
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2003; 00:1–25 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

Branch elimination by

condition merging‡

William C. Kreahling1, David Whalley1, Mark W. Bailey2, Xin Yuan1,
Gang-Ryung Uh3, Robert van Engelen1

1 Florida State University, Tallahassee, FL 32306 2 Hamilton College, Clinton, NY 13323
3 Boise State University, Boise, ID 83725

SUMMARY

Conditional branches are expensive. Branches require a significant percentage of
execution cycles since they occur frequently and cause pipeline flushes when
mispredicted. In addition, branches result in forks in the control flow, which can prevent
other code-improving transformations from being applied. In this paper we describe
profile-based techniques for replacing the execution of a set of two or more branches
with a single branch on a conventional scalar processor. These sets of branches can
include tests of multiple variables. For instance, the test if (p1 != 0 && p2 != 0), which
is testing for NULL pointers, can be replaced with if (p1 & p2 != 0). Program profiling is
performed to target condition merging along frequently executed paths. The results show
that eliminating branches by merging conditions can significantly reduce the number of
conditional branches executed in non-numerical applications.

key words: compiler, condition merging, profiling, code duplication

INTRODUCTION

Conditional branches occur frequently in programs, particularly in non-numerical applications.
Branches are an impediment to improving performance since they consume a significant
percentage of execution cycles, cause pipeline flushes when mispredicted, and can inhibit
the application of other code-improving transformations. Techniques to reduce the number
of executed branches or remove branches in the control flow have the potential for significantly
improving performance.

Contract/grant sponsor: National Science Foundation; contract/grant number: CCR-9904943, EIA-0072043,
CCR-0208892, CCR-0105422, CCR-0312493
Contract/grant sponsor: Department Of Energy; contract/grant number: DEFG02-02ER25543
Contract/grant sponsor: National Aeronautics and Space Administration, EPSCoR; contract/grant number: -
‡This is an preprint accepted for publication in Software: Practice and Experience, c©John Wiley & Sons Ltd

Copyright c© 2003 John Wiley & Sons, Ltd.

2 W.C. KREAHLING, ET AL.

cond a &&
cond b &&
cond c

(a) Before

1
cond a

72

F
T

2

T

4

1
cond a

T
F

2

(c) Improved(b) After

5
cond c

96

F
T

3
cond b

84

F
T

T

1
cond a

72

T
F

lose paths
(original code)F

2

4

5
cond c

6 9

T
F

4

T

cond a &&
cond b &&
cond c

F

win path

6

win path

6
3

cond b
3

cond b

9

4

breakeven
path

F

88

F
paths
lose

1−>2−>3−>4−>5−>6
frequent path

7

Figure 1. Merging Three Conditions

One approach to reducing the cost of branches is to attempt to merge a set of conditions
together. Consider Figure 1(a), which shows conditions being tested in basic blocks 1, 3,
and 5. The wider transitions between blocks shown in figures in this paper represent the more
frequently executed path, which occurs in Figure 1 when conditions a, b, and c are all satisfied.
Figure 1(b) depicts the three conditions being merged together. If the merged condition is
true, then the original conditions need not be tested. Note merging conditions results in the
elimination of both comparison and branch instructions∗. The elimination of the forks in the
control flow between blocks 2, 4, and 6 may enable additional code-improving transformations
to be performed. If the merged condition is not satisfied, then the original conditions are tested.
Figure 1(c) shows that branches can become redundant after merging conditions. In this case,
condition c must be false if (a && b && c) is false and (a && b) is true. Thus, the branch in
block 5 can be replaced by an unconditional transition to block 9. We call this the breakeven

path since the same number of branches will be executed in this path as were executed in the
original path. We only apply the condition merging transformation when we estimate that the
total instructions executed will be decreased.
In this paper we describe techniques to replace the execution of a set of two or more

branches with a single branch. Figure 2 presents an overview of the compilation process for
merging conditions. A first compilation pass produces an executable file that is instrumented

∗Blocks 2 and 3 in Figure 1(a) could have been represented as a single block. Throughout the paper we
represent basic blocks containing a condition as having no other instructions besides a comparison and a
conditional branch so the examples may be more easily illustrated.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

CONDITION MERGING 3

condition mergedsecond

program
C source first trainingprofiling path

test
input dataexecutablecompilationdata

compilation

profile

input dataexecutable

Figure 2. Compilation Process for Merging Conditions

to collect path profiling information. A second compilation pass uses the profile data to merge
conditions in the frequently executed paths. The C front-end used in this research is lcc [7]
and the back-end used is vpo [3] targeted to the SPARC architecture. For our test programs
these techniques on average decrease the number of branches by 15.81% (0.82% to 59.62%),
the number of instructions by 5.74% (0.14% to 40.34%), and the execution time by 3.43%
(-4.15% to 25.59%). These improvements were automatically obtained by the compiler on a
conventional scalar processor.

RELATED WORK

There are numerous techniques used to decrease the number of conditional branches executed.
Loop unrolling has long been used to reduce the number of times the conditional branch
associated with a loop termination condition is executed [6]. Loop unswitching moves a
conditional branch with a loop-invariant condition before the loop and duplicates the loop in
each of the two destinations of the branch [1]. Superoptimizers have been used to find a bounded
sequence of instructions that have the same effect as a conditional branch [8]. Conditional
branches have been avoided by using static analysis and code duplication [10, 4]. Conditional
branches have been coalesced together into an indirect jump from a jump table [15]. Sequences
of branches have been reordered to allow the sequence to be exited earlier, which reduces the
number of branches executed [17, 18]. A technique, which shares some similarities to the work
described in this paper, applies conjunctions to selection conditions for records in database
queries [11]. However these conjunctions were applied manually as opposed to our optimization
which is applied automatically by a compiler. Finally, there has been recent work on eliminating
branches using architectural features designed to increase ILP (instruction level parallelism).
If conversion uses predicated execution to eliminate branches by squashing the result of an
instruction when a predicate is not satisfied [9]. Another technique eliminates branches by
performing if-conversion as if the machine supported predicated execution, and then applies
reverse-if conversion to return the code to an acyclic control flow representation [16]. This
technique shares some similarities to ours, however our approach differs in several aspects,
including that we can merge conditions involving multiple variables. A technique called control
CPR (critical path reduction) has been used to merge branches in frequent paths by performing
comparisons that set predicate bits in parallel and testing multiple predicates in a single

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

4 W.C. KREAHLING, ET AL.

v > 5 v > 5
11

T F

52

F

6

3
v > 2

T
4

2
T F

4

5

6

(a) Before (b) After

Figure 3. Merging Logically Redundant Conditions

bypass branch [12, 13]. Control CPR not only reduces the number of executed branches, but
also enables other code-improving transformations. Among the techniques mentioned, control
CPR is the most similar to the work described in this paper since both approaches merge
conditions by using path-based profile data. However, our approach differs in several aspects,
including that it can be used on a conventional scalar processor without ILP architectural
support.

