
On LID Assignment In InfiniBand Networks

Wickus Nienaber
Dept. of Computer Science

Florida State University
Tallahassee, FL 32306

nienaber@cs.fsu.edu

Xin Yuan
Dept. of Computer Science

Florida State University
Tallahassee, FL 32306

xyuan@cs.fsu.edu

Zhenhai Duan
Dept. of Computer Science

Florida State University
Tallahassee, FL 32306

duan@cs.fsu.edu

ABSTRACT
To realize a path in an InfiniBand network, an address,
known as Local IDentifier (LID) in the InfiniBand speci-
fication, must be assigned to the destination and used in
the forwarding tables of intermediate switches to direct the
traffic following the path. Hence, path computation in In-
finiBand networks has two tasks: (1) computing the paths,
and (2) assigning LIDs to destinations (and using the LIDs
in the forwarding tables to realize the paths). We will re-
fer to the task of computing paths as routing and the task
of assigning LIDs as LID assignment. Existing path com-
putation methods for InfiniBand networks integrate these
two tasks in one phase. In this paper, we propose to sep-
arate routing and LID assignment into two phases so as to
achieve the best performance for both routing and LID as-
signment. Since the routing component has been extensively
studied and is fairly well understood, this paper focuses on
LID assignment whose major issue is to minimize the num-
ber of LIDs required to support a routing. We prove that
the problem of realizing a routing with a minimum number
of LIDs is NP-complete, develop a number of heuristics for
this problem, and evaluate the performance of the heuristics
through simulation. Our results demonstrate that by sepa-
rating routing from LID assignment and using the schemes
that are known to achieve good performance for routing and
LID assignment separately, more effective path computation
methods than existing ones can be developed.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
Topology, Network Communication; C.2.3 [Network Op-
eration]: Network Management

General Terms
Algorithms, Measurement, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’07, December 3–4, 2007, Orlando, Florida, USA.
Copyright 2007 ACM 978-1-59593-945-6/07/0012 ...$5.00.

Keywords
InfiniBand, LID Assignment, NP-Complete

1. INTRODUCTION
The InfiniBand architecture (IBA) is an industry stan-

dard architecture for interconnecting processing nodes and
I/O devices [6]. It is designed around a switch-based in-
terconnect technology with high-speed point-to-point links.
IBA offers high bandwidth and low latency communication
and can be used to build many different types of networks
including I/O interconnects, system area networks, storage
area networks, and local area networks. IBA has been widely
adopted in large scale high performance computing (HPC)
systems: many of the top 500 fastest supercomputers listed
in the June 2007 release [12] use IBA as the interconnect
technology.

An InfiniBand network is composed of one or more sub-
nets connected by InfiniBand routers. Each subnet consists
of processing nodes and I/O devices connected by Infini-
Band switches. We will use the general term machines to
refer to processing nodes and I/O devices at the edge of an
InfiniBand network. This paper considers the communica-
tion within a subnet. A subnet is managed by a subnet
manager (SM). By exchanging subnet management packets
(SMPs) with the subnet management agents (SMAs) that
reside in every InfiniBand device in a subnet, the SM dis-
covers the subnet topology (and topology changes), com-
putes the paths between each pair of machines based on the
topology information, configures the network devices, and
maintains the subnet.

InfiniBand requires the paths between all pairs of ma-
chines to be dead-lock free and deterministic. These paths
must then be realized with a destination based routing scheme.
Specifically, machines are addressed by local identifiers (LIDs).
Each InfiniBand packet contains in its header the source LID
(SLID) and destination LID (DLID) fields. Each switch
maintains a forwarding table that maps the DLID to one
output port. When a switch receives a packet, it parses the
packet header and performs a table lookup using the DLID
field to find the output port for this packet. The fact that
one DLID is associated with one output port in the forward-
ing table implies that (1) the routing is deterministic; and
(2) each DLID can only direct traffic in one direction in a
switch.

Destination based routing limits the paths that can be re-
alized. Consider the paths from nodes 4 and 5 to node 0 in
Figure 1. Assume that node 0 is associated with only one
LID, the paths 4 → 3 → 1 → 0 and 5 → 3 → 2 → 0 cannot

be supported simultaneously: with one LID for node 0, the
traffic toward node 0 in node 3 can only follow one direction.
To overcome this problem and allow more flexible routes,
IBA introduces a concept called LID Mask Control (LMC)
[6], which allows multiple LIDs to be associated with each
machine. Using LMC, each machine can be assigned a range
of LIDs (from BASELID to BASELID+2LMC−1). Since
LMC is represented by three bits, at most 2LMC = 27 = 128
LIDs can be assigned to each machine. By associating multi-
ple LIDs with one machine, the paths that can be supported
by the network are more flexible. For example, the two paths
in Figure 1 can be realized by having two LIDs associated
with node 0, one for each path. Nonetheless, since the num-
ber of LIDs that can be allocated (to a node or in a subnet)
is limited, the paths that can be used in a subnet are still
constrained, especially for medium or large sized subnets.

0

1 2

3

4 5

Figure 1: An example

The use of destination based routing with multiple LIDs
for each machine complicates the path computation in In-
finiBand networks. In addition to finding the paths between
machines, the SM must assign LIDs to machines and com-
pute the forwarding tables that realize the paths. Hence,
the path computation in an InfiniBand network is logically
composed of two tasks: the first task is to compute the dead-
lock free deterministic paths for each pair of machines; and
second task is to assign LIDs to machines and compute the
forwarding tables for realizing the paths determined in the
first task. We will use the terms routing and LID assign-
ment to refer to these two tasks. The term routing may also
refer to the set of paths computed.

Since the IBA specification [6] does not give specific algo-
rithms for path computation, this area is open to research
and many path computation schemes have been proposed.
Existing path computation schemes [1, 2, 3, 5, 8, 9, 10] are
all based on the Up*/Down* routing [11], which is originally
an adaptive dead-lock free routing scheme. Moreover, all of
these schemes integrate the Up*/Down* routing, path se-
lection (selecting deterministic paths among potential paths
allowed by the Up*/Down* routing), and LID assignment in
one phase. While these schemes provide practical solutions,
there are some notable limitations. First, since Up*/Down*
routing, path selection, and LID assignment are integrated,
these schemes cannot be directly applied to other dead-lock
free routing schemes, such as L-turn [4], that may have bet-
ter load balance properties. Second, the quality of the paths
selected by these schemes may not be the best. In fact,
the load balancing property of the paths is often compro-
mised by the LID assignment requirement. For example,
the fully explicit routing [9] restricts the paths to each des-
tination such that all paths to a destination can be realized

by one LID (avoiding the LID assignment problem). Notice
that load balancing is one of the most important parameters
that determine the performance of a routing system and is
extremely critical for achieving high performance in an In-
finiBand network. Third, the performance of LID assign-
ment in these schemes is not clear. Since LID assignment
is integrated with routing and path selection in all exist-
ing schemes, the LID assignment problem itself is not well
understood.

