
e

(m
s)

MAX_IMBALANCE_FACTOR

Bruck
Pair
Ring

Simple
Native

(a) Message size = 1B

 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160

25712965331795321

C
om

m
un

ic
at

io
n

tim
e

(m
s)

MAX_IMBALANCE_FACTOR

Pair
Ring

Simple
Native

(b) Message size = 64KB

Figure 7: 1B and 64KB MPI Alltoall on Lemieux
(32 processors)

Figure 7 (b) shows the performance when the message size

is 64KB. When MAX IF ≤ 9, the pair algorithm is notice-
ably more efficient than the ring algorithm, which in turn
is faster than the simple algorithm. However, the simple al-
gorithm offers the best performance when MAX IF ≥ 33.
For this message size, the native algorithm performs worse
than all three algorithms when MAX IF ≤ 65. The figure
also shows that each algorithm performs very differently un-
der process arrival patterns with different imbalance factors.
The trend observed in Lemieux is also seen in the Beowulf
cluster, which is captured in Figure 8.

Since MPI Alltoall is an inherent synchronized operation,
when the imbalance factor is very large, all algorithms should
have a similar performance. This is shown in all experiments
except for the 64KB case on Lemieux where MAX IF =
257 is not sufficiently large. However, from the experiments,
we can see that algorithms that perform better with a bal-
anced process arrival pattern tend to perform worse when
the process arrival pattern becomes more imbalanced.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

25712965331795321

C
om

m
un

ic
at

io
n

tim
e

(m
s)

MAX_IMBALANCE_FACTOR

Bruck
Pair
Ring

Simple

(a) Message size = 1B

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

25712965331795321

C
om

m
un

ic
at

io
n

tim
e

(m
s)

MAX_IMBALANCE_FACTOR

Pair
Ring

Simple

(b) Message size = 64KB

Figure 8: 1B and 64KB MPI Alltoall on Beowulf
cluster

Figure 9 (a) shows the results for 1B broadcast on Lemieux
(32 processors). When MAX IF ≤ 8, all algorithms per-
form similarly. When MAX IF > 8, the flat tree algorithm
performs considerably better than the other algorithms. Part
(b) of the figure shows the results for broadcasting 64KB
messages. When MAX IF < 8, native, binomial, and
scatter-allgather algorithms perform similarly and better than
the flat tree algorithm. However, when MAX IF > 16,
the flat tree algorithm performs better than all other algo-
rithms. Moreover, the performance advantage of the flat
tree algorithm increases as the imbalance factor increases.
The results on the Beowulf cluster (not shown due to space
limitation) have a similar trend.

The algorithms for MPI Bcast that perform better un-
der a balanced process arrival pattern also perform worse
when the arrival pattern becomes imbalanced. In contrast
to the results for MPI Alltoall, the performance difference

 0

 1

 2

 3

 4

 5

 6

 7

2561286432168421

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Imbalance factor

Flattree
Binomial

Native

(a) Message size = 1B

 0

 20

 40

 60

 80

 100

 120

2561286432168421

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Imbalance factor

Flattree
Binomial

Native
Scatter-allgather

(b) Message size = 64KB

Figure 9: 1B and 64KB MPI Bcast on Lemieux (32
processors)

for different broadcast algorithms widens as the imbalance
factor increases. Due to the implicit synchronization in
MPI Alltoall, there is a limit on the impacts of an imbal-
anced pattern (all algorithms will have a similar performance
when the imbalance factor is very large). However, for the
MPI Bcast type of operations that are not inherently syn-
chronized, the impacts can potentially be unlimited.

6.1 Summary
The common observation in the experiments in this sec-

tion is that collective communication algorithms respond dif-
ferently to different process arrival patterns. The algorithm
that performs better with a balanced process arrival pattern
tends to perform worse when the process arrival pattern be-
comes more imbalanced. Moreover, depending on the type
of collective operations, the impact of imbalanced process
arrival pattern can be large.

