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Abstract

We consider efficient implementations of the all-reduce
operation with large data sizes on tree topologies. We prove
a tight lower bound of the amount of data that must be
transmitted to carry out the all-reduce operation and use
it to derive the lower bound for the communication time of
this operation. We develop a topology specific algorithm
that is bandwidth efficient in that (1) the amount of data
sent/received by each process is minimum for this opera-
tion; and (2) the communications do not incur network con-
tention on the tree topology. With the proposed algorithm,
the all-reduce operation can be realized on the tree topol-
ogy as efficiently as on any other topology when the data
size is sufficiently large. The proposed algorithm can be
applied to several contemporary cluster environments, in-
cluding high-end clusters of workstations with SMP and/or
multi-core nodes and low-end Ethernet switched clusters.
We evaluate the algorithm on various clusters of worksta-
tions, including a Myrinet cluster with dual-processor SMP
nodes, an InfiniBand cluster with two dual-core processors
SMP nodes, and an Ethernet switched cluster with single
processor nodes. The results show that the routines imple-
mented based on the proposed algorithm significantly out-
perform the native MPI Allreduce and other recently devel-
oped algorithms for high-end SMP clusters when the data
size is sufficiently large.
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1 Introduction

The all-reduce operation combines values from all pro-
cesses and distributes the results to all processes. It is
one of the most commonly used collective communication
operations. In the Message Passing Interface (MPI) stan-
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dard [9], the routine that realizes the all-reduce operation is
MPI Allreduce.

We consider efficient implementations of MPI Allreduce
with large data sizes on tree topologies, focusing on op-
erations with commutative operators. We prove a tight
lower bound of the amount of data that must be transmit-
ted to carry out the all-reduce operation and use it to es-
tablish the lower bound of the communication completion
time. We develop a topology specific all-reduce algorithm
that is bandwidth efficient in that (1) the amount of data
sent/received by each process is minimum; and (2) the com-
munications do not incur network contention on the tree
topology. Hence, our bandwidth efficient algorithm can
theoretically achieve the lower bound on the communica-
tion time for the all-reduce operation when the bandwidth
term dominates the communication time. Using the pro-
posed algorithms, the all-reduce operation can be realized
on the tree topology as efficiently as on any other topol-
ogy when the data size is sufficiently large. The algorithm
can be directly applied to several contemporary cluster en-
vironments, including high-end clusters with SMP and/or
multi-core nodes and low-end Ethernet switched clusters.

We evaluate the proposed algorithm on various clus-
ters of workstations, including high-end SMP clusters with
Myrinet and InfiniBand interconnects and low-end Ether-
net switched clusters. The results show that the routines
based on the proposed algorithm significantly out-perform
the native MPI Allreduce and other recently developed al-
gorithms for SMP clusters [17] when the data size is suf-
ficiently large, which demonstrates the effectiveness of the
proposed algorithm.

The rest of the paper is organized as follows. The sys-
tem model is described in Section 2. Section 3 proves the
theoretical lower bound of the communication time for the
all-reduce operation and presents the topology specific al-
gorithm that can achieve this lower bound on tree topolo-
gies. Section 4 reports the results of our experiments. The
related work is discussed in Section 5. Section 6 concludes
the paper.



2 The system model

The tree topology is a connected graph G = (V, E) with
no circle, where V is the set of nodes and E is the set of
edges. There is a unique path between any two nodes. Since
we use the tree topologies to model cluster systems, the leaf
nodes in the topology are processing elements (processors,
cores, or machines) and the intermediate nodes are switch-
ing elements. We will call leaf nodes machines and inter-
mediate nodes switches. Let S be the set of switches and
M be the set of machines. V = S ∪ M . Since links in the
cluster systems that we considered are bidirectional, we will
use two directed edges to model a link in the tree topology.
Figure 1 shows an example cluster. Notion u → v denotes
a communication from node u to node v. Path(u → v)
denotes the set of directed edges in the unique path from
node u to node v. For example, in Figure 1, path(n0 →
n3) = {(n0, s0), (s0, s1), (s1, s3), (s3, n3)}. Two com-
munications, u1 → v1 and u2 → v2, are said to have
contention if they share a common edge, that is, there ex-
ists an edge (x, y) such that (x, y) ∈ path(u1 → v1) and
(x, y) ∈ path(u2 → v2). A pattern is a set of communica-
tions. A contention-free pattern is a pattern where no two
communications in the pattern have contention. We will use
the notion u → v → w → ... → x → y → z to represent
pattern {u → v, v → w, ..., x → y, y → z}.
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machines
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Figure 1. An example tree topology