We propose to separate routing from LID assignment,
which may alleviate the limitations discussed in the pre-
vious paragraph: the separation allows routing to focus on
finding paths with good load balancing properties and LID
assignment to focus on its own issues. Among the two tasks,
routing in system area networks that require dead-lock free
and deterministic paths has been extensively studied and
is fairly well understood. There exist dead-lock free adap-
tive routing schemes, such as Up*/Down* routing [11] and
L-turn routing [4], that can be used to identify a set of
candidate paths. Path selection algorithms that can select
dead-lock free deterministic paths with good load balancing
properties from candidate paths have also been developed
[7]. Applying these algorithms in InfiniBand networks can
potentially result in better paths being selected than those
selected by the existing path computation schemes devel-
oped for InfiniBand. However, in order to apply these rout-
ing schemes, LID assignment, which has never been studied
independently from other path computation components be-
fore, must be investigated. This is the focus in this paper.

LIDs are limited resources. The number of LIDs that can
be assigned to each node must be no more than 128. In
addition, the 16-bit SLID and DLID fields in the packet
header limit the total number of LIDs in a subnet to be
no more than 216 = 64K. For a given routing (a set of
paths), one can always use a different LID to realize each
path. Hence, the number of LIDs needed to realize a routing
is no more than the number of paths. However, using this
simple LID assignment approach, a system with more than
130 machines cannot be built: it would require more than
129 LIDs to be assigned to a machine in order to realize the
(more than 129) paths from other machines to this machine.
Hence, the major issue in LID assignment is to minimize the
number of LIDs required to realize a given routing. Mini-
mizing the number of LIDs enables (1) larger subnets to
be built, and/or (2) more paths to be supported in a given
subnet. Supporting more paths is particularly important
when multi-path routing [14] or randomized routing is used.
In the rest of this paper, we use the term LID assignment
problem to refer to the problem of realizing a routing with
a minimum number of LIDs.

We further the theoretical understanding of LID assign-
ment by proving that the LID assignment problem is NP-
complete. We develop three types of heuristics for this prob-
lem and evaluate the proposed heuristics through simula-
tion. These heuristics allow existing methods for finding
load balance dead-lock free deterministic paths to be ap-
plied in InfiniBand networks. Practically, we demonstrate
that by separating routing from LID assignment and using
the schemes that are known to achieve good performance for
routing and LID assignment separately, more effective path
computation methods than existing ones can be developed.
In many cases, especially for reasonably large systems, the
new methods compute paths that (1) have better load bal-

ancing properties, and (2) can be realized with a smaller
number of LIDs.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the notations and formally define the
LID assignment problem. We prove the NP-completeness
of the LID assignment problem in Section 3. In Section 4,
we describe the proposed heuristics. Section 5 evaluates the
proposed heuristics and the overall performance of various
path computation schemes. Finally, Section 6 concludes the
paper.

2. PROBLEM DEFINITION
An InfiniBand subnet consists of machines connected by

switches. A node refers to either a switch or a machine. In-
finiBand allows both regular and irregular topologies. The
techniques developed in this paper are mainly for irregular
topologies. The links are bidirectional; a machine can have
multiple ports connecting to one or more switches; and mul-
tiple links are allowed between two nodes. We model an
InfiniBand network as a directed multi-graph, G = (V, E),
where E is the set of directed edges and V is the set of
switches and machines. Let M be the set of machines and
S be the set of switches. V = M ∪S. Let there exist n links
between two nodes u and v. The links are numbered from 1
to n. The n links are modeled by 2n direct edges ((u, v), i)

(or u
i
→ v) and ((v, u), i) (or v

i
→ u), 1 ≤ i ≤ n. The i-th

link between nodes u and v is modeled by two direct edges
((u, v), i) and ((v, u), i). An example InfiniBand topology
is shown in Figure 2. In this example, switches s0 and s1
are connected by two links; machine m3 is connected to two
switches s1 and s2.

A path p = u
i0→ a1

i1→ a2
i2→ ...

in−1

→ an
in→ v consists

of a set of directed edges {u
i0→ a1, a1

i1→ a2, ..., an
in→ v}.

NODE(p) = {u, a1, a2, ..., an, v} is the set of nodes that the

path p = u
i0→ a1

i1→ a2
i2→ ...

in−1

→ an
in→ v goes through.

SRC(p) = u is the source of path p and DST (p) = v is

the destination of path p. A path p = u
i0→ a1

i1→ a2
i2→

...
in−1

→ an
in→ v is end-to-end when SRC(p) = u ∈ M and

DST (p) = v ∈ M . In this case, path p is said to be an end-
to-end path. For example, the dark line in Figure 2 shows

an end-to-end path m0
1
→ s0

2
→ s1

1
→ s2

1
→ m4. A routing

R is a set of end-to-end paths, R = {p1, p2, ...}.
InfiniBand realizes each path through destination based

routing. In Figure 2, we show the entries in the forwarding

tables that realize two paths m0
1
→ s0

2
→ s1

1
→ s2

1
→ m4

(the solid dark line) and m1
1
→ s0

1
→ s2

1
→ m4 (the dotted

dark line). This example assumes that LIDs 4 and 5 are
assigned to machine m4 and the entries are illustrated with
a random forwarding table format: each table entry is of
the form (DLID, output port). As shown in the example,

path m0
1
→ s0

2
→ s1

1
→ s2

1
→ m4 is realized by having

entry (DLID = 4, output port = 2) in the forwarding ta-
ble in switch s0, (DLID = 4, output port = 3) in s1, and
(DLID = 4, output port = 3) in s2. Once the forwarding
tables are installed, machine m0 can send packets to m4 fol-
lowing this path by making DLID = 4 in the packet header.
Note that the physical installation of the forwarding table
in different switches is performed by the SM in the path
distribution phase, which is beyond the scope of this paper.

1m0

m1

m2

m3

m4

((s0, s1), 1)

((s1, s0), 2)

1

23

0 1

2
3

0

1
2

3

s1

s2

s0
0

4

(4, 3)

(5, 3)

(4, 3)

forwarding
tables

(4, 2)

(5, 3)

Figure 2: An InfiniBand network topology (LIDs 4
and 5 are assigned to m4)

To realize a path p towards a destination v, a LID LIDv

that is associated with the node v must be used and an entry
in the form of (LIDv, output port) must be installed in each
of the intermediate switches along the path. Once LIDv is
associated with one output port in a switch, it cannot be
used to realize other paths that use different output ports
in the same switch. We will use the term assigning LIDv to
path p to denote the use of LIDv to realize path p. In the

example in Figure 2, LID 4 is assigned to path m0
1
→ s0

2
→

s1
1
→ s2

1
→ m4 and LID 5 is assigned to path m1

1
→ s0

1
→

s2
1
→ m4.
Since different destinations are assigned different ranges of

LIDs in InfiniBand networks, the number of LIDs required
for realizing a routing is equal to the sum of the number
of LIDs required for each destination. In other words, the
LID assignment problem for a routing can be re-
duced to the LID assignment problem for each indi-
vidual destination. Let R = {p1, p2, ...} be a routing and
D = {d|∃pi ∈ R, DST (pi) = d} be the set of destinations
in R. Let d ∈ D be a destination node in some paths in R,
Rd = {p|p ∈ R and DST (p) = d}. We have R = ∪d∈DRd.
Let the minimum number of LIDs needed for realizing Rd be
Ld and the minimum number of LIDs needed for realizing
R be L. Since LIDs for different destination nodes are in-
dependent of one another, L =

P

d∈D
Ld. We will call LID

assignment for each Rd the single destination LID assign-
ment problem. In the rest of the paper, we will focus on the
single destination LID assignment problem. Unless specified
otherwise, all paths are assumed to have the same destina-
tion. Next, we will introduce some definitions and lemmas
that lead to the formal definition of the single destination
LID assignment problem.
Definition 1: Two paths p1 and p2 (with the same desti-
nation) are said to have a split if there exists a node a ∈

NODE(p1)∩NODE(p2), a
i
→ b ∈ p1 and a

j
→ c ∈ p2, such

that either i 6= j or b 6= c.
Basically, two paths have a split when (1) both paths share

an intermediate node, and (2) the outgoing links from the
intermediate node are different. Figure 3 (a) shows the case
when two paths have a split.
Lemma 1: When two paths p1 and p2 have a split, they
must be assigned different LIDs. When two paths p1 and

p2 do not have any split, they can share the same LID (be
assigned the same LID).
Proof: We will first prove the first proposition in this lemma:
when two paths p1 and p2 have a split, they must be as-
signed different LIDs. Let p1 and p2 be the two paths
that have a split. From Definition 1, there exists a node

a ∈ NODE(p1) ∩ NODE(p2), a
i
→ b ∈ p1 and a

j
→ c ∈ p2,

such that either i 6= j or b 6= c. Consider the forwarding

table in node a. When either i 6= j or b 6= c, a
i
→ b ∈ p1 uses

a different port from a
j
→ c ∈ p2. Since one LID can only

be associated with one output port in the forwarding table,
two LIDs are needed in switch a to realize the two directions.
Hence, p1 and p2 must be assigned different LIDs.

Now consider the second proposition: when two paths p1

and p2 do not have any split, they can share the same LID
(be assigned the same LID). Let p1 and p2 be the two paths
that do not have a split. There are two cases. The first
case, shown in Figure 3 (b) (1), is when the two paths do
not share any intermediate nodes. The second case, shown
in Figure 3 (b) (2), is when two paths share intermediate
nodes, but do not split after they join. For both cases, the
same LIDs can be used in forwarding table of the switches
along both paths to realize both paths, and the two paths
can be assigned the same LIDs. 2

a

p1 p2

p1 and p2 split at node a.

d

p1 p2

(1) p1 and p2 do not
share intermediate nodes

(2) p1 and p2 share
intermediate nodes, but do
not split after they joint.

p1 p2

segment

d d

(a) The case when two LIDs are needed

(b) the cases when one LID can be shared

Figure 3: The cases when a LID can and cannot be
shared between two paths

It must be noted that the statements “p1 can share a LID
with p2” and “p1 can share a LID with p3” do not imply
that “p2 can share a LID with p3”. Consider paths p1 =
m2 → s1 → s2 → m4, p2 = m0 → s0 → s1 → s2 → m4,
and p3 = m1 → s0 → s2 → m4 in Figure 2. Clearly, p1 can
share a LID with p2 and p1 can share a LID with p3, but
p2 and p3 have a split at switch s0 and cannot share a LID.
The following concept of configuration defines a set of paths
that can share one LID.

Definition 2: A configuration is a set of paths (with the
same destination) C = {p1, p2, ...} such that no two paths
in the set have a split.
Lemma 2: All paths in a configuration can be realized by
one LID.
Proof: Let l be a LID. Consider any switch, s, in the system.
This switch can either be used by the paths in the configura-
tion or not used. If s is used by some paths, by the definition
of configuration, all paths that pass through s must follow
one outgoing port in switch s, port, (otherwise, the paths
have a split at s and the set of paths is not a configuration).
Hence, the entry (DLID = l, output port = port) can be
shared by all paths using s. If s is not used by any paths in
the configuration, no entry is needed in the forwarding table
to realize the paths in the configuration. Hence, LID l can
be used in the switches along all paths in configuration to
realize all of the paths. 2

Definition 3 (Single destination LID assignment prob-
lem (SD(G, d, Rd)): Let the network be modeled by the
multi-graph G, d be a node in G, Rd = {p1, p2, ...} be a
single destination routing (for all pi ∈ Rd, DST (pi) = d).
The single destination LID assignment problem is to find a
function c : Rd → {1, 2, ..., k} such that (1) c(pi) 6= c(pj) for
every pair of paths pi and pj that have a split, and (2) k is
minimum.

Let c : Rd → {1, 2, ..., k} be a solution to SD(G, d, Rd).
Let Ri

d = {pj |c(pj) = i}, 1 ≤ i ≤ k. By definition, Ri
d is a

configuration; Rd = ∪k
i=1R

k
d ; and Ri

d ∩Rj
d = φ, i 6= j. Thus,

SD(G, d, Rd) is equivalent to the problem of partitioning Rd

into k disjoint sets R1
d, R2

d, ..., Rk
d such that (1) each Ri

d is a
configuration, and (2) k is minimum. When the disjoint sets
R1

d, R2
d, ..., Rk

d are found, the routing Rd can be realized by
k LIDs with one LID assigned to all paths in Ri

d, 1 ≤ i ≤ k.
SD(G, d,Rd) states the optimization version of this prob-

lem. The corresponding decision problem, denoted as
SD(G, d, Rd, k), decides whether there exists a function c :
Rd → {1, 2, ..., k} such that c(pi) 6= c(pj) for every pair of
paths pi and pj that have a split.