MERGING CONDITIONS THAT INVOLVE A SINGLE VARIABLE

In this section, we describe techniques to merge a set of conditions where each branch compares
the same variable to invariant values (e.g., constants). In each case, the variable’s value must
not be unpredictably updated between the branches in the path.

Eliminating Logically Redundant Branches

Sometimes the conditions associated with two or more branches are logically correlated. In
other words, one branch result (taken or fall through) may imply the result of another. Consider
Figure 3(a). If the condition for the branch in block 1 is satisfied, then v > 5. If v is not affected
between the execution of the two branches, then v > 2 is guaranteed to be satisfied and the
branch in block 3 can be deleted, as shown in Figure 3(b). Other techniques using static
analysis and code duplication could also eliminate the branch in block 3 [10, 4].
A path-based approach using profile data can be used to merge conditions that could not

be merged using static analysis alone. Consider the flow graph in Figure 4(a). Satisfying the
condition in block 1 will not guarantee the result of the branch in block 3. However, when the
condition of the branch in block 3 is satisfied, then the condition in block 1 is guaranteed to

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

CONDITION MERGING 5

(c) Improved

T
F

F

6

5

v > 2
1

T

2

2

4

v > 5
0

(a) Before Merging

T

T
F

F

5

64

v > 5
3

2

v > 2
1

2

4

0
v > 5

T

(b) After Merging

T
F

F

F

4 6

T

v > 5
3

2 5

v > 2
1

Figure 4. Merging Other Logically Redundant Conditions

be also satisfied. If the path 1 → 2 → 3 → 4 is the frequent path, then the second branch
testing the condition v > 5 can be tested first, as shown in Figure 4(b). When the path
0→ 1→ 2→ 3 is taken, the condition of the branch in block 3 is guaranteed to be false since
the same condition has already been shown to be false in block 0.
Dynamo, a dynamic optimization system [2], could also merge conditions like the ones

depicted in Figure 4(a). However, in many cases, our technique is able to further improve the
code by restructuring the flow graph. For example, the branch in block 3 is eliminated, as
shown in Figure 4(c), since the test is now redundant.
Performing the code-improving transformation results in one less branch executed when path

0 → 2 → 4 is taken, the same number of branches executed when the path 0 → 1 → 2 → 6
is taken, and one additional branch executed when the path 0 → 1 → 5 is taken. The actual
improvement would depend on the frequency that each path is taken. However, a benefit can
be obtained when the win path 0 → 2 → 4, which reduces the number of branches, is taken
more frequently than the lose path 0→ 1→ 5, which increases the number of branches. Thus,
improvements may be obtained even when the break-even path 0 → 1 → 2 → 6 is the most
frequently executed path.

Merging Not Equal Tests Using Range Checks

A single variable is often checked to determine if it is equal to one of a set of constants.
For example, Figure 5(a) shows the variable c being compared to three different character
constants. Figure 5(b) depicts the flow graph representing these tests. It is often the case that
a variable involved in such tests is not equal to any of the constants [17, 18]. Profile data

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

6 W.C. KREAHLING, ET AL.

F

Y
T

c != 9

Z

X

F
T

c > 10

Z

(b) Before (c) After

T F

W
F

c != −1

T
c != 10

if (c == EOF)
 W;
else if (c == ’\n’)
 X;
else if (c == ’\t’)
 Y;
else
 Z;

(a) Source Code

T F

W
F

c != −1

T
c != 10

X
F

Y
T

c != 9

Z

Figure 5. Merging Not Equal Tests Using Range Checks

is collected to determine not only the paths that are frequent, but also the reason that a
particular transition was taken. For instance, when a variable is involved in a test to see if it
is equal or not equal to a constant and the not equal transition is taken, then profile data is
collected to determine if the variable was greater than or less than the constant. The compiler
uses this profile information during the second compilation pass to determine the most likely
range of values, which a particular variable may have, when it is not equal to any of the
specified constants. If this range is greater than or less than all of the specified constants, then
the set of branches can be replaced with a single branch. Figure 5(c) shows that the three
branches testing the variable c can be bypassed by checking if c is larger than the largest
specified constant. Note that when the merged condition is not satisfied, the original set of
branches must be tested since the variable could still be equal to any of the specified constants.
By performing condition merging on frequent paths, we can merge conditions separated by
other intervening branches, which is not possible using a non-path based approach [17, 18].

Merging Bit Tests

Different bits in a single variable are sometimes tested to see if they are clear or set. Figure 6(a)
shows two different bits in the same variable being tested to see if they are clear. If the profile
data indicates that one combination of bits is very likely, then that combination of bits can
be tested in a single comparison by changing the constant being compared, as depicted in
Figure 6(b). When the merged condition is not satisfied, both bits cannot be clear. If we reach
block 1 from the block containing the merged condition, then we know that satisfying both
conditions cannot occur since the merged condition failed. If we reach block 2 from block 1,
then we know that the first condition is true. Thus, the second condition must be false and the
branch in block 3 can be eliminated. Table I shows different sequences of SPARC instructions
represented as RTLs (register transfer lists) that can be used to test a set of bits. The first
portion of the table shows a general sequence of three instructions that can be used to test
if a set of bits has a specific combination of bits set. r[v] is a register containing the value

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

CONDITION MERGING 7

1

T
F

5

4

2

3
v&4==0

T
F

6

(a) Before (b) After

v&5==0

T

6

4

2

2 5

1
v&1==0

T
F

F
v&1==0

Figure 6. Merging Bit Tests

Table I. SPARC Code Generation
Strategies for Merged Bit Tests

General Bit Test
r[t]=r[v]&mask; # bitwise AND
IC=r[t]?desired_value; # comparison
PC=IC!=0,off_trace; # branch

Testing If Multiple Bits Are Clear
IC=(r[v]&mask})?0; # bitwise AND comparison
PC=IC!=0,off_trace; # branch