The tree topology can be used to model high-end SMP
clusters with high speed interconnects. The interconnect in
such a system is usually a fat-tree, whose performance is
very close to a cross-bar switch. The communication be-
tween processors in different SMP nodes (inter-node com-
munication) goes through the interconnect while the intra-
node communication is performed within an SMP node,
typically through memory operations. Assuming that each
SMP node is equipped with one network interface card,
such a system can be approximated by a two-level tree
topology as shown in Figure 2: with the interconnect be-
ing modeled as the root and the processors (cores) modeled
as leaves. This paper only considers the case when one net-
work interface card is used. Note that in a large cluster, how
the SMP nodes are allocated for an MPI job is system de-
pendent. Hence, the exact two-level tree topology for a job
is undetermined until the SMP nodes are allocated. How-

ever, in most SMP clusters, the default process assignment
for running an MPI program is to assign MPI processes with
consecutive ranks to processors (or cores) within each SMP
node. As we will show later, using the two-level tree ab-
straction, an efficient all-reduce algorithm can be developed
for this default process assignment scheme.
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Figure 2. The two-level tree model for SMP
clusters

Another type of cluster that can be modeled by the tree
topology is an Ethernet switched cluster. We assume that
each workstation is equipped with one Ethernet card. In
such a cluster, links operate in the duplex mode that sup-
ports simultaneous communications on both directions of
each link with the full bandwidth. Communications in such
a system follow the 1-port model [2], that is, at one time, a
machine can send and receive one message. The switches
may be connected in an arbitrary way. However, a spanning
tree algorithm is used by the switches to determine forward-
ing paths that follow a tree structure [14]. As a result, the
physical topology of the network can be modeled as a tree
G = (V, E) with switches being the internal nodes and ma-
chines being leaves.

3 The all-reduce operation

We consider all-reduce operations with commutative op-
erators. In this operation, a global reduction is performed
on data of all processes and the reduction results are put in
all processes. In terms of operating results, an all-reduce
operation is equivalent to a reduction operation (that re-
duces the results to one process) followed by a broadcast
operation that distributes the results to all processes. More
specifically, let the N processes be denoted as p0, p1, ...,
pN−1. Before the all-reduce operation, each process pi,
0 ≤ i ≤ N − 1, has X data items ai

0, ai
1, ..., ai

X−1. Let us
denote ⊕ the commutative reduction operator. At the end of
the operations, all processes have all X-item results r0, r1,
..., rX−1, where rj = a0

j ⊕a1
j ⊕ ...⊕aN−1

j , 0 ≤ j ≤ X−1.
The j-th item in the result data (rj) is equal to the reduction
of the j-th items in the source data in all processes.
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3.1 The lower bounds

Let us first consider the required communications to
complete the one-item all-reduce operation on N processes.
In this case, let the N processes be p0, ..., pN−1 and the ini-
tial value of the element in process pi, 0 ≤ i ≤ N − 1, be
ai. At the end of the all-reduce operation, all processes will
contain the result r = a0 ⊕ a1 ⊕ ..... ⊕ aN−1. Let partial
results bi,j = ai ⊕ ai+1 ⊕ ... ⊕ aj , 0 ≤ i ≤ j ≤ N − 1.
Since ⊕ is commutative, the reduction result r can be ob-
tained by applying ⊕ on multiple partial results. Obviously,
ai = bi,i: the initial data items ai are also partial results
that can be used to compute the final reduction result. By
the definition of the reduction operation, the size of the par-
tial results bi,j is the same as the size of a data item. We
will use the term elements to refer to both the partial results
bi,j and the initial data items ai and assume that the smallest
unit for computation and communication in the all-reduce
operation is an element. This assumption holds for almost
all practical cases.
Lemma 1: To complete a one-element all-reduce operation
on N processes, the minimum number of elements to be
communicated is 2 × (N − 1).
Proof: For easy exposition, let us assume that each mes-
sage transfers one element between two processes (a mes-
sage with multiple elements can be treated as multiple mes-
sages). We will prove by induction on N that in order for
all processes to have the result r = a0 ⊕ a1 ⊕ .....⊕ aN−1,
at least 2 × (N − 1) messages are needed.