Since InfiniBand realizes multiple LIDs for each destina-
tion using the LID Mask Control (LMC) mechanism, the
actual number of LIDs assigned to each destination must
be a power of two, up to 128. Hence, if the solution to
SD(G, d, Rd) is k, the actual number of LIDs assigned to

d is 2dlg(k)e. For example, when k = 4, 2dlg(k)e = 4; when
k = 5, 2dlg(k)e = 8.

3. NP-COMPLETENESS
Theorem 1: SD(G, d, Rd, k) is NP-complete.
Proof: We first show that SD(G, d, Rd, k) belongs to NP
problems. Suppose that we have a solution for SD(G, d, Rd, k),
the verification algorithm first affirms the solution function
c : Rd → {1, 2, ..., k}. It then checks for each pair of paths
p1 and p2, c(p1) = c(p2), that they do not have a split. It
is straightforward to perform this verification in polynomial
time. Thus, SD(G, d,Rd, k) is an NP problem.

We prove that SD(G, d, Rd, k) is NP-complete by show-
ing that the graph coloring problem, which is a known NP-
complete problem, can be reduced to this problem in polyno-
mial time. The graph-coloring problem is to determine the
minimum number of colors needed to color a graph. The k-
coloring problem is the decision version of the graph coloring
problem. A k-coloring of an undirected graph G = (V, E)
is a function c : V → {1, 2, ..., k} such that c(u) 6= c(v) for

every edge (u, v) ∈ E. In other words, the numbers 1, 2,
..., k represent the k colors, and adjacent vertices must have
different colors.

The reduction algorithm takes an instance < G, k > of
the k-coloring problem as input. It computes the instance
SD < G′, d, Rd, k > as follows. Let G = (V, E) and G′ =
(V ′, E′). The following vertices are in V ′.

• The destination node d ∈ V ′.

• For each u ∈ V , two nodes nu, nu′ ∈ V ′.

• For each (u, v) ∈ E, a node nu,v ∈ V ′. Since G is an
undirected graph, (u, v) is the same as (v, u) and there
is only one node for each (u, v) ∈ E (node nu,v is the
same as node nv,u).

The edges in G′ are as follows. For each nu, let nodes
nu,i1 , nu,i2 , ..., nu,im be the nodes corresponding to all node
u’s adjacent edges in G. The following edges: (nu, nu,i1),
(nu,i1 , nu,i2), ..., (nu,im−1

, nu,im), (nu,im , nu2
), (nu′ , d) are

in E′. Basically, for each node u ∈ G, there is a path in
G′ that goes from nu, through each of the nodes in corre-
sponding to the edges adjacent to u in G, then through nu′

to node d.
Each node u ∈ V corresponds to a path pu in Rd. pu

starts from node nu, it goes through every node in G′ that
corresponds to an edge adjacent to u in G, and then goes to
node nu′ , and then d. Specifically, let nu,i1 , nu,i2 , ..., nu,im

be the nodes corresponding to all node u’s adjacent edges

in G, pu = nu
1
→ nu,i1

1
→ nu,i2 ...

1
→ nu,im

1
→ nu′

1
→ d. The

idea is to construct an instant of G′, d, and Rd such that
pu, pv ∈ Rd have a split if and only if u and v are adjacent
nodes. From the construction of pu, we can see that if nodes
u and v are adjacent in G ((u, v) ∈ E), both pu and pv go
through node nu,v and have a split at this node. If u and v
are not adjacent, pu and pv do not share any intermediate
node, and thus, do not have a split.

Figure 4 shows an example of the construction of G′, d
and Rd. For the example G in Figure 4 (a), we first create
the destination node d in G′. The second and fourth rows of
nodes in Figure 4 (b) corresponds to the two nodes nu′ and
nu for each node u ∈ V . The third row of nodes corresponds
to the edges in G. Each node u in G corresponds to a path

pu in Rd, Rd = {p0, p1, p2, p3}, where p0 = n0
1
→ n0,1

1
→

n0,2
1
→ n0′

1
→ d, p1 = n1

1
→ n0,1

1
→ n1,2

1
→ n1,3

1
→ n1′

1
→ d,

p2 = n2
1
→ n0,2

1
→ n1,2

1
→ n2,3

1
→ n2′

1
→ d, and p3 = n3

1
→

n1,3
1
→ n2,3

1
→ n3′

1
→ d. The path p0 that corresponds to

node 0 in Figure 4 (a) is depicted in Figure 4 (b). It can
easily see that in this example, pu, pv ∈ Rd have a split if
and only if u and v are adjacent nodes.

To complete the proof, we must show that this transfor-
mation is indeed a reduction: the graph G can be k-colored
if and only if SD(G′, d, Rd, k) has a solution.

First, we will show the sufficient condition: if G can be
k-colored, SD(G′, d, Rd, k) has a solution. Let c : V →
{1, 2, ..., k} be the solution to the k-coloring problem. We
can partition Rd into Ri

d = {pu|c(u) = i}. Let pu, pv ∈ Ri
d.

Since c(u) = c(v), nodes u and v are not adjacent in G.
From the construction of G′, d, and Rd, pu and pv do not
have split. By definition, Ri

d is a configuration. Hence, Rd

can be partitioned into k configurations R1
d, R2

d, ..., Rk
d and

SD(G′, d, Rd, k) has a solution.