Testing If Multiple Bits Are Set
r[t]=mask; # loop-invariant assignment
IC=(r[t]&~r[v])?0; # bitwise ANDNOT comparison
PC=IC!=0,off_trace; # branch

of the variable. r[t] is a temporary. Mask is a constant that indicates the set of bits to be
tested. Desired value is the value of the bits that will result in the frequent path being taken.
The branch is taken when the set of bits in the variable does not have the desired value.
The second portion of the table shows that the sequence can be reduced to two instructions
when the desired value is to have all of the bits clear. All integer ALU operations requiring a
single cycle on the SPARC also have the option of performing a comparison to zero to set the
integer condition codes. The third portion depicts the sequence of instructions we used when
the desired value has all of the specified bits in the mask set. The SPARC has ANDNOT and
ORNOT instructions that perform a bitwise NOT of the second operand before performing
the logical operation. If the variable has all of the desired bits set, then the bitwise NOT will
cause all of the desired bits to be clear. Hence, the ANDNOT operation allows a comparison

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

8 W.C. KREAHLING, ET AL.

r[5] = M[flag];r[5] = M[flag];
r[5] = r[5] | 4;
r[5] = r[5] | 16;
M[flag] = r[5];
r[5] = M[flag];
r[5] = r[5] & ~2;
r[5] = r[5] & ~8;
M[flag] = r[5];

r[5] = r[5] | 20;
M[flag] = r[5];
r[5] = M[flag];
r[5] = r[5] & ~2;
r[5] = r[5] & ~8;
M[flag] = r[5];

(a) Original Instructions
(b) After Merging

Assignments Setting Bits

M[flag] = r[5];
r[5] = r[5] & ~10;
r[5] = r[5] | 20;
r[5] = M[flag];

M[flag] = r[5];
r[5] = r[5] & ~10;
r[5] = M[flag];
M[flag] = r[5];
r[5] = r[5] | 20;
r[5] = M[flag];

M[flag] = r[5];
r[5] = r[5] & ~10;
M[flag] = r[5];
r[5] = r[5] | 20;
r[5] = M[flag];

(c) After Merging
Assignments Clearing Bits Redundant Loads

(d) After Eliminating
Redundant Stores

(e) After Eliminating

Figure 7. Other Benefits from Reducing Scalars to Single Bits

with zero. The first instruction assigning the mask value is loop invariant and the cost can be
reduced by performing loop-invariant code motion if the branch is inside a loop and a register
is available to hold the value of the mask.
Integer flags are commonly used in many applications. In effect, such variables are used as

booleans, which requires only a single bit to be represented. Our system automatically reduces
integer global and local scalar variables to bits within a global or local flags variable when such
a scalar is only assigned constant values and is only dereferenced for ‘ = 0’ and ‘ 6= 0’ tests.
We accomplish the reduction of integer scalars to bits in a flag variable by examining and

updating the lcc intermediate code files comprising the program. The assignment of nonzero
constants to such a variable is replaced by a bitwise OR operation that sets a specific bit of a
flag variable. The assignment of zero to such a variable is replaced by a bitwise AND operation
that clears a specific bit of a flag variable. The ‘ = 0’ and ‘ 6= 0’ tests of the scalar variables
are replaced by bitwise AND tests of the appropriate bit of the flag variable.
There are several advantages to reducing integer scalar variables to bits within a flag variable

besides being able to merge conditions performing bit tests. Consider the SPARC instructions
shown in Figure 7(a). Multiple assignments that set specific bits are merged by assigning
the bitwise OR of the constants, as shown in Figure 7(b). Likewise, Figure 7(c) depicts that
multiple assignments that clear specific bits are also merged. Redundant loads of the same flag
variable are eliminated, as illustrated in Figure 7(d). Finally, Figure 7(e) shows that redundant
stores are also eliminated. Note that the elimination of redundant loads and stores would not
be possible if separate integer scalar variables were used. Performance conscious programmers
often employ such techniques by hand, which is a tedious and error prone task. We are not
aware of any prior work that automates this approach.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

CONDITION MERGING 9

(b) After(a) Before

v1 == 0

4

3
v2 == 0

2 5

F

F

6

T

T

6

2 5

1
v1 == 0

4

2

v1|v2==0

F
T

FT

1

Figure 8. Merging Conditions That Test If Different Variables Are Equal to Zero

MERGING CONDITIONS THAT INVOLVE MULTIPLE VARIABLES

The previous section described techniques for merging sets of conditions that compare a single
variable to invariant values. In this section we describe techniques for merging sets of conditions
that involve multiple variables.

Merging into a Single Equivalent Condition

We use logical operations to efficiently merge conditions that compare multiple variables to
0 or −1 into a single equivalent condition. Consider the flow graph shown in Figure 8(a).
The frequent path checks if the two variables are equal to zero. Figure 8(b) depicts the two
conditions being merged together using a bitwise OR operation. Only when both variables are
equal to zero will the result of the OR operation be zero. Again, if the merged condition is not
satisfied, then testing the condition v2 = 0 is unnecessary since it cannot be true.
Unlike the methods presented in the previous section, the number of instructions required

to merge conditions involving multiple variables is proportional to the number of different
variables being compared. Figure 9 shows the general code generation strategy we used for
merging such a set of conditions. r[1] . . . r[n] represent the registers containing the values of n

different variables. r[t] represents a register containing the temporary results. When merging
conditions comparing n multiple variables, n−1 logical operations and a single branch replace
2n instructions (n pairs of comparisons and branches).
Table II shows how sets of conditions comparing multiple variables (v1 . . . vn) to 0 and −1

can be merged into a single condition. Column one gives the rule number, column two depicts
the original condition, column three depicts the merged condition, and column four represents
the percentage of time the rule was selected during testing compared to the other rules shown in

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

10 W.C. KREAHLING, ET AL.

r[t] = r[1] | r[2];

r[t] = r[t] | r[3];

...