7. A POTENTIAL SOLUTION
From Section 6, we can see that different collective com-

munication algorithms react to different process arrival pat-
terns differently. Thus, ideally, to achieve the best perfor-
mance, we should use a feedback mechanism to adapt the
communication algorithms based on the process arrival pat-
terns. Such a solution requires (1) the knowledge of the best
algorithm for any given process arrival pattern, and (2) the
knowledge of the process arrival pattern at the time when
the algorithm is selected. Both requirements are difficult
to be met. First, the number of different process arrival
patterns is infinite. Even when the process arrival time of
each process is quantified with a small number of classes, the
number of patterns is still very large. Consider for example
a system with 128 processors. Assuming that the process ar-
rival time for each process is classified with two levels: early

and late (an extremely coarse grain quantization), there are
still 2128 process arrival patterns to be considered. Second,
it should be clear from the results in Section 5 that the fac-
tors that cause imbalance process arrival patterns are mostly
random and beyond the control of a programmer. Hence, the
exact process arrival pattern for a given invocation cannot
be determined unless measured: implementing the feedback
mechanism would likely disturb the process arrival patterns
for the operation.

Our proposed solution is based on two key observations.
First, while the process arrival pattern for a collective op-
eration is nondeterministic, the process arrival patterns for
each individual call site tend to exhibit a phased behavior
as discussed in Section 4, that is, the process arrival pat-
terns are statistically similar for an extended period of time
before they change (See Figure 3). Hence, if the library
routine can find an algorithm that can provide good per-
formance, it is likely that the algorithm will provide good
performance for an extended period of time. Second, while
different collective algorithms may perform the best for dif-
ferent process arrival patterns, the performance of a given
algorithm changes slowly as the maximum imbalance factor
changes, as shown by the small 95% confidence intervals and
the smooth curves for all algorithms in Section 6. This in-
dicates that when an algorithm gives the best performance
for a particular process arrival pattern, it tends to give rea-
sonable performance for other process arrival patterns that
are not drastically different. Hence, to get reasonable per-
formance, we do not need to find all best algorithms for
different process arrival patterns. Instead, we just need to
find some best algorithms for some representative points in
the process arrival pattern space.

These two observations strongly suggest that it might be
possible to develop a collective routine that performs well for
different process arrival patterns by (1) identifying good al-
gorithms for different process arrival patterns and (2) using
a dynamic adaptive mechanism that selects the best per-
forming algorithm at run-time. The STAR-MPI that we
developed previously [8] provides such a dynamic adaptive
mechanism. We apply the STAR-MPI idea to develop a ro-
bust MPI Alltoall routine by incorporating process arrival
pattern aware all-to-all algorithms. As shown in the perfor-
mance evaluation, our robust routine consistently achieves
higher performance for different platforms and applications
(different process arrival patterns) than native MPI imple-
mentations. Next, we will describe the process arrival pat-
tern aware all-to-all algorithms included in our robust all-to-
all routine. Details about the dynamic adaptive mechanism
can be found in [8].

7.1 Process arrival pattern aware all-to-all al-
gorithms

To identify good algorithms for different process arrival
patterns, we empirically test an extensive set of algorithms
that we implemented [7] on different platforms. We will
describe the selected algorithms and give rationale about
why they provide good performance in different situations.
Pair/Ring algorithms. The pair and ring algorithms, de-
scribed in Section 6, provide good performance when the
process arrival pattern is balanced.

While the ring and pair algorithms are efficient when the
process arrival pattern is balanced, they do not perform well
when the imbalanced factor is larger. In particular, when the