2 3

10

0’ 1’ 2’ 3’

(0, 1) (0, 2) (1, 2) (1, 3) (2, 3)

0 1 2 3

(a) An example graph for graph coloring

p

d

0

(b) The corresponding graph for LID assignment

Figure 4: An example of mapping G to G′

Now, we will show the necessary condition: if SD(G′, d, Rd, k)
has a solution, G can be k-colored. Since SD(G′, d, Rd, k)
has a solution, Rd can be partitioned into k configurations
R1

d, R2
d, ..., and Rk

d . Let pu, pv ∈ Ri
d, 1 ≤ i ≤ k. Since Ri

d is
a configuration, pu does not have split with pv in G′. From
the construction of G′, d, Rd, u and v are not adjacent in G.
Hence, all nodes in each configuration can be colored with
the same color and the mapping function c : V → {1, 2, ..., k}
can be defined as c(u) = i if pu ∈ Ri

d, 1 ≤ i ≤ k. Hence, if
SD(G′, d, Rd, k) has a solution, G can be k-colored. 2

4. LID ASSIGNMENT HEURISTICS
Since the LID assignment problem is NP-complete, we re-

sort to heuristic algorithms for solving the problem. All of
our heuristics are based on the concept of minimal config-
uration set, which is defined next.
Definition 4: Given a single destination routing Rd =
{p1, p2, ...}, the set of configurations MC = {C1, C2, ..., Ck}
is a minimal configuration set for Rd if and only if all of
the following conditions are met:

• each Ci ∈ MC, 1 ≤ i ≤ k, is a configuration;

• each pi ∈ Rd is in exactly one configuration in MC;

• for each pair of configuration Ci and Cj ∈ MC, i 6= j,
there exist px ∈ Ci and py ∈ Cj such that px and py

have a split.

The configuration set is minimal in that there do not exist
two configurations in the set that can be further merged.
From Lemma 2, all paths in one configuration can be realized
by 1 LID. Hence, assume that MC = {C1, C2, ..., Ck} is a
minimal configuration set for routing Rd, the routing Rd

can be realized by k LIDs. All of the heuristics attempt to
minimize the number of LIDs needed by finding a minimal
configuration set for a routing.

4.1 Greedy heuristic
For a given routing Rd, the greedy LID assignment algo-

rithm creates configurations one by one, trying to put as
as many paths into each configuration as possible to min-
imize the number of configurations needed. This heuristic
repeats the following process until all paths are in the con-
figurations: create an empty configuration (current config-
uration), check each of the paths in Rd that has not been
included in a configuration whether it has a split with the
paths in the current configuration, and greedily put the path
in the configuration (when the path does not split with any
paths in the configuration). The algorithm is shown in Fig-
ure 5. Each configuration (or path) can be represented as an
array of size |V | that stores for each node the outgoing link
from the node (in a configuration or a path, there can only
be one outgoing link from each node). Using this date struc-
ture, checking whether a path has a split with any path in
a configuration takes O(|V |) time (line (5) in Figure 5); and
adding a path in a configuration also takes O(|V |) time (line
(6)). The loop at line (4) runs for at most |Rd| iterations
and the loop at line (2) runs for at most k iterations, where
k is the number of LIDs allocated. Hence, the complexity
of the algorithm is O(k×|Rd|× |V |), where k is the number
of LIDs allocated, Rd is the set of paths, and V is the set of
nodes in the network.

(1) MC = φ, k = 1
(2) repeat
(3) Ck = φ
(4) for each p ∈ Rd

(5) if p does not split with any path in Ck then
(6) Ck = Ck

S

{ p }, Rd = Rd− { p }
(7) end if
(8) end for
(9) MC = MC

S

{ Ck }, k = k + 1
(10) until Rd = φ

Figure 5: The greedy heuristic

s4 s5

s0

m0

s2s1

s3

p1 p3p2
p4

m1 m2 m3 m4

Figure 6: An example of LID assignment

We will use an example to show how the greedy heuristic
algorithm works and how its solution may be sub-optimal.
Consider realizing Rm0 = {p1, p2, p3, p4} in Figure 6, where

p1 = m1
1
→ s4

1
→ s1

1
→ s0

1
→ m0, p2 = m2

1
→ s4

1
→

s3
1
→ s2

1
→ s0

1
→ m0, p3 = m4

1
→ s5

1
→ s2

1
→ s0

1
→

m0, and p4 = m3
1
→ s5

1
→ s3

1
→ s1

1
→ s0

1
→ m0. The

greedy algorithm first creates a configuration and puts p1

in the configuration. After that, the algorithm tries to put
other paths into this configuration. The algorithm considers
p2 next. Since p1 and p2 split at switch s4, p2 cannot be
included in this configuration. Now, consider p3. Since p3

and p1 do not have any joint intermediate nodes, p3 can be
included in the configuration. After that, since p4 splits with
p3 at switch s5, it cannot be included in this configuration.
Thus, the first configuration will contain paths p1 and p3.
Since we have two paths p2 and p4 left unassigned, new
configurations are created for these two paths. Since p2

and p4 split at switch s3, they cannot be included in one
configuration. Hence, the greedy algorithm realizes Rm0

with three configurations: C1 = {p1, p3}, C2 = {p2}, and
C3 = {p4}. Thus, 3 LIDs are needed to realize the routing
with the greedy heuristic. Although MC = {C1, C2, C3} is a
minimal configuration set, the solution is not optimal: Rm0

can be partitioned into two configurations: C ′
1 = {p1, p4}

and C′
2 = {p2, p3} and only two LIDs are needed to realize

the routing.

4.2 Split-merge heuristics
For a given routing Rd, the greedy algorithm tries to share

LIDs as much as possible by considering each path in Rd: the
minimal configuration set is created by merging individual
paths into configurations. The split-merge heuristics use a
different approach to find the paths that share LIDs. This
class of heuristics has two phases: in the first phase, Rd

is split into configurations; in the second phase, the greedy
heuristic is used to merge the resulting configurations into a
minimal configuration set, which is the final LID assignment.
In the split phase, the working set initially contains one item
Rd. In each iteration, a node is selected. Each item (a set
of paths) in the working set is partitioned into a number of
items such that each of the resulting items does not contain
paths that split in the node selected (the paths that split
in the selected node are put in different items). After all
nodes are selected, the resulting items in the working set are
guaranteed to be configurations: paths in one item do not
split in any of the nodes. In the worst case, each resulting
configuration contains one path at the end of the split phase
and the split-merge heuristic is degenerated into the greedy
algorithm. In general cases, however, the split phase will
produce configurations that include multiple paths. It is
hoped that the split phase will allow a better starting point
for merging than individual paths. The heuristic is shown
in Figure 7. Using a linked list to represent a set and the
data structure used in the greedy algorithm to represent a
path, the operations in the loop from line (4) to (7) can be
done in O(|Rd||V |) operations: going through all |Rd| paths
and updating the resulting set that contains each path with
O(|V |) operations. Hence, the worst case time complexity
for the whole algorithm is O(|V |2|Rd| + k|V ||Rd|).

Depending on the order of the nodes selected in the split
phase, there are variations of this split-merge heuristic. We
consider two heuristics in our evaluation, the split-merge/S
heuristic that selects the node used by the smallest number
of paths first, and the split-merge/L heuristic that selects
the node used by the largest number of paths first.

/* splitting */
(1) S = {Rd}, ND = V
(2) repeat
(3) Select a node, a, in ND;
(4) for each Si ∈ S do
(5) partition paths in Si that splits at node a into

multiple sets S1
i , S2

i , ...,Sj
i

(6) S = (S − {Si}) ∪ S1
i ∪ ... ∪ Sj

i ;ND = ND − {a}
(7) end for
(8) until ND = φ

/* merging */
(9) apply the greedy heuristic on S.

Figure 7: The split-merge heuristic.

4.3 Graph coloring heuristics
This heuristic converts the LID assignment problem into

a graph coloring problem. First, a split graph is built. For
all paths pi, where pi ∈ Rd, there exists a node npi

in the
split graph. If pi and pj have a split with each other, where
pi, pj ∈ Rd, an edge (npi

, npj
) is added in the split graph.

After all paths pi ∈ Rd have been compared with all other
paths pj ∈ Rd, where i 6= j, a complete split graph is cre-
ated. It can be easily shown that if the split graph can be
colored with k colors, Rd can be realized with k LIDs: the
nodes assigned the same color correspond to the nodes as-
signed the same LID. This conversion allows heuristics that
are designed for graph coloring to be applied to the LID
assignment. If we take the example from Figure 6, the cor-
responding split graph is shown in Figure 8. Node p1 has
an edge with node p2 as they split at s4, node p2 has an
additional edge with p4 as they split at s3. Finally, p3 has
an edge with p4 as they split with each other at s5. This
results in the split graph shown in Figure 8.

p1 p2

p4p3

Figure 8: The split graph for Figure 6

While other graph coloring algorithms can be applied to
color the split graph, we use a simple coloring heuristic in
this paper. In our heuristic, the graph is colored by apply-
ing the colors one-by-one. Each color is applied as follows
(starting from a graph with no color):

• Step 1: select a node to color;

• Step 2: remove all nodes that are adjacent to the node
selected in Step 1;

• Step 3: if there exist other nodes that are not removed
or colored, goto Step 1.

After a color is applied, all nodes that are colored are
removed from the graph. Uncolored nodes (removed in Step
2) are restored to form a reduced graph to be colored in

the next round. The process is repeated until all nodes
are colored. As an example from Figure 8 node p2 could
be chosen first in step 1. In step 2 nodes p1 and p4 are
removed as they share an edge with p2. In step 3 a single
node p3, remains so the steps are repeated starting at step1.
The remaining node p3 is chosen in step 1, with no nodes
remaining, we obtain a configuration C1 = {p2, p3}. C1

is colored and nodes p1 and p4 are restored to the graph.
We repeat the steps again as above and obtain the final
configuration C2 = {p1, p4}. We color C2 and the coloring
is complete.

The heuristic is embedded in the selection of a node to
color in Step 1. We consider two coloring based heuristics in
this paper: the most split path first heuristic (color/L) when
the node in the split graph with the largest nodal degree is
selected (node p2 or node p4 in Figure 8); and the least
split path first heuristic (color/S) when the node in the split
graph with the smallest nodal degree is selected (node p1 or
node p3 in Figure 8). The worst case time complexity for
computing the split graph is O(|Rd|

2|V |). After the graph
is created, the complexity for coloring is O(k × |Rd|

2).

5. PERFORMANCE STUDY
We study the performance of the LID assignment heuris-

tics as well as the performance of different path computation
schemes using various random irregular topologies. We re-
port results on systems with 128, 256, and 512 machines and
16, 32, and 64 switches. Specifically, the configurations in-
clude: 128 machines/16 switches, 256 machines/16 switches,
512 machines/16 switches, 128 machines/32 switches, 256
machines/32 switches, 512 machines/32 switches, 128 ma-
chines/64 switches, 256 machines/64 switches, and 512 ma-
chines/64 switches. We will use the notion X/Y to represent
the system configuration with X machines and Y switches.
For example, 128/16 denotes the configuration with 128 ma-
chines and 16 switches. Each random irregular topology is
generated as follows. First, a random switch topology is gen-
erated using the Georgia Tech Internetwork Topology Models
(GT-ITM) [15]. The average nodal degree is 8 for all three
cases (16, 32, and 64 switches). After the switch topology
is generated, the machines are randomly distributed among
the switches with a uniform probability distribution. Note
that the topologies generated by GT-ITM are not limited
to Internet-like topologies, this package can generate ran-
dom topologies whose connectivity follows many different
probability distribution. For each type of topologies, we
produce 32 different random topologies and report the aver-
age results on the 32 random instances. We have performed
experiments on other random topologies, the results have a
similar trend.

5.1 Performance of LID assignment heuristics
The LID assignment heuristics evaluated include greedy,

split-merge/L where the node used by the largest number
of paths is selected first in the split phase, split-merge/S
where the node used by the smallest number of paths is se-
lected first, color/L that is the most split path first heuristic
(paths that split with the largest number of other paths are
colored first), and color/S that is the least split path first
heuristic (paths that split with the least number of other
paths are colored first). To save space, we will use notion
s-m/L to represent split-merge/L and s-m/S to represent
split-merge/S.

The effectiveness of the heuristics may be affected by the
types of paths used for LID assignment even though our LID
assignment schemes work with any routing schemes includ-
ing multi-path routing and non dead-lock free routing and
do not make any assumption about routing. In the eval-
uation, we consider two Up*/Down routing based schemes
that guarantee to produce deadlock free routes. The first
scheme is called the Shortest Widest scheme. In this scheme,
the routing between each pair of machines is determined as
follows. First, Up*/Down* routing (the root node is ran-
domly selected to build the tree for Up*/Down* routing) is
applied to limit the paths that can be used between each
pair of machines. After that, a shortest-widest heuristic is
used to determine the path between machines. This heuris-
tic determines the paths between machines one by one. At
the beginning, all links are assigned a weight of 1. When a
path is selected, the weight on each link in the path is in-
creased by 1. For a given graph with weights, the shortest-
widest heuristic tries to select the shortest path between two
nodes (among all paths allowed by the Up*/Down* routing).
When there are multiple such paths, the one with the small-
est weight is selected. The second routing scheme is called
the Path Selection scheme. In this scheme, the paths are
determined as follows. First, Up*/Down* routing is applied
to limit the paths that can be used between each pair of ma-
chines. After that, a k-shortest path routing algorithms [13]
is used to find a maximum of 16 shortest paths (following the
Up*/Down* routing rules) between each pair of nodes. Note
that some pairs may not have 16 different shortest paths.
After all paths are computed, a path selection algorithm [7]
is applied to select one path for each pair of machines. The
path selection algorithm follows the most loaded link first
heuristic [7], which repeatedly removing paths that use the
most loaded link in the network until only one path for each
pair remains. It has been shown in [7] that the most loaded
link first heuristic is effective in producing load balancing
paths. Both the shortest widest scheme and the path selec-
tion scheme compute one path for each pair of machines.