IC = (r[t] | r[n]) ? 0;

PC = IC != 0, <off-trace target>;

Figure 9. Code Generated for the Merged Condition That Checks If n Variables Are Equal to Zero

Table II. Rules for Merging Conditions Comparing Multiple
Variables into a Single Equivalent Condition

Rule Original Conditions Merged Condition % Applied

1 v1 = 0 &&..&& vn = 0 (v1 |..| vn) = 0 42.7%

2 v1 = 0 &&..&& vn = -1 (v1 |..| ∼ vn) = 0 0.0%

3 v1 < 0 &&..&& vn < 0 (v1 &..& vn) < 0 0.0%

4 v1 ≥ 0 &&..&& vn ≥ 0 (v1 |..| vn) ≥ 0 4.5%

5 v1 < 0 &&..&& vn ≥ 0 (v1 &..& ∼ vn) < 0 0.9%

6 v1 ≥ 0 &&..&& vn < 0 (v1 |..| ∼ vn) ≥ 0 0.0%

Table II and Table III. Rule 1 has been illustrated in Figures 8 and 9. Rule 2 uses the SPARC
ORNOT instruction to perform a bitwise NOT on an operand before performing a bitwise
OR operation. A word containing the value −1 has all of its bits set in a two’s complement
representation. Thus, if the operand is a −1, then the result of the bitwise NOT would be 0
and at that point the first rule can be used. The merged condition in rule 3 performs a bitwise
AND operation on the variables. A negative value in two’s complement representation has its
most significant bit set. Only if the most significant bit is set in all of the variables will the
most significant bit be set in the result of the bitwise AND operation. If the most significant
bit is set in the result, then the result value will be negative. The merged condition in rule 4
performs a bitwise OR operation on the variables. A nonnegative value in a two’s complement
representation has its most significant bit clear. Only if the most significant bit is clear in all
the variables will the most significant bit be clear in the result of the bitwise OR operation.
The last two rules perform a bitwise NOT on an operand, which flips the most significant bit
along with the other bits in the value. This allows < and >= tests to be merged together.
Notice that > 0 and <= 0 tests are not listed in the table. A > 0 test would have to

determine that both the most significant bit is clear and that one or more of the other bits are
set. These types of tests cannot be efficiently performed using a single logical operation on a
conventional scalar processor.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

CONDITION MERGING 11

(a) Original Code (b) After Loop Unrolling

for (i = 0; i < 10000; i++) for (i = 0; i < 10000; i += 2){

if (a[i] < 0) if (a[i] < 0)

x; x;

if (a[i+1] < 0)

x;

}

Figure 10. Increasing Merging Opportunities by Unrolling Loops

Additional opportunities for condition merging become available when sets of conditions,
which cross loop boundaries, are considered. It would appear that in Figure 10(a) there is no
opportunity for merging conditions. However, Figure 10(b) depicts that after loop unrolling
there are multiple branches that use the same relational operator. Our system merges sets of
conditions across loop iterations. In order to simplify the analysis, we only merge conditions
that span two consecutive iterations of a loop.

Merging into a Sufficient Condition

Our system also uses logical operations to efficiently merge conditions, which compare multiple
variables, into a single sufficient condition. In other words, the success of the merged condition
will imply the success of the original conditions. However, the failure of the merged condition
does not imply the original conditions were false. Table III shows rules for merging conditions
containing multiple variables into a single sufficient condition. The columns in this table similar
information to the columns in table II.
There were no 6= 0 tests listed in Table II. Yet tests to determine if a variable is not-equal to

zero occur frequently in programs. We can determine if two or more variables are guaranteed
to be not equal to zero by performing a bitwise AND operation on the variables and checking
if the result does not equal to zero, as shown in rule 7 of Table III. Note that failure of the
merged condition does not imply that the variables are all not equal to zero.
One may ask how often such conditions can be successfully merged in practice. Consider the

code segment:

if (p1 != NULL && p2 != NULL)

where two pointer variables, p1 and p2, are tested to see if they are both non-NULL. In most
applications, a pointer variable is only NULL in an exceptional case (e.g., end of a linked list).
It is extremely likely that two non-NULL pointer values will have one or more corresponding
bits both set due to address locality. Figure 11 shows how two or more conditions checking if

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

12 W.C. KREAHLING, ET AL.

Table III. Rules for Merging Conditions Comparing Multiple
Variables into a Single Sufficient Condition

Rule Original Conditions Merged Condition % Applied

7 v1 6= 0 &&..&& vn 6= 0 (v1 &..& vn) 6= 0 18.2%

8 v1 6= c1 &&..&& vn 6= cn (v1 &..& vn) & ∼(c1 |..| cn) 6= 0 15.5%

9 v1 6= c1 &&..&& vn 6= cn

∼(v1 |..| vn) & (c1 |..| cn) 6= 0 16.4%

10 v1 < c1 &&..&& vn < cn (v1 |..| vn) u < min(c1 , .., cn) 1.8%

F

1
v1 != 0

252

1
v1 != 0

Before After

v1&v2!=0

T FF

5

64

FT

3
v2 != 0

64

FT

v2 != 0
3 4 2

T

Figure 11. Merging Conditions That Check If Different Variables Are Not Equal to Zero

multiple variables are not equal to zero can be merged. If the merged condition is not satisfied,
then the entire original set of branches still needs to be tested.

We are also able to merge conditions that check if multiple variables are all not equal to a
specified list of constants. One method we used is to check if any bits set in all of the variables
are always clear in all of the constants. Rule 8 of Table III depicts how this is accomplished,
where c1 . . . cn are constants. A bitwise AND operation is performed on all of the variables to
determine which bits are set in all of these variables. The complement of the bitwise OR of
the constants is taken, which results in the bits being set that are clear in all of the constants.
Note that determining which bits in the constants are always clear is determined at compile
time. If any bits set in all of the variables are clear in all of the constants, then it is known
that all of the variables will not be equal to all of the constants. Rule 8 in Table III is also used

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

CONDITION MERGING 13

(v1&..&vn)& ∼ (c1|..|cn) 6= 0
(v1&..&vn)& ∼ (0|..|0) 6= 0
(v1&..&vn)& ∼ (0) 6= 0

(v1&..&vn)&0xFFFFFFFF 6= 0
(v1&..&vn) 6= 0

Figure 12. Rule 7 is Implied by Rule 8

(v1&..&v1)& ∼ (c1|..|cn) 6= 0
v1& ∼ (c1|..|cn) 6= 0

Figure 13. Using Rule 8 Efficiently with a Single Variable

when the constants are all zero. Figure 12 shows how the merged condition in rule 8 simplifies
to the merged condition in rule 7 when c1 . . . cn are all zero.
Another method to determine if multiple variables are not equal to a list of constants is to

check if one or more bits, which are clear in all of the variables, are set in all of the constants.
Merging conditions using this method is shown in rule 9 of Table III. The decision to use rule
8 or 9 is determined by checking the success of these rules during the profile run. Given an
equal likelihood that either rule could be successfully applied, rule 8 is preferable since rule 9
requires an extra instruction to perform the bitwise NOT operation, which is accomplished at
compile time for rule 8.
We found that rules 8 or 9 can be used when a single variable was checked to see if it was not

equal to a set of constants. For instance, Figure 13 illustrates how rule 8 is simplified to only
require a single bitwise AND operation to set the condition codes when only a single variable
was involved. Thus, both the range checking method illustrated in Figure 5 and the bit testing
methods using rules 8 or 9 are checked to estimate which would be most profitable.
We are also able to merge conditions checking if multiple variables are less than (or less than

or equal to) constants. Rule 10 in Table III depicts how this is accomplished, where c1 . . . cn

must be positive constants and the u < in the merged condition represents an unsigned less
than comparison. If the result of the bitwise OR on the variables is less than the minimum
constant, then the original conditions have to be satisfied. The unsigned less than operator
is necessary since one of the variables could be negative and the result of the bitwise OR
operation would be treated as a negative value if a signed less than operation is used.
Our system merges conditions comparing multiple variables to values that are not constants.