Base case: N = 2. With one message, at most one pro-
cess can send its data to the other process. Hence, at most
one process can compute a0 ⊕ a1, which cannot complete
the all-reduce operation. Hence, at least 1 + 1 = 2 =
2 × (N − 1) communications are needed to complete the
operation.

Induction case: The induction hypothesis is that the min-
imum number of elements to be communicated in order to
complete a one-element all-reduce operation with N pro-
cesses is 2× (N − 1). Using this hypothesis, we will prove
that the minimum number of messages in order to complete
a one-element all-reduce operation on N + 1 processes is
2 × ((N + 1) − 1) = 2N .

Let pl be the process that receives the last message in
the operation on N + 1 processes. Hence, before the last
message, all other processes p0, ..., pl−1, pl+1, ..., pN have
sufficient information to compute the reduction result r =
a0 ⊕ a1 ⊕ ..... ⊕ aN . We will show that at least 2N − 1
messages have been communicated before the last message.

Let Z be the minimum number of messages for pro-
cesses p0, ..., pl−1, pl+1, ..., pN to have the result r =
a0 ⊕ a1 ⊕ ..... ⊕ aN . Let messages m0, m1, ..., mZ−1

be the Z messages. We will show that to compute the all-
reduce results (r′ = a0 ⊕ ... ⊕ al−1 ⊕ al+1 ⊕ ... ⊕ aN )

on processes p0, ..., pl−1, pl+1, ..., pN (N − 1 processes),
only Z − 1 messages are needed. Notice that process pl

does not involve in the all-reduce operation on processes
p0, ..., pl−1, pl+1, ..., pN . Let messages mi1 , mi2 , ..., mix

be messages in {m0, m1, ..., mZ−1} that are sent to pl and
messages mj1 , mj2 , ..., mjy

are messages that are sent from
pl. Since the result r = a0 ⊕ a1 ⊕ ..... ⊕ aN includes the
term al, there exists at least one message sent from pl (so
that other processes can compute the result with the term
al). Hence, y ≥ 1. Consider the messages sent to pl, there
are two cases: (1) there exist such messages; and (2) there
does not exist such a message.

In the case when there does not exist any mi sending to
pl, the element sent in mj1 must be al (pl does not have
any other information to send). Actually, all messages in
{m0, m1, ..., mZ−1} that are sent from pl must be al since
pl does not have the information about the items in other
processes. We can construct the sequence of at most Z − 1
messages to compute the all-reduce result (r′ = a0 ⊕ ... ⊕
al−1⊕al+1⊕...⊕aN ) among processes p0,..., pl−1, pl+1, ...,
pN as follows: for each mi, 0 ≤ i ≤ Z−1, (1) remove mi if
the element in mi is al; (2) change the message to be C⊕D

if the message in mi is C⊕al⊕D, where C and D are either
elements or empty. Since at least one message, mj1 , is to
be removed, the new sequence has at most Z − 1 messages.
Since the original message sequence m0, ..., mZ−1 allows
r = a0 ⊕ a1 ⊕ ..... ⊕ aN to be computed in processes p0,
..., pl−1, pl+1, ..., pN , the new sequence will allow r′ =
a0⊕ ...⊕al−1⊕al+1⊕ ...⊕aN to be computed in processes
p0, ..., pl−1, pl+1, ..., pN . Note that pl is not involved in the
new message sequence.