worst case imbalanced factor is larger than 1, early arrivals
of some processes in the pair/ring algorithms will cause some
processes to complete a phase and start the next phase while
other processes are still in the previous phase. This may de-
stroy the phase structure, cause system contention, and de-
grade the performance. This problem can be resolved in two
ways, each resulting a different type of efficient algorithms.
Ring/Pair + one MPI barrier. One solution is to pre-
vent the imbalanced arrival patterns from happening. This
can be achieved by adding a barrier operation before the
ring/pair algorithm. This way, when the ring or pair algo-
rithm is executed, it guarantees to have a balanced process
arrival pattern. This approach forces processes that arrive
at the operation early to idle. It provides good performance
when the worst case imbalance factor is small (but not 0).
Ring/Pair + light barrier. The ring/pair + one MPI
barrier algorithm forces processes that arrive at the opera-
tion early to idle. This may not be efficient when a large
number of processes arrive at the operation significantly ear-
lier than others since processes that arrive early could have
used the idle time to perform some useful operations. The
ring/pair+light barrier is another solution to the problem
caused by the imbalanced process arrival patterns. The idea
is (1) to allow the phases to proceed in an asynchronous
manner and (2) to use a mechanism (light barrier) to min-
imize the impact of the imbalanced process arrival pattern.
Basically, whenever there is possibility that two messages
(in different phases) can be sent to the same processes at
the same time and cause contention, a light barrier is added
to sequentialize the two messages. Hence, the impact of the
imbalanced process arrival pattern is minimized.
Simple. All the above algorithms are based on the concept
of phase, which requires processes to coordinate. In the
case when the imbalance factor is large, the coordination
among processes may actually hinder the communication
performance. The simple algorithm, described in Section 6,
performs all communications in a single phase (step), elim-
inating the coordination among processes. As a result, this
algorithm performs very well for sufficiently imbalanced pro-
cess arrival patterns.

Besides these algorithms, our routine also includes the na-
tive MPI Alltoall, which is selected in the native MPI library
for a good reason. Hence, there are a total of 8 algorithms
that are included in our robust MPI Alltoall routine. As
shown in the performance evaluation section, our routine
performs better than the native MPI Alltoall in most cases,
which indicates that the native MPI Alltoall implementa-
tion is not the best performing algorithm among the algo-
rithms in many practical cases. Notice that some of these
algorithms, such as pair/ring and simple, are included in
MPICH, where they are used to realize the all-to-all oper-
ation with different message sizes. In our routine, all the
algorithms can be selected to realize the operation with the
same message size, but different process arrival patterns.

7.2 Performance results
We evaluate the performance of the robust MPI Alltoall

routine on the following high-end clusters: the Lemieux clus-
ter at Pittsburgh Supercomputing Center [20], the UC/ANL
Teragrid cluster at Argonne [28], the AURORA cluster at
the University of Technology at Vienna [1], and the AVIDD-
T cluster at Indiana University [2]. Table 8 summarizes the
configurations of all the clusters besides Lemieux, whose

configuration is described in Section 4. The benchmarks
were compiled with the native mpicc or mpif90 installed
on the systems and linked with the native MPI library.
We use the micro-benchmark in Figure 4 (Section 5) and
a set of application benchmarks in the evaluation. In pre-
senting the results, we will denote our robust routine as
ROBUST and the native routine as NATIVE. The soft-
ware used in this section, including our robust all-to-all
routine and all benchmarks, are available to the public at
http://www.cs.fsu.edu/∼xyuan/MPI/STAR-ALLTOALL.

cluster UC-TG [28] Aurora [1] Avidd-T [2]
node two 2.4GHz two 3.6GHz four 1.3 GHz

Xeon Nocona Itanium II
memory 4GB 4GB 6GB

interconn. Myrinet Infiniband Myrinet
MPI MPICH-GM MVAPICH MPICH-GM

1.2.7 0.9.5 1.2.7

Table 8: Clusters used other then Lemieux

Micro-benchmark results
Table 9 shows the micro-benchmark (Figure 4 in Section 5)
results. The table gives the all-to-all communication times
for different average computation times (varying XTIME).
The message size for the all-to-all operation is 64KB. Note
again that the process arrival patterns are still imbalanced
even in such cases when the load in the micro-benchmark is
perfectly balanced. As shown in the table, as we increase the
computation time from 50ms to 400ms, causing a relative in-
crease in the process arrival imbalance, the communication
time for both NATIVE and ROBUST increases as the im-
balance increases. However, ROBUST is able to sustain its
substantial speed ups over NATIVE across different clus-
ters, different number of nodes, and different computation
loads. We have also performed experiments when imbal-
anced computation loads are explicitly introduced, the trend
in the results is similar. This demonstrates the robustness
of ROBUST.

machine implem- computation time
entation 50ms 100ms 200ms 400ms

NATIVE 346 348 352 362
Lemieux ROBUST 263 266 273 283
(128) speed up 31.6% 30.8% 28.9% 27.9%