Consider the original loop and unrolled loop shown in Figure 14(a) and Figure 14(b),
respectively. It would appear there is no opportunity for merging conditions. However, x is
loop invariant. Thus, bits that are set in both a[i] and a[i + 1] can be ANDed with ∼ x to
determine if the array elements are not equal to x, as shown in Figure 14(c). The expression

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

14 W.C. KREAHLING, ET AL.

(a) Original Code (c) After Condition Merging
for (i=0; i < 10000; i++) for (i=0; i < 10000; i += 2){

if (a[i] == x) if ((a[i] & a[i+1]) & ~x)

num++; continue;

else{

(b) After Loop Unrolling if (a[i] == x)

for (i=0; i < 10000; i += 2){ num++;

if (a[i] == x) if (a[i+1] == x)

num++; num++;

if (a[i+1] == x) }

num++; }

}

Figure 14. Merging Conditions That Check If Multiple Variables Are
Not Equal to Loop-Invariant Values

∼ x is loop invariant and the compiler will move it out of the loop when loop-invariant code
motion is performed. Likewise, the loads of the two array elements in the else case will be
eliminated after applying common subexpression elimination. Note we are also able to merge
conditions checking if multiple variables are not equal to multiple loop invariant values. The
profitability of using rules 8 and 9, where c1 . . . cn could be loop invariant values, is estimated
during the profile run.
Figure 15 shows another example where conditions comparing multiple unsigned variables

to non-constants can be merged. When finding the largest value in an array, it is very likely
that most of the elements examined will not be greater than the maximum value found so far.
When merging the less than or equal tests, the value (max in this case) being compared to
the variables needs to be the same value (otherwise one would not know which would be the
minimum) and has to be invariant in the path between the conditions.

ESTIMATING THE BENEFIT OF MERGING A SET OF CONDITIONS

In order to apply a condition merging transformation, the compiler needs to know which paths
are frequently executed in the program. We extended the EASE environment [5] in the VPO

compiler [3] to collect path profile information. We define a path as a sequence of blocks within a
function that are either terminated by edges that cross loop boundaries or when a return block
is reached. Consider the example flow graph that is shown in Figure 16. The edges that cross
loop boundaries are 3→ 4 (entering the loop), 6→ 4 (backedge), and 6→ 7 (exiting the loop).
Statically enumerating all of the paths in a function according to this definition can sometimes
result in an excessive number of paths. Thus, we decided to detect paths dynamically during
the execution of the profile run. During the first compilation pass we modify the generated

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

CONDITION MERGING 15

(a) Original Code (c) After Condition Merging
max = 0; max = 0;

for (i = 0; i < 10000; i++) for (i = 0; i < 10000; i += 2){

if (a[i] > max) if ((a[i] | a[i+1]) <= max)

max = a[i]; continue;

else{

(b) After Loop Unrolling if (a[i] > max)

max = 0; max = a[i];

for (i = 0; i < 10000; i += 2){ if (a[i+1] > max)

if (a[i] > max) max = a[i+1];

max = a[i]; }

if (a[i+1] > max) }

max = a[i+1];

}

Figure 15. Merging Conditions That Check If Multiple Unsigned
Variables Are Less Than an Unsigned Invariant Value

1

flow graph

1−>3

1−>2−>3

4−>6

4−>5−>6

7

paths

2

3

5

4

6

7

Figure 16. Paths Do Not Cross Loop Boundaries

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

16 W.C. KREAHLING, ET AL.

1

2

3

4

5

6

7

F

T

F

8

9

T

Figure 17. A Set of Conditions to be Merged May be Connected by
Multiple Subpaths

assembly to insert a call to an instrumentation routine at the beginning of each basic block.
When this routine is invoked, the current block number is appended to the list of blocks that
have been encountered for the current path. When we detect a block that could not be in
the same path and it is the first time the path is encountered, we record the list of blocks
as a path and we increment a counter for that path. We found that many functions had a
large number of static paths, but often relatively few of these paths were actually executed.
Whenever the dynamic number of unique paths in a function exceeded a specified limit (100
in our experiments), we stopped collecting measurements and no longer attempted to merge
sets of conditions for that function. When this limit was exceeded, which rarely occurred in
our test programs, we felt that it was unlikely to find a frequent path within such a function
since so many paths are executed.

We also attempted to merge sets of conditions across the backedges of loops. We only
attempted to merge conditions that span two consecutive executions of the same path by
treating it as a single path. We believe this restriction allows most of the beneficial sets of
conditions across path boundaries to be merged without significantly increasing the number
of sets of conditions to be evaluated.

We use the path profile information for merging conditions in the following manner. We
only examine paths whose execution contributed to more than 0.1% of the total instructions
executed in a program. Consider the flow graph in Figure 17. Assume that the conditions
in blocks 2 and 6 can be merged together, where both branch conditions are assumed to be

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

CONDITION MERGING 17

satisfied. This example illustrates two interesting points. First, a path starting at block 2
and ending at block 6 comprises only a subpath of any path represented in the path profile
information. Second, there are two possible subpaths (2 → 4 → 5 → 6 and 2 → 4 → 6)
connecting these two branches even when the condition in the first branch is satisfied. Rather
than duplicating entire paths when merging sets of conditions, we instead duplicated subpaths.
The compiler collects all possible subpaths that contain the specified set of conditions. It then
uses the path frequency information to estimate the benefit of merging each set. The compiler
determines the likelihood that the path containing these branches with the appropriate
transitions will be taken given that the first branch in the set will be reached. The benefit
is estimated based on the instructions saved when these conditions are satisfied and the extra
instructions executed when the conditions are not satisfied.