In the case when there exist some messages mi1 , mi2 ,
..., mix

that are sent to pl, let us denote src(mik
) be the

source process of mik
. We can construct the sequence of

at most Z − 1 messages to compute the all-reduce result
(r′ = a0 ⊕ ... ⊕ al−1 ⊕ al+1 ⊕ ... ⊕ aN ) among pro-
cesses p0,..., pl−1, pl+1, ..., pN as follows: (1) for each
mi, 0 ≤ i ≤ Z − 1, change the message to be C ⊕ D if
the element in mi is C ⊕ al ⊕ D (remove the message if
the element is al); (2) change the receiver of message mik

,
k < x, from al to src(mix

); (3) remove message mix
; and

(4) change the source node of message mjk
, 1 ≤ k ≤ y,

from pl to src(mix
). Basically, all the messages relayed by

pl in the original sequence is now relayed by src(mix
) and

al is erased from all messages. The new sequence should
allow the all-reduce operation to be completed on processes
p0, ..., pl−1, pl+1, ..., pN . This sequence has at most Z − 1
messages since mix

is removed.
Hence, the all-reduce operation among processes p0,...,

pl−1, pl+1, ..., pN can be done with Z − 1 messages. From
the induction hypothesis, Z − 1 ≥ 2(N − 1). Hence, the
number of communications before the last communication
is at least 2× (N −1)+1 and the total number of messages
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to complete the all-reduce operation on N + 1 processes is
at least 2 × (N − 1) + 1 + 1 = 2N . 2

Lemma 2: Assume that (1) data are not compressed dur-
ing the all-reduce operation; and (2) source data items are
independent of one another. To perform an all-reduce op-
eration of X items of itsize bytes on N processes, there
exists at least one process that must communicate at least
2 × N−1

N
× X × itsize bytes data.

Proof: From Lemma 1, the minimum amount of data to
be communicated in order to complete the one-element all-
reduce operation is 2 × (N − 1) × itsize bytes. Since
every source data item in the all-reduce operation is inde-
pendent, the minimum amount of total data to be communi-
cated is 2 × (N − 1) × itsize × X . Since there are N

processes that carry out the communications collectively,
the communications can be distributed among the N pro-
cesses. Hence, at least one process needs to communicate
2×(N−1)×X×itsize

N
= 2× N−1

N
× X × itsize byte data. 2

Let the communication completion time for the all-
reduce operation be defined as the duration between the
time when the operation starts and the time when the last
process finishes the operation. Let us model the time to
send an n-byte message between any two processes as
T (s) = α + s × β, where α is the startup overhead and
β is the per byte transmission time. When s is sufficiently
large, the bandwidth term s × β dominates the total com-
munication time (s × β >> α) and T (s) ≈ s × β. In this
case, T (m × s) ≈ m × T (s).
Lemma 3: Under the assumptions stated in Lemma 2, the
communication completion time for the all-reduce opera-
tion is at least T (2× N−1

N
× X × itsize).

Proof: Straight-forward from the previous discussion and
definition. 2

Lemma 3 indicates that the minimum communication
time for the all-reduce operation of msize = X × itsize

data on N processes is T (2× N−1
N

×msize). When msize

is sufficiently large such that msize × β >> α, T (2 ×
N−1

N
× msize) ≈ 2 × N−1

N
× T (msize) ≈ 2T (msize).

This indicates that the best of any all-reduce algorithms can
do is to achieve roughly 2 times the time to send an msize

data. It must be noted that this analysis focuses on commu-
nication time with the assumption that the communication
time is dominated by the bandwidth term. In practice, the
communication start-up overhead and the computation in
the operation may be significant.

3.2 Bandwidth efficient all-reduce algo-
rithm

Following the scheme proposed in [12], our bandwidth
efficient algorithm realizes the all-reduce operation by a
reduce-scatter operation followed by an all-gather opera-
tion. The challenges lie in how to realize these two oper-

ations efficiently on the tree topology. The reduce-scatter
operation computes the reduction results for all items; and
the results are distributed among the N processes, each pro-
cess having msize

N
byte data. After the reduce-scatter oper-

ation, an all-gather operation is performed to gather all of
the reduction results to all processes.