NATIVE 117 108 147 185
UC-TG ROBUST 105 93.0 122 121
(64) speed up 11.4% 16.1% 20.5% 52.9%

NATIVE 76.0 77.5 77.5 80.5
Avidd-T ROBUST 63.3 64.7 66.7 64.9
(32) speed up 20.1% 19.8% 16.2% 24.0%

NATIVE 8.90 9.20 9.20 9.60
Aurora ROBUST 8.20 8.10 8.50 8.10
(16) speed up 8.50% 13.6% 8.30% 18.5%

Table 9: MPI Alltoall (64KB) time (milli-seconds)
in the micro-benchmark

Results for application benchmarks
We also evaluate the performance using four MPI all-to-all
benchmarks: FT, VH-1, MT, and FFT-2D. FT is a parallel
kernel from the NAS parallel benchmarks [16]. In the eval-
uation, we run the class C problem for 400 steps. The VH-1

program implem. LEMIEUX (n = 128) UC-TG (n = 64) AVIDD-T (n = 32) AURORA (n = 16)
comm. total comm. total comm. total comm. total

NATIVE 265.0s 501.3s 6182s 10107s 1069s 1720s 616.0s 1690s
FT ROBUST 221.0s 450.6s 5917s 9832s 865.0s 1583s 424.0s 1500s

speed up 19.9% 11.3% 4.9% 2.8% 23.6% 8.7% 45.3% 12.7%
algorithm pair+one barrier simple pair+light barrier pair+light barrier

NATIVE 2495s 3679s 836.0s 5489s 443.0s 1600s 45.50s 457.0s
VH-1 ROBUST 1602s 3429s 661.0s 5277s 337.0s 1506s 39.50s 451.0s

speed up 55.7% 7.3% 26.5% 3.9% 31.5% 6.2% 15.2% 1.3%
algorithm simple simple simple simple

NATIVE 178.3s 403.0s 78.60s 594.0s 91.20s 190.5s 47.30s 255.0s
FFT-2D ROBUST 165.0s 399.0s 60.00s 576.0s 79.80s 180.3s 38.10s 244.0s

speed up 8.1% 1.0% 31.0% 3.1% 14.3% 5.7% 24.2% 4.5%
algorithm simple simple ring+light barrier simple

NATIVE 14.46s 15.97s 15.30s 16.50s 44.10s 47.40s 22.50s 27.74s
MT ROBUST 12.62s 13.96s 14.70s 16.20s 37.80s 41.10s 21.93s 27.22s

speed up 14.5% 14.3% 4.1% 1.9% 16.7% 14.8% 2.6% 1.9%
algorithm pair+one barrier pair+light barrier pair+light barrier ring+light barrier

Table 10: Performance of application benchmarks

(Virginia Hydrodynamics) [29] is a multidimensional ideal
compressible hydrodynamics code based on the Lagrangian
remap version of the Piecewise Parabolic Method. The code
uses MPI Alltoall to perform matrix transposes and runs
for 500 steps. The FFT-2D [27] program performs a two-
dimensional Fast Fourier Transform on a 4K×4K complex
matrix. In the evaluation, the code executes for 300 steps.
Finally, the MT (Matrix Transpose) [14] is a simple program
that uses MPI Alltoall to perform matrix transpositions on
a 4K × 4K matrix. The code executes for 300 steps. Note
that the dynamic adaptation mechanism in ROBUST takes
80 invocations to determine the best performing algorithm.
The process arrival patterns in these four benchmarks on dif-
ferent platforms are very different. Hence, the performance
of these benchmarks on different platforms gives good in-
dications about the performance of ROBUST in practical
situations.

Table 10 shows the results for the benchmarks. Both total
application time and total all-to-all communication time are
shown. We can see clearly that ROBUST significantly im-
proves the communication time over NATIVE across the dif-
ferent applications on different platforms. For example, RO-
BUST achieves a communication time speed up of 55.74%
and 31.45% for the VH-1 benchmark on LEMIEUX and
AVIDD-T clusters, respectively. For the overall application
time, the speed up depends on several factors, including (1)
the percentage of all-to-all time in the total application time,
and (2) how the all-to-all operation interacts with compu-
tation and other (collective) communications. In particular,
the interaction among the all-to-all operation, the computa-
tion, and other collective communications can either offset
or enhance the performance improvement: the improvement
in the communication time may or may not transfer into an
improvement in the total application time. For example,
for VH-1 on Lemieux, the communication time is improved
by 895 seconds, but the improvement in the total appli-
cation time is only 250 seconds. On the other hand, for
VH-1 on UC-TG, the communication time is improved by
175 seconds while the total application time is improved by
212 seconds. Such interaction among the all-to-all opera-
tion, computation, and other (collective) communications

is not considered by our current implementation and needs
to be investigated further. Nonetheless, ROBUST achieves
noticeable improvement over NATIVE for total benchmark
times in all cases. The table also shows the best performing
algorithm selected by ROBUST. In many cases, the algo-
rithms selected by ROBUST are different across different
programs on different platforms. This show the importance
of having multiple process arrival pattern aware algorithms
to deal with different applications of different arrival pat-
terns.

7.3 Summary
Although the native implementations of the MPI Alltoall

routine across the different platforms exploit features of the
underlying network architecture, these routines do not per-
form as good as ROBUST in many cases. This can mainly
be attributed to the fact that the native routines were de-
signed without taking process arrival pattern into consider-
ation. As such, they do not provide high performance for
many practical cases. By explicitly considering process ar-
rival pattern and employing a dynamic adaptive technique,
more robust collective routines than the current ones can be
developed.

8. CONCLUSION
In this paper, we investigate the process arrival patterns

in a set of MPI benchmarks on two representative cluster
platforms. We show that in such environments, it is virtu-
ally impossible for application developers to control process
arrival patterns in their applications without explicitly in-
voking global synchronization operations and that process
arrival patterns are likely to be imbalanced. Since the pro-
cess arrival pattern has a significant impact on the perfor-
mance of a collective communication algorithm, we conclude
that MPI developers must take the process arrival pattern
characteristics into consideration when developing MPI col-
lective communication routines that can provide high per-
formance in practical clusters. This study advocates further
investigation for understanding the impact of process arrival
patterns on different MPI collective operations and different
collective communication algorithms and for identifying effi-

cient process arrival pattern aware algorithms. The current
understanding of MPI collective algorithms, which assumes
a balanced process arrival pattern, is insufficient for devel-
oping routines that are efficient in practice. We demonstrate
that when process arrival pattern aware algorithms for an
operation are identified, a dynamic adaptive scheme can be
used to realize robust collective routines that provide high
performance across different applications and platforms.

Acknowledgment
This research is supported in part by National Science Foun-
dation (NSF) grants CCF-0342540, CCF-0541096, and CCF-
0551555. The experiments on the Lemieux cluster at Pitts-
burgh Supercomputing Center are sponsored through an
NSF Teragrid grant CCR-050010T.

9. REFERENCES
[1] The AURORA cluster of University of Technology at

Vienna, http://aurora.tuwien.ac.at.

[2] The AVIDD-T cluster,
http://rac.uits.iu.edu/rats/research/avidd-
t/hardware.shtml.

[3] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert,
“Pipelined Broadcasts on Heterogeneous Platforms.”
IEEE Trans. on Parallel and Distributed Systems,
16(4), 2005.

[4] J. Bruck, C. Ho, S. Kipnis, E. Upfal, and D.
Weathersby, “Efficient Algorithms for All-to-all
Communications in Multiport Message-Passing
Systems.” IEEE TPDS, 8(11):1143-1156, Nov. 1997.

[5] W. E. Cohen and B. A. Mahafzah, “Statistical
Analysis of Message Passing Programs to Guide
Computer Design,” In Proceedings of the Thirty-First
Annual Hawaii International Conference on System
Sciences, volume 7, pages 544-553, 1998.

[6] A. Faraj and X. Yuan, “Communication
Characteristics in the NAS Parallel Benchmarks,” In
Fourteenth IASTED International Conference on
Parallel andDistributed Computing and Systems
(PDCS 2002), pages 724-729, November 2002.