APPLYING THE TRANSFORMATION

Figure 18 gives a high-level overview of the algorithm used to merge sets of conditions. After
finding all of the sets of conditions, which can be merged, the compiler sorts these sets in
descending order, according to estimated benefit. There are two reasons for merging the most
beneficial sets first:

1. Merging may require the generation of loop-invariant expressions that can be moved out
of the loop after applying loop-invariant code motion. This transformation requires the
allocation of registers for which there are only a limited number available on a target
machine.

2. Merging conditions changes the control flow within a function. If two sets of conditions
overlap in the paths of blocks, which connect them, then the estimated benefit is invalid
after the first set is merged and the second set of conditions will not be merged.

After merging sets of conditions, we apply a number of code-improving transformations
in an attempt to improve the modified control flow. For instance, Figure 1(c) shows that
merging conditions simplifies the control flow in the win and breakeven paths. Our general
strategy was to generate the control flow in a simple manner and rely on other code-improving
transformations to improve the code. For instance, the code shown in Figures 14(c) and
15(c) can be improved by applying loop-invariant code motion and common subexpression
elimination. We also invoke a number of code-improving control-flow transformations, such
as branch chaining, code positioning, loop inversion, and unreachable code elimination, to
improve the code layout. Branch chaining simplifies the control flow when the target block of
a transfer of control contains a single unconditional jump, which may also have a target block
containing a single unconditional jump. The first transfer of control is re-written to jump to
the last target in the chain of unconditional jumps. Code positioning can reorder the blocks
in the control flow. For example if the target of an unconditional jump does not have a fall
through predecessor, then the target block, along with any contiguous blocks that follow it,
can be placed directly after the block with the unconditional jump. The unconditional jump
can then be removed. Loop inversion places a loop exit test at the end of the loop instead of
the beginning of the loop, saving the execution of an unconditional jump in the loop.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

18 W.C. KREAHLING, ET AL.

FOR each path executing > 0.1% of the total insts DO

FOR each branch in the path DO

FOR each of the remaining branches in the path DO

Determine if the set of branches can be merged.

FOR each mergeable set of conditions in the path DO

Estimate the benefit for that set based on the

expected gain.

Sort the sets in descending order of benefit.

FOR each set with a benefit whose blocks are

not affected by a previously merged set DO

IF the set has the needed registers for the

merging transformation to be applied THEN

Merge the set of conditions.

Mark blocks that are affected.

Reapply other code improving transformations.

Figure 18. Overview of Condition Merging Optimization

RESULTS

Table IV shows the test programs on which condition merging was applied. We chose these non-
numerical applications since they have complex control flow, a higher density of conditional
branches, and have branches testing integer values. Control dependences in such applications
often inhibit many types of compiler optimizations. For each SPEC benchmark we used training
and test data that were available with the benchmark. For the other applications we used input
data similar to the examples found in the man pages describing these applications. In each
case the training data was smaller than the test data, resulting in fewer instructions executed
in the training run than in the test runs reported in this section.
The number of times that each rule was selected is shown in column four of Table II and

Table III. The majority of the rules selected involve merging multiple variables testing for
inequality to the value zero or a set of constants. However the rule that was selected most was
rule 1, which involves merging variables testing for equality to zero.
Table V shows the overall impact that each condition merging techniques had on the

number of branches performed and the total number of instructions executed. The baseline
measurements included the reduction of local and global scalar variables to bits within flag
variables, which achieved slight reductions in the number of instructions executed as illustrated
in Figure 7. Techniques A and B eliminate conditions that could not be eliminated using non-
path based approaches. For instance, Figure 4 shows an example of eliminating a logically
redundant condition using technique A that could not be eliminated using static analysis
alone [10]. Technique B eliminates conditions that are separated by other intervening branches,

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

CONDITION MERGING 19

Table IV. Test Programs

SPEC Benchmarks Description
compress Compresses and decompresses files.
go AI game playing program.
ijpeg Graphic compression and decompression.
li LISP interpreter.
m88ksim Motorola 88K simulator.
perl Practical extraction and report language.
vortex Database program.
Other Applications Description
ctags Generates a tag file for vi.
dd Copies a file with possible conversions.
deroff Removes nroff constructs from a file.
diff Displays line-by-line differences between two text files.
grep Searches files for a string or regular expression.
lex Lexical analysis program generator.
nroff Text formatter.
od Dumps files in a variety of formats.
othello Game playing program.
pr Prepares file(s) for printing.
sed Stream editor.
sort Sorts and collates lines.
tbl formats tables for nroff.
tr Substitutes or deletes selected characters in text.
uniq Report or filter out repeated lines in a file.
yacc Yet another compiler-compiler.

Table V. Dynamic Results from
Applying the Individual Techniques

Label Description Branches Insts.
A merging using logical correlation 95.899% 98.539%
B merging using range checks 93.537% 96.431%
C merging using bit tests 98.008% 99.284%
D merging using logical operations 88.462% 96.066%
A-B applying techniques A and B 89.961% 95.556%
A-C applying techniques A, B, and C 88.279% 95.089%
A-D applying techniques A, B, C, and D 84.189% 94.256%

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

20 W.C. KREAHLING, ET AL.

Figure 19. Effect on Branches Executed for Each Technique

which is also not feasible using a non-path based approach [17, 18]. Note that techniques A, B,
and C merge sets of conditions that compare a single variable and technique D merges sets of
conditions that can compare multiple variables. However, technique C, which merges bit tests,
relies on the reduction of different scalar variables to bits within flag variables. Thus, technique
C in effect merges conditions that compare multiple variables specified in the source code. In
fact, many of the sets of conditions merged using technique C would have been merged using
technique D if reducing scalars to bits had not been applied. Table V also shows techniques C

and D reduced the number of branches by 6.42% over techniques A and B. In fact, technique
D alone reduced more branches than techniques A and B combined. Overall, 15.81% of the
executed branches were eliminated.

The primary goal of our study was to reduce the number of conditional branches executed.
However, it is interesting to note the effect on other performance measures, even though we
did not tune the compiler to exploit the modified control flow. Table V also shows the effect
that condition merging had on the number of instructions executed. Overall, there was a 5.74%
average reduction in the number of instructions executed. While most of the reduction was
directly due to fewer executed comparisons and branches, occasionally the compiler was able
to apply code-improving transformations on the modified control flow to obtain additional
improvements.