To achieve the best performance, both the reduce-scatter
and the all-gather operations must be performed efficiently.
In particular, network contention can significantly degrade
the communication performance on the tree topology when
a collective operation is performed. Hence, one must care-
fully select the communication patterns for realizing the op-
erations without introducing contention.

Our algorithm performs the reduce-scatter using a logi-
cal ring communication pattern. Let the N processes be p0,
p1, ..., pN−1. Let F : {0, ..., N − 1} → {0, ..., N − 1}
be a one-to-one mapping function. Thus, pF (0), pF (1), ...,
pF (N−1) is a permutation of p0, p1, ..., pN−1. The logical
ring pattern contains the following communications:

pF (0) → pF (1) → pF (2) → ... → pF (N−1) → pF (0)

Using the logical ring pattern, the reduce-scatter opera-
tion is performed as follows. First, the msize source data
in each process is partitioned into N segments, each seg-
ment having msize

N
bytes of data. For easy exposition, we

will assume that msize is divisible by N . Let us number
the segments by SEG0, SEG1, ..., SEGN−1 The reduce-
scatter operation is carried out by performing the logical
ring pattern N − 1 iterations. In the first iteration (itera-
tion 1), process pF (i) sends segment SEG(i−1) mod N to
pF ((i+1) mod N). After each process receives the data, it
performs a reduction operation on the received data seg-
ment with its corresponding data segment (the segment with
the same segment index), and replaces its own data with
the (partial) reduction results. For each remaining iteration
j : 2 ≤ j ≤ N − 1, each process pF (i) sends the newly
computed SEG(i−j) mod N to pF ((i+1) mod N). After re-
ceiving the data communicated in each iteration, each pro-
cess performs the reduction operation on the data received
with the corresponding segment in the local array and re-
places the partial reduction results in the array. At the end
of the N − 1 iterations, pF (i) holds the reduction results in
SEGi, 0 ≤ i ≤ N − 1. Figure 3 shows the logical ring
implementation of reduce-scatter on four processes.

The remaining question is then how to embed a logical
ring on a tree topology without introducing contention. This
problem has been solved in [4]. For completeness, we will
briefly describe the algorithm in [4] that finds a contention-
free logical ring on a tree topology.

Let G = (S ∪ M, E) be a tree graph with S being
switches, M being machines (each MPI process is mapped
to one machine), and E being the edges. Let G′ = (S, E′)
be a subgraph of G that only contains switches and links be-
tween switches. A contention-free logical ring can be com-
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Figure 3. Logical ring reduce-scatter algo-
rithm

puted in the following two steps.
• Step 1: Starting from any switch, perform Depth First
Search (DFS) on G′. Number the switches based on the
DFS arrival order. We will denote the switches as s0, s1,
..., s|S|−1, where si is the ith switch arrived in the DFS
traversal of G′.
• Step 2: Let the Xi machines connecting to switch si, 0 ≤
i ≤ |S| − 1, be numbered as ni,0, ni,1, ..., ni,Xi−1. Xi = 0
when there is no machine attaching to si. The following
logical ring is contention-free:

n0,0 → ... → n0,X0−1 → n1,0 → ... → n1,X1−1 →
... → n|S|−1,0 → ... → n|S|−1,X|S|−1−1 → n0,0.

Lemma 4: The logical ring found by the above algorithm
is contention-free.

The formal proof of Lemma 4 can be found in [4]. The
algorithm described can be directly applied when the tree
topology is determined. As we mentioned earlier, in a high-
end SMP cluster, even though the system can be approxi-
mated with a two-level tree, the exact tree topology is un-
known until the SMP nodes are allocated. Hence, this al-
gorithm cannot be directly used in a high-end SMP cluster.
However, by default, most SMP clusters assign MPI pro-
cesses with consecutive ranks to processors (or cores) in
each SMP node. For such clusters, using the 2-level tree
representation, a contention-free logical ring for the default
process assignment scheme can be built without knowing
the exact topology as shown in the following lemma.
Lemma 5: Under the assumption that MPI processes with
consecutive ranks are assigned to processors (or cores) in
each SMP node, logical ring pattern, p0 → p1 → p2 →
... → pN−1 → p0, is contention free.
Proof: Assume that there are M SMP nodes in the system,
each having N

M
processors (cores). Under the process as-

signment assumption, p0, p1, ..., p N
M

−1 are assigned to one
SMP node; p N

M
, p N

M
+1, ..., p2× N

M
−1 are assigned to another

SMP node; and so forth. An SMP node SMPi, 1 ≤ i ≤ M ,
contains processes p(i−1)× N

M
to pi× N

M
−1. The process as-

signment is depicted in the two-level tree in Figure 2. Let
switch s0 corresponds to the root (interconnect) and switch

si corresponds to node SMPi. Clearly, the sequence s0,...,
sN is a DFS traversal sequence. Thus, from Lemma 4, the
logical ring p0 → p1 → ... → pN−1 → p0 is contention-
free. 2

Now, let us consider the all-gather operation. The all-
gather operation gathers msize

N
data from each process to

all processes. We use the algorithm developed in [4] for
performing this operation. In this algorithm, the all-gather
operation is also carried out with a logical ring communica-
tion pattern, which is exactly the same as the communica-
tion pattern used to realize the reduce-scatter operation.

pF (0) → pF (1) → ... → pF (N−1) → pF (0).

In the first iteration, each process pF (i), 0 ≤ i ≤ N − 1,
sends its own data to pF ((i+1) mod N) and receives data
from pF ((i−1) mod N). In subsequent iterations, each pro-
cess pF (i) forwards what it received in the previous iteration
to pF ((i+1) mod N) (and receives from pF ((i−1) mod N)).
After N − 1 iterations, all data from all processes reach
all nodes in the system and the all-gather operation is com-
plete. Note that in each iteration, each process must copy
the data it receives into the right place of its output buffer.

Both the reduce-scatter operation and the all-gather oper-
ation are performed in N − 1 steps with each process send-
ing and receiving msize

N
data in each step. Hence, the total

communication time is 2 × (N − 1) × T (msize
N

). When
msize

N
is sufficiently large, 2 × (N − 1) × T (msize

N
) ≈

T (2 × N−1
N

× msize), which is optimal (Lemma 3). Note
that “sufficiently large” is a relative term: if msize

N
is close

to infinity, the performance of the proposed algorithm will
be close to optimal. However, the exact threshold when the
proposed algorithm is better than other algorithms is sys-
tem dependent. As will be shown in the next section, the
threshold value is around msize

N
= 256B for the proposed

algorithm to be more efficient than existing algorithms in
some contemporary high-end SMP clusters, and 8KB in a
32-node cluster connected by Gigabit Ethernet switches.

4 Experiments

Based on the algorithm described in the previous section,
we implement routines that perform the all-reduce opera-
tion in two forms. For the high-end cluster whose topology
can be approximated by a two-level tree, we implement a
stand-alone MPI Allreduce routine based on Lemma 5. For
clusters with a physical tree topology, we develop a routine
generator that takes a tree topology as input and automat-
ically produces an all-reduce routine that uses the topol-
ogy specific algorithm for the input topology. The gen-
erated routines are written in C and are based on MPICH
point-to-point primitives. These routines are available at
http://www.cs.fsu.edu/∼patarasu/ALLREDUCE.

We compare the proposed algorithms with the native
MPI implementations on various clusters. In addition,
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for high-end SMP clusters, we also compare the proposed
scheme with two algorithms that were developed specifi-
cally for SMP clusters [17]. Both SMP specific algorithms
[17] take advantages the two-level structure of an SMP clus-
ter and separate intra-node communications from inter-node
communications. One algorithm, denoted as SMP-rdb, uses
the recursive doubling scheme for inter-node communica-
tion. The other one, denoted as SMP-binomial, uses a
pipelined binomial tree.