[7] A. Faraj and X. Yuan, “Automatic Generation and
Tuning of MPI Collective Communication Routines,”
The 19th ACM International Conference on
Supercomputing (ICS’05), pages 393-402, Cambridge,
MA, June 20-22, 2005.

[8] A. Faraj, X. Yuan, and D. K. Lowenthal,
“STAR-MPI: Self Tuned Adaptive Routines for MPI
Collective Operations,” The 20th ACM International
Conference on Supercomputing (ICS’06), Queensland,
Australia, June 28-July 1, 2006.

[9] J.Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E.
Fagg, E. Gabriel, and J. Dongarra, “Performance
Analysis of MPI Collective Operations,” IEEE
IPDPS, 2005.

[10] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A
High-Performance, Portable Implementation of the
MPI Message Passing Interface Standard,” In MPI
Developers Conference, 1995.

[11] D. Lahaut and C. Germain, “Static Communications
in Parallel Scientific Propgrams,” In Proceedings of the
6th International PARLE Conference on Parallel
Architectures and Languages, pages 262-276, 1994.

[12] LAM/MPI Parallel Computing.
http://www.lam-mpi.org.

[13] LAMMPS: Molecular Dynamics Simulator, Available
at http://www.cs.sandia.gov/ sjplimp/lammps.html.

[14] Matrix Transposition example,
http://www.sara.nl/userinfo/reservoir/mpi/mpi-intro.

[15] MPICH - A Portable Implementation of MPI,
Available at http://www.mcs.anl.gov/mpi/mpich.

[16] NASA Parallel Benchmarks, Available at
http://www.nas.nasa.gov/NAS/NPB.

[17] Parallel NBody Simulations, Available at
http://www.cs.cmu.edu/ scandal/alg/nbody.html.

[18] ParaDyn: Parallel Molecular Dynamics With the
Embedded Atom Method, Available at
http://www.cs.sandia.gov/ sjplimp/download.html.

[19] F. Petrini, D. J. Kerbyson, and S. Pakin, “The Case
of the Missing Supercomputer Performance: Achieving
Optimal Performance on the 8192 Processors of ASCI
Q”, IEEE/ACM SC2003 Conference, 2003.

[20] Pittsburg Supercomputing Center, Available at
http://www.psc.edu/machines/tcs/lemieux.html.

[21] R. Rabenseinfner, “Automatic MPI counter profiling
of all users: First results on CRAY T3E900-512,” In
Proceedings of the Message Passing Interface
Developer’s and User’s Conference, pages 77-85, 1999.

[22] I. Rosenblum, J. Adler, and S. Brandon,
“Multi-processor molecular dynamics using the
Brenner potential: Parallelization of an implicit
multi-body potential,” International Journal of
Modern Physics, 10(1): 189-203, February, 1999.

[23] P. Patarasuk, A. Faraj, and X. Yuan, “Pipelined
Broadcast on Ethernet Switched Clusters.” The 20th
IEEE International Parallel & Distributed Processing
Symposium (IPDPS), April 25-29, 2006.

[24] T.B. Tabe, J.P. Hardwick, and Q.F. Stout, “Statistical
analysis of communication time on the IBM SP2,”
Computing Science and Statistics, 27: 347-351, 1995.

[25] T. Tabe and Q. Stout, “The use of the MPI
communication library in the NAS Parallel
Benchmark,” Technical Report CSE-TR-386-99,
Department of Computer Science, University of
Michigan, Nov 1999.

[26] R. Thakur, R. Rabenseifner, and W. Gropp,
“Optimizing of Collective Communication Operations
in MPICH,” ANL/MCS-P1140-0304, Mathematics
and Computer Science Division, Argonne National
Laboratory, March 2004.

[27] Two-D FFT,
http://www.mhpcc.edu/training/workshop/parallel develop.

[28] The UC/ANL Teragrid cluster,
http://www.uc.teragrid.org/tg-docs/user-guide.html.

[29] The Virginia Numerical Bull Session Ideal
Hydrodynamics,
http://wonka.physics.ncsu.edu/pub/VH-1.

[30] J. S. Vetter and A. Yoo, “An empirical performance
evaluation of scalable scientific applications,” In
Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, pages 1-18, 2002.