Figures 19–21 display condition merging results for each program. Figure 19 displays the
effects of each individual technique on the number of branches. While using logical operations
(technique D) and range checks (technique B) were the most beneficial, branches were merged
by applying rules from all of the techniques. Figures 20 and 21 show the cumulative results
of applying the techniques. Sort had unusually large benefits since most of the execution was
spent in tight loops where conditions could be merged using techniques B and D.

In a few cases, the application of an additional technique increased the number of branches
and/or instructions executed. This increase was due in part to using different training and
test data, which affected the accuracy of our estimated benefits. The number of instructions

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

CONDITION MERGING 21

Figure 20. Cumulative Effect on Branches Executed

Figure 21. Cumulative Effect on Instructions Executed

executed increased more frequently since we could not predict the effect that the modified
control flow would have on subsequently applied optimizations.

There are reasons why the cumulative benefits were less than the sum of the benefits from
the individual techniques. (1) Sets of conditions merged by one technique may also be merged
by using a different technique. For instance, sets of 6= conditions in sort could be merged
using logical operations (technique D) or by using range checks (technique B). (2) Sometimes
different sets of conditions to be merged overlapped in the control-flow graph. When two
sets of conditions overlap and it was estimated that both could be merged separately with
benefits, we only merged the set deemed most beneficial. In this case the merging of the first
set of conditions will change the paths associated with the second set of branches. (3) Merging
conditions may require the allocation of registers for loop-invariant values. Merging one set
of branches sometimes consumed the remaining available registers that are needed to merge
another set.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

22 W.C. KREAHLING, ET AL.

Figure 22. Effect on Execution Time

Figure 22 shows the effect that condition merging had on execution time for each of the test
programs. For the UltraSPARC II, we found that there was a high variance in the user time
using the Unix utilities available (e.g., ptime). Thus, we instead measured execution time by
reading the 64-bit clock register (%tick) that is accessible on the UltraSPARC architectures.
We read the value in this clock register before and after each external call to a run-time
library routine, which allowed us to obtain for each program a fairly consistent execution
time that does not include the time spent in the run-time library. We used the minimum
time of 200 executions of each program, which represents the execution time with the fewest
cycles spent in other processes due to interrupts. Figure 22 shows that on average that there
was a 3.43% execution time reduction on the UltraSPARC II. While the execution time of
most of the applications improved, there was a performance degradation for a couple of the
applications. The reason for the degradation is difficult to explain fully given the complexity
of the UltraSPARC II implementation.
Applying all the techniques resulted in a roughly 7% increase in static code size after

condition merging. This static increase compares favorably with the 5.74% decrease in
instructions executed. The code size would have increased more if we had not required that
the paths we inspected comprise at least 0.1% of the total instructions executed.
Figure 23 shows the effect that condition merging had on instruction cache performance

for a 16KB two-way set associative cache with 32 byte lines, which is the configuration used
on the UltraSPARC II. We found that the average miss ratio increased slightly (+0.00092)
after merging conditions. However, the miss ratio is not an appropriate measurement given
that the number of instructions executed was affected. In the figure we show the effect on the
overall fetch cost, which we calculated by counting each hit as a single cycle and each miss as
ten cycles [14]. The average fetch cost decreased by almost 5%. As expected, there is a very
strong correlation between instructions executed (A+B+C+D result in Figure 21) and fetch
cost (Figure 23) since the instruction cache hit ratios were high. The only program whose
fetch cost increased was perl. A frequently executed loop, which involved code from multiple

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

CONDITION MERGING 23

Figure 23. Effect on Estimated Fetch Cost for a 16KB Two-Way
Associative Instruction Cache

Figure 24. Average Fetch Cost for a Variety of Cache Sizes

routines, was aligned slightly differently after merging conditions and this alignment caused
the performance to degrade since the routines were then mapped to the same cache lines. After
merging perl actually had slightly fewer instructions executed and its code size only increased
by about 0.1%. Figure 24 shows the effect condition merging had on the fetch cost for a variety
of cache sizes, where each configuration was two-way associative with a 32 byte line size. In
each case the average fetch cost was improved.
Branch prediction measurements were obtained for the UltraSPARC II when executing all

four techniques. This machine has 2048 branch prediction entries, where a (0,2) predictor is
used [9]. Given that the number of executed branches decreased by almost 16%, one would
suspect that the number of branch mispredictions would also decrease. We found this was often
not the case. Five of the test programs have fewer mispredictions after condition merging and
the remaining ones exhibited increases. A similar phenomenon was discovered when reordering

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

24 W.C. KREAHLING, ET AL.

Table VI. The Number of Conditions Merged.

Conditions Merged Percentage of Sets
2 82.83%
3 9.01%
4 6.01%
5 0.86%
6 1.29%

contiguous sequences of branches [17, 18]. While condition merging may sometimes adversely
affect branch prediction performance, the average execution time of the test programs still
decreases. This is probably due to the large reduction of instructions executed.

On many machines there is a pipeline stall associated with every taken branch. Merging
conditions resulted in approximately 28% average reduction in the number of taken branches
for the test programs. This reduction was due in part to decreasing the number of executed
branches. The transformation also makes branches within the win path more likely to fall
through since the sequence of blocks representing each frequent path is now contiguous in
memory. Overall, the average number of control transfers (taken branches, unconditional
jumps, calls, returns, and indirect jumps) was reduced by roughly 20%.

On average there were only 10.13 sets of conditions merged per test program. Some sets,
while beneficial, were not merged due to overlapping regions of code. However the main
reason that some beneficial sets are not merged is infrequent execution. Table VI shows the
number conditions, per set, that were merged. Due to these sets of conditions being frequently
executed, significant control height reduction is achieved despite only merging on average 10.13
sets of conditions per test program and 2.29 conditions per set.

FUTURE WORK

One area to explore is the use of more aggressive analysis to detect when speculatively executed
loads would not introduce exceptions. We perform condition merging in a compiler back-end
using a representation that is equivalent to machine instructions. One advantage of performing
condition merging in a back-end is that more accurate estimates of the performance benefits
can be made, which is very important when applying transformations based on path profile
data. However, a disadvantage of performing a transformation in a back-end is that much of
the semantic information which one could use to determine if a load instruction can cause
an exception is not immediately available. We conservatively merged sets of conditions, which
required loads to be speculatively executed, only when these loads could not introduce new
exceptions. By performing more aggressive analysis, one should be able to detect more sets

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

CONDITION MERGING 25

of conditions to be merged. This will be particularly useful for merging conditions that cross
loop boundaries.