Table 1 depicts the performance of the heuristics when
they are applied to the paths computed using the shortest
widest scheme. The table shows the average of the total
number of LIDs assigned to all machines. Each number is
the average of 32 random instances. In computing the LIDs
allocated for each node, LID mask control is taken into con-
sideration: each node is assigned a power of 2 LIDs. We ob-
tain the following observations from the experiments. First,
the performance differences among the heuristics for the
16-switch configurations are very small. The performance
difference between the best and the worst heuristics is less
than 1%. The fact that five different heuristics, all comput-
ing minimal configuration sets for a routing in very different
ways, yield similar performance suggests that for the paths
computed by the shortest-widest scheme on networks with
a small number of switches, other LID assignment schemes
will probably have similar performance. Second, as the sub-
net becomes larger, the performance difference also becomes
larger, even though the absolution difference is still small
(less than 10%). For example, on the 64-switch configura-
tions the performance differences between the best and the
worst heuristics are 8.4% for 128 machines, 5.5% for 256 ma-
chines, and 4.9% for 512 machines. These results indicate
that as the network becomes larger, the impact of selecting
a good LID assignment heuristic becomes more significant.

conf. greedy s-m/S s-m/L color/S color/L
128/16 478.7 478.9 477.3 479.3 476.4
256/16 1044.3 1045.4 1041.5 1047.7 1039.2
512/16 2218.3 2220.1 2211.8 2220.4 2208.5

128/32 451.5 453.9 452.9 461.3 443.0
256/32 1078.8 1084.7 1079.0 1100.0 1062.4
512/32 2428.7 2440.2 2425.8 2461.0 2392.1

128/64 422.8 427.7 427.0 441.5 407.4
256/64 1015.5 1022.2 1019.3 1044.6 990.6
512/64 2325.8 2338.4 2330.1 2385.1 2274.4

Table 1: The average of the total number of LIDs
allocated (shortest widest)

Among the proposed heuristics, the split-merge approach
has a very similar performance to the greedy algorithm.
Thus, the higher complexity in the split-merge approach
cannot be justified. The most split path first heuristic (color/L)
is consistently better than all other heuristics while the least
split path first (color/S) is consistently worse than other
heuristics. This indicates that color/L is effective for this
problem while color/S is not. The trend is also observed
when the path selection scheme is used to compute paths.

Table 2 shows the results for the paths computed by the
path selection scheme. Each number in the table is the
average (over 32 random instances) of the total number of
LIDs allocated to all machines for each configuration. There
are several interesting observations. First, the performance
differences among different heuristics are much larger than
the cases with the shortest widest scheme. On the 16-switch
configurations, the performance differences between the best
and the worst heuristics are 24.7% for 128 machines, 24.8%
for 256 machines, and 23.3% for 512 machines. For larger
networks, the differences are more significant. On the 64-
switch configurations, the performance differences are 30.1%
for 128 machines, 30.0% for 256 machines, and 27.5% for 512
machines. This indicates that for the paths computed with
the path selection scheme, which are more diverse than those
computed by the shortest-widest routing, a good LID as-
signment heuristic significantly reduces the number of LIDs
needed. The good news is that color/L consistently achieves
the best performance in all cases, which indicates that this is
a robust heuristic that performs well for different situations.
Second, comparing the results for paths computed by the
shortest widest routing (Table 1) with those computed by
path selection (Table 2), we can see that when the number
of machines is small (128 machines with 32 and 64 switches),
the paths computed by the shortest widest scheme requires
less LIDs to realize than the paths computed by the path se-
lection scheme assuming the same LID assignment heuristic.
However, when the number of machines is larger (256 and
512), the paths computed from the shortest-widest scheme
requires more LIDs. This shows that routing can have a
significant impact on the LID requirement.

In summary, depending on the routing method, LID as-
signment heuristics can make a significant difference in the
number of LIDs required. The color/L heuristic consistently
achieves high performance in different situations. The re-
sults also indicate that routing has a significant impact on
the LID requirement, which argues for the separation of
routing and LID assignment.

conf. greedy s-m/S s-m/L color/S color/L
128/16 520.9 524.2 514.0 581.2 466.0
256/16 951.3 952.7 935.0 1062.6 851.2
512/16 1829.2 1852.8 1823.0 2038.7 1653.2

128/32 540.3 546.7 539.3 611.3 466.0
256/32 1006.7 1018.2 1002.2 1130.8 887.2
512/32 1904.0 1920.3 1895.7 2115.8 1688.7

128/64 528.0 541.1 530.5 599.4 460.5
256/64 1054.9 1092.9 1068.1 1197.9 921.4
512/64 2019.9 2075.4 2043.4 2278.6 1786.6

Table 2: The average of the total number of LIDs
allocated (path selection)

5.2 Overall performance of various path com-
putation methods

We compare a new path computation scheme that sepa-
rates routing from LID assignment with existing path com-
putation schemes for InfiniBand including destination re-
naming [5] and fully explicit routing [9]. The new path
computation scheme, called separate, uses the path selec-
tion scheme described in the previous subsection for routing
and color/L for LID assignment. The fully explicit routing
[9] selects paths such that one LID is sufficient to realize all
paths to a destination. Hence, at the expense of the load
balancing property of the paths computed, this method re-
quires the least number of LIDs among all path computation
schemes. The destination renaming [5] scheme uses a short-
est path algorithm to select paths that follow Up*/Down*
routing rules. It assigns LIDs as the paths are computed.
Both destination renaming and fully explicit routing are cur-
rently used [3]. All three schemes compute one path for each
pair of machines.

We evaluate the performance of the path computation
methods with two parameters: (1) the number of LIDs re-
quired, and (2) the load balancing property of the paths. We
measure the load balancing property as follows. We assume
that the traffic between each pair of machines is the same
and measure the maximum link load under such a traffic
condition. In computing the maximum link load, we nor-
malize the amount of data that each machine sends to all
other machines to be 1. Under our assumption, the load of a
link is proportional to the number of paths using that link.
A good load balance routing should distribute traffic among
all possible links and should have small maximum link load
values in the evaluation.