Three clusters are used in the evaluation: (1) the NCSA
Teragrid IA-64 Linux cluster [11], (2) the TACC Lones-
tar cluster [13], and (3) an Ethernet switched cluster. The
NCSA Teragrid IA-64 Linux cluster is a Myrinet cluster
with dual 1.5GHz Intel Itantium 2 SMP nodes and 4GB
memory per node. The system runs Linux 2.4.21-SMP op-
erating system and uses mpich-gm-1.2.5.10 library. The
TACC Lonestar cluster is an InfiniBand cluster with Dell
PowerEdge 1955 blade as compute nodes, each node having
two dual-core Xeon 5100 processors (4 cores per node) and
8GB memory. The system runs Linux 2.6.12 x86 64 oper-
ating system and uses mvapich-0.9.8 library. The Ethernet
switched cluster consists of 32 compute nodes connected
by Dell Powerconnect 2724 Gigabit Ethernet switches. The
nodes are Dell Dimension 2400, each with a 2.8GHz pro-
cessor and 640MB memory. All nodes run Linux (Fedora)
with the 2.6.5-358 kernel.

The code segment for measuring communication com-
pletion time is shown in Figure 4. The reduction opera-
tor is MPI BOR. Twenty iterations are measured for all-
reduce communications with data sizes less than 64 KB,
and ten iterations for communications with larger data sizes.
Within each iteration, a barrier is added to prevent pipelined
communication between iterations. Since we only consider
communications with reasonably large data sizes, the bar-
rier overhead is insignificant. For each experiment, we run
the benchmark 32 times, compute the confidence interval
with 95% confidence level from the 32 samples, and re-
port the results using the 95% confidence interval. Most
confidence intervals from our experiment results are very
small, which indicates that the results from the experiment
are re-producible with small errors. We only report the re-
sults with the data size larger than 8KB since our algorithm
is designed to achieve high performance for large data sizes.

MPI Barrier(MPI COMM WORLD);
start = MPI Wtime();
for (count = 0; count < ITER NUM; count ++) {

MPI Allreduce(..., MPI BOR, ...);
MPI Barrier(...);

}
elapsed time = MPI Wtime() - start;

Figure 4. Code segment for measuring
MPI Allreduce performance.

NCSA Teragrid IA-64 Linux cluster results
Figure 5 show the performance of different all-reduce al-

gorithms on the NCSA Teragrid cluster. The native MPI
library on this system is mpich-gm-1.2.5.10. All pro-
grams are compiled with ’mpicc -lm’ command with no
other flag (mpicc invokes the Intel compiler in the sys-
tem). Figure 5 (a) shows the results on 64 processors (32
nodes) and Figure 5 (b) shows the results on 128 proces-
sors (64 nodes). On the 64-processor system, our routine
out-performs the native routine when the data size is 16KB;
on the 128-processor system, our routine out-performs the
native routine when the data size is 32KB. Notice that
16KB

64 = 32KB
128 = 256B: the threshold value of msize

N

for our bandwidth efficient algorithm to be more efficient is
around 256B on this cluster. As the data size increases, the
performance difference is very significant. This is due to the
fact that our logical ring based algorithm is bandwidth effi-
cient while the native MPI implementation uses a different
algorithm that is not bandwidth efficient in the SMP clus-
ter. Our routine also performs significantly better than the
two algorithms designed for SMP clusters (SMP-rdb and
SMP-binomial), both of which are better than the native all-
reduce implementation. This is because our algorithm in-
tegrates (overlaps) the inter-node and intra-node communi-
cations seamlessly while SMP-rdb and SMP-binomial arti-
ficially separate inter-node communications and intra-node
communications and have logically three phases.
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Figure 5. Results for the NCSA cluster
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TACC Lonestar cluster results
Figure 6 shows the results on the TACC Lonestar clus-

ter whose native MPI library is mvapich 0.9.8. All pro-
grams are compiled with ’mpicc -lm’ command with no
other flag (mpicc invokes the Intel compiler in the system).
Figure 6 (a) shows the results on 64 cores (16 nodes) and
Figure 6 (b) shows the results on 128 cores (32 nodes). The
trend in the relative performance between our routine and
the native MPI Allreduce routine is very similar to that in
the NCSA cluster except that the Lonestar cluster is a newer
cluster and the communication is much faster. Interestingly,
the threshold value of msize