Value range analysis may allow condition merging to be applied more frequently. Consider
if a and max in Figure 15 were signed instead of unsigned variables. max is guaranteed to be
nonnegative in this example since it is initialized to zero and it is only updated with a value
that is greater than itself. Merging conditions in this case can be applied using an unsigned
≤ operator. If either a[i] or a[i + 1] is negative, then the merged condition will fail and the
original conditions will be tested.

Past studies on control CPR have not investigated the impact on branch prediction [12,
13]. One could more thoroughly investigate the effect condition merging has on branch
misprediction to discover the reasons why additional mispredictions sometimes occur. It may
be possible to perform additional optimizations that may reduce the number of mispredictions.

We also found that the merging of one set of conditions may inhibit the merging of another
set. Code is duplicated and the paths within a function are modified when conditions are
merged. This code duplication invalidates the path profile data on which condition merging
is based. Thus, merging a set of conditions is not currently allowed whenever the control
flow changed in the subpaths associated with the set of conditions to be merged. With careful
analysis one may be able to infer new path frequency measurements for these duplicated paths.

We believe that condition merging may be useful in other settings. Condition merging may
be a very good fit for run-time optimization systems, which optimize frequently executed
paths during the execution of a program. Condition merging may also be useful for low power
embedded systems processors where architectural support for ILP is not available.

CONCLUSIONS

In this paper we described techniques to perform condition merging on a conventional scalar
processor. We replaced the execution of two or more branches with a single branch by merging
conditions. Path profile information is gathered to determine the frequency that paths are
executed in the program. Sets of conditions that can be merged are detected and the benefit
of merging each set is estimated. The control flow is then restructured to merge the sets of
conditions deemed beneficial. The results show that significant reductions can be achieved in
the number of branches performed for non-numerical applications. We showed a reduction in
the number of branches executed, by an approximate average of 16%, while on average, there
were about 6% fewer instructions executed. Execution time for the benchmark programs was
reduced by roughly 3%, and the average fetch cost decreased by almost 5%.

There are several contributions that we presented in this paper. First, we have shown that the
reduction of integer scalar variables to bits within a flag variable can be automated and results
in opportunities to merge conditions. Second, we were able to merge conditions comparing
multiple variables to constants or invariant values. Unlike prior work on control CPR, we
were able to accomplish our techniques through innovative use of available instructions on
a conventional scalar processor. Finally, we have shown there are benefits to be obtained by
merging conditions in paths that are not the most frequent. In many cases we were able to

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

26 W.C. KREAHLING, ET AL.

generate a breakeven path that allows a set of conditions to be merged when the win path was
not the most frequently executed path upon reaching the first condition.

REFERENCES

1. F. E. Allen and J. Cocke. A catalogue of optimizing transformations. In R. Rustin, editor, Design and
Optimization of Compilers, pages 1–30. Prentice-Hall, Englewood Cliffs, NJ, USA, 1971. Transformations.

2. Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transparent dynamic optimization
system. In SIGPLAN ’00 Conference on Programming Language Design and Implementation, pages 1–12,
2000.

3. Manuel E. Benitez and Jack W. Davidson. A portable global optimizer and linker. In Proceedings of
the SIGPLAN ’88 Conference on Programming Language Design and Implementation, pages 329–338,
Atlanta, GA, USA, June 1988. ACM Press.

4. Rastislav Bod́ık, Rajiv Gupta, and Mary Lou Soffa. Interprocedural conditional branch elimination. In
Proceedings of the SIGPLAN ’97 Conference on Programming Language Design and Implementation,
volume 32, 5 of ACM SIGPLAN Notices, pages 146–158, New York, June 15–18 1997. ACM Press.

5. J. W. Davidson and D. B. Whalley. A design environment for addressing architecture and compiler
interactions. Microprocessors and Microsystems, 15(9):459–472, November 1991.

6. J. J. Dongarra and A. R. Hinds. Unrolling loops in FORTRAN. Software, Practice and Experience,
9(3):219–226, March 1979.

7. Chris W. Fraser and David R. Hanson. A Retargetable C Compiler: Design and Implementation. Addison-
Wesley Pub. Co., Reading, MA, USA, 1995.

8. Torbjörn Granlund and Richard Kenner. Eliminating branches using a superoptimiser and the GNU C
compiler. In Christopher W. Fraser, editor, Proceedings of the SIGPLAN ’92 Conference on Programming
Language Design and Implementation, pages 341–352, San Francisco, CA, June 1992. ACM Press.

9. John Hennessy and David Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, second edition, 1996.

10. F. Mueller and D. B. Whalley. Avoiding conditional branches by code replication. In Proceedings of the
SIGPLAN ’95 Conference on Programming Language Design and Implementation, pages 56–66, La Jolla,
CA, June 1995. ACM Press.

11. Kenneth A. Ross. Conjunctive selection conditions in main memory. In Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 109–120. ACM
Press, 2002.

12. Michael Schlansker and Vinod Kathail. Critical path reduction for scalar programs. In Proceedings
of the 28th Annual International Symposium on Microarchitecture, pages 57–69, Ann Arbor, Michigan,
November 29–December 1, 1995. IEEE Computer Society TC-MICRO and ACM SIGMICRO, IEEE
Computer Society Press.

13. Michael Schlansker, Scott Mahlke, and Richard Johnson. Control CPR: A branch height reduction
optimization for EPIC architectures. In Proceedings of the SIGPLAN ’99 Conference on Programming
Language Design and Implementation, pages 155–168, Atlanta, Georgia, May 1–4, 1999. ACM Press.

14. Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, September 1982.
15. G.-R. Uh and D. B. Whalley. Coalescing conditional branches into efficient indirect jumps. In Proceedings

of the International Static Analysis Symposium, pages 315–329, September 1997.
16. Nancy J. Warter, Scott A. Mahlke, Wen-Mei W. Hwu, and B. Ramakrishna Rau. Reverse If-Conversion.

In Proceedings of the Conference on Programming Language Design and Implementation, pages 290–299,
1993.

17. Minghui Yang, Gang-Ryung Uh, and David B. Whalley. Improving performance by branch reordering.
In Proceedings of the SIGPLAN ’98 Conference on Programming Language Design and Implementation,
pages 130–141, Montreal, Canada, 17–19 June 1998. ACM Press.

18. Minghui Yang, Gang-Ryung Uh, and David B. Whalley. Efficient and effective branch reordering using
profile data. volume 24, pages 667–697, November 2002.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–25
Prepared using speauth.cls