Table 3 shows the results for the three on routing and LID
assignment schemes different configurations. The results are
the average of 32 random instances for each configuration.
As can be seen from the table, the fully explicit routing uses
one LID for each machine, and thus, it requires a smallest
number of LIDs. However, it puts significant constraints on
the paths that can be used and the load balancing prop-
erty is the worst among the three schemes: the maximum
link load of fully explicit routing is much higher than other
schemes. For example, on 128/16, the maximum link load
with fully explicit routing is 17% higher than that with Sep-
arate; on 512/64, it is 19% higher. Destination renaming,
which is more comparable to our proposed new scheme, has
a better load balancing property than fully explicit routing.
Our proposed scheme, Separate, has the best load balancing
property in all cases, which can be attributed to the effec-
tiveness of the path selection algorithm [7]. Moreover, for

conf. Fully Explicit Renaming Separate
load LIDs load LIDs load LIDs

128/16 4.34 128 3.84 477.8 3.70 466.0
256/16 8.65 256 7.52 1044.9 7.35 851.2
512/16 17.95 512 15.46 2213.3 14.91 1653.2

128/32 3.29 128 3.01 448.1 2.75 466.0
256/32 6.89 256 6.26 1079.2 5.8 887.2
512/32 14.71 512 13.24 2422.8 12.37 1688.7

128/64 3.29 128 3.01 420.0 2.75 460.5
256/64 6.15 256 5.72 1011.8 5.13 921.4
512/64 11.36 512 10.55 2323.4 9.54 1786.6

Table 3: The maximum link load and the number of
LIDs required

reasonably large networks (256 and 512 machines), separate
also uses a smaller number of LIDs than destination renam-
ing. For example, for the 512 machines/64 switches case,
in comparison to destination renaming, the separate scheme
reduces the maximum link load by 10.6% while decreasing
the number of LIDs needed by 25.4%. This indicates that
separate has much better overall performance than destina-
tion renaming: it reduces the maximum link load and uses a
smaller number of LIDs simultaneously. This demonstrates
the effectiveness of separating routing from LID assignment,
as well as the effectiveness of the color/L LID assignment
heuristic.

6. CONCLUSION
In this paper, we propose to separate routing from LID

assignment in the path computation in InfiniBand networks.
We prove that the problem of finding the smallest number
of LIDs for realizing a routing is NP-complete. We develop
a set of LID assignment heuristics and show that color/L
is consistently the most effective heuristic among all pro-
posed schemes in different situations. Depending on the
routing method, color/L can be very effective in reducing
the number of LIDs needed. We also demonstrate that the
techniques developed in this paper can be used with the
existing schemes that find dead-lock free and deterministic
paths with good load balancing properties to obtain effi-
cient path computation schemes for InfiniBand networks.
We must note that our proposed path computation scheme,
which separates routing from LID assignment, has a higher
computation complexity than existing ones. Hence, it is
more suitable to be used to compute the initial network con-
figuration than to deal with incremental network changes.

Acknowledgement
This work is supported in part by National Science Founda-
tion (NSF) grants: CCF-0342540, CCF-0541096, and CCF-
0551555.

7. REFERENCES
[1] A. Bermudez, R. Casado, F. J. Quiles, T.M. Pinkston,

and J. Duato, “Evaluation of a Subnet Management
Mechanism for InfiniBand Networks.” Proc. of the
2003 IEEE International Conference on Parallel
Processing (ICPP), pages 117–124, Oct. 2003.

[2] A. Bermudez, R. Casado, F. J. Quiles, and J. Duato,
“Use of Provisional Routes to Speed-up Change
Assimilation in InfiniBand Netrworks.” Proc. of the

2004 IEEE International Workshop on
Communication Architecture for Clusters (CAC’04),
page 186, April 2004.

[3] A. Bermudez, R. Casado, F. J. Quiles, and J. Duato,
“Fast Routing Computation on InfiniBand Networks.”
IEEE Trans. on Parallel and Distributed Systems,
17(3):215-226, March 2006.

[4] M.Koibuchi, A. Funahashi, A. Jouraku, and H.
Amano, “L-turn Routing: An Adaptive Routing in
Irregular Networks.” Proc. of the 2001 International
Conference on Parallel Processing (ICPP), pages
383-392, Sept. 2001.

[5] P. Lopez, J. Flich, and J. Duato, “Deadlock-Free
Routing in InfiniBand through Destination
Renaming.” Proc. of the 2001 International
Conference on Parallel Processing (ICPP), pages
427-434, Sept. 2001.

[6] InfiniBandTM Trade Association, InfiniBand TM

Architecture Specification, Release 1.2, October 2004.

[7] M. Koibuchi, A. Jouraku and H. Amano, “Path
Selection Algorithm: The Stretegy for Designing
Deterministic Routing from Alternative Paths.”
Parallel Computing, 31(1):117-130, 2005.

[8] J. C. Sancho, A. Robles, and J. Duato, “A New
Methodology to Compute Deadlock-Free Routing
Tables for Irregular Networks.” Proc. of the 4th
Workshop on Communication Architecture and
Applications for Network-Based Parallel Computing,
Jan. 2000.

[9] J. C. Sancho, A. Robles, and J. Duato, “Effective
Strategy to Computing Forwarding Tables for
InfiniBand Networks.” Proc. of the International
Conference on Parallel Processing (ICPP), pages
48-57, Sept. 2001.

[10] J. C. Sancho, A. Robles, and J. Duato, “Effective
Methodology for Deadlock-Free Minimal Routing in
InfiniBand Networks.” Proc. of the 2002 International
Conference on Parallel Processing (ICPP), pages
409-418, 2002.

[11] M. D. Schroeder, A. D. Birrell, M. Burrow, H.
Murray, R. M. Needham, T. L. Rodeheffer, “Autonet:
a High-speed Self-configuring Local Area Network
Using Point-to-Point Links.” IEEE JSAC, 9(8):
1318-1335, 1991.

[12] Top 500 supercomputer sites. http://www.top500.org

[13] J. Y. Yen. “Finding the k shortest loopless paths in a
network.” Management Science, 17(11), July 1971.

[14] X. Yuan, W. Nienaber, Z. Duan, and R. Melhem,
“Oblivious Routing for Fat-Tree Based System Area
Networks with Uncertain Traffic Demands.” ACM
Sigmetrics, pages 337-348, June 2007.

[15] E. W. Zegura, K. Calvert and S. Bhattacharjee, “How
to Model an Internetwork.” IEEE Infocom ’96, pages
594-602, April 1996.