N
is also around 256B in this

cluster. The MPI libraries on both the Lonestar cluster and
the NCSA cluster are based on MPICH, whose all-reduce
algorithm is not bandwidth efficient on the SMP clusters.
On both clusters, our bandwidth efficient implementation
provides much better performance when the data size is
large.
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Figure 6. Results for the TACC cluster

Ethernet switched cluster results
For the Ethernet switched cluster, we show the results on

the 32-node cluster with the two topologies shown in Fig-
ure 7. We performed experiments on other topologies and
the trend is similar to those shown in the results for these
two topologies. We will refer to the topologies in Figure 7
as topology (1) and topology (2). We use our routine gen-
erator to produce topology specific routines for these two

topologies and compare the automatically generated rou-
tines with the routines in LAM/MPI 7.1.2 [6] and MPICH
2.1.0 [10].
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S0

n7 n12 n13 n14 n15

S1 S2

n23n20 n21 n22

n30S3

n27n26 n29n28

n25

n24 n31

(2)

n0 n1 n15 n16 n17 n31

S0 S1

(1)

Figure 7. Ethernet Topologies used in the ex-
periments
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Figure 8. Results for the Ethernet switched
cluster

Figures 8 (a) and (b) show the results for topology (1)
and topology (2) respectively. For the Ethernet switched
clusters, the proposed algorithm is more efficient when the
data size is significantly larger than those in the high-end
clusters (the NCSA and TACC clusters): on Topology (1),
the proposed algorithm is the best among the three routines
when the data size is more than 256KB; on Topology (2)
the proposed algorithm is better when the data size is more
than 128KB. Hence, the threshold value of msize

N
for the
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proposed algorithm to be more efficient is 256KB
32 = 8KB,

which is much larger than the 256B in the high-end NCSA
and TACC clusters. This reflects the fact that on Ethernet
switched cluster with Gigabit switches, the communication
start-up overhead is much larger than that in high-end clus-
ters. Thus, even for reasonably large data sizes (e.g. 64KB),
it is still more important to reduce the communication start-
up overheads. Nonetheless, when the data size is larger,
network contention becomes a problem and our contention-
free algorithm is much more efficient. Notice that in Topol-
ogy (2), the MPICH algorithm introduces serious network
contention in the system when the data size is larger than
128KB.

5 Related Work

The all-reduce operation is one of the collective opera-
tions supported in the MPI standard [9], and thus, all MPI
libraries such as LAM/MPI [6] and MPICH [10] support
this operation. Many efficient platform independent algo-
rithms for this operation have been proposed [15, 16, 12]. In
[12], Rabenseifner proposed to realize the all-reduce opera-
tion by a reduce-scatter operation followed by an all-gather
operation and gave various algorithms for the reduce-scatter
and all-gather operations. Our proposed scheme combines
this idea with contention-free realization of reduce-scatter
and all-gather operations. Various architecture specific all-
reduce schemes have also been developed [1, 3, 5, 7, 17].
In particular, all-reduce algorithms were developed specifi-
cally for SMP clusters in [17]. Our algorithm is more effi-
cient on SMP clusters than those in [17]. Our all-reduce
algorithm uses a contention-free all-gather algorithm for
the tree topology [4]. In this paper, we combine the ideas
from various papers [4, 12, 16] to develop an efficient al-
gorithm for the all-reduce operation with large data sizes
on the tree topology. The new contributions include the
following. First, we establish a tight lower bound for the
amount of data to be transmitted in order to complete the all-
reduce operations. Second, we develop a topology specific
algorithm for the all-reduce operation on the tree topology,
which happens to be similar to that in [4]. Third, we empir-
ically demonstrate that the proposed algorithm is efficient
on high-end clusters with SMP and/or multi-core nodes as
well as low-end Ethernet switched clusters.

6 Conclusions

In this paper, we investigate an efficient all-reduce im-
plementation for large data sizes on the tree topology. We
derive a theoretical lower bound on the communication time
of this operation and develop an all-reduce algorithm that
can theoretically achieve this lower bound. We demonstrate
the effectiveness of the proposed algorithm on various con-
temporary clusters, including high-end clusters with SMP

and/or multi-core nodes connected by high-speed intercon-
nects, and low-end Ethernet switched clusters.
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