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Abstract

We develop a message scheduling scheme that can the-
oretically achieve the maximum throughput for all–to–all
personalized communication (AAPC) on any given Eth-
ernet switched cluster. Based on the scheduling scheme,
we implement an automatic routine generator that takes
the topology information as input and produces a cus-
tomized MPI Alltoall routine, a routine in the Mes-
sage Passing Interface (MPI) standard that realizes
AAPC. Experimental results show that the automati-
cally generated routine consistently out-performs other
MPI Alltoall algorithms, including those in LAM/MPI
and MPICH, on Ethernet switched clusters with differ-
ent network topologies when the message size is suffi-
ciently large. This demonstrates the superiority of the
proposed AAPC algorithm in exploiting network band-
widths.

1. Introduction

All–to–all personalized communication (AAPC) is
one of the most common communication patterns in
high performance computing. In AAPC, each node in
a system sends a different message of the same size to
every other node. The Message Passing Interface rou-
tine that realizes AAPC is MPI Alltoall [11]. AAPC ap-
pears in many high performance applications, including
matrix transpose, multi-dimensional convolution, and
data redistribution. Since AAPC is often used to re-
arrange the whole global array in an application, the
message size in AAPC is usually large. Thus, it is cru-
cial to have an AAPC implementation that can fully
exploit the network bandwidth in the system.

Switched Ethernet is the most widely used local–
area–network technology. Many Ethernet switched
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clusters of workstations are used to perform high per-
formance computing. For such clusters to be ef-
fective, communications must be carried out as
efficiently as possible. In this paper, we investigate ef-
ficient AAPC on Ethernet switched clusters.

We develop a message scheduling scheme that theo-
retically achieves the maximum throughput of AAPC
on any given Ethernet switched cluster. Similar to
other AAPC scheduling schemes [5], our scheme par-
titions AAPC into contention free phases. It achieves
the maximum throughput by fully utilizing the band-
width in the bottleneck links in all phases. Based on
the scheduling scheme, we develop an automatic rou-
tine generator that takes the topology information as
input and produces an MPI Alltoall routine that is cus-
tomized for the specific topology. We compare the au-
tomatically generated routine with the original routine
in LAM/MPI [8] and a recently improved MPI Alltoall
implementation in MPICH [18]. The results show that
the automatically generated routine consistently out-
performs the existing algorithms when the message size
is sufficiently large, which demonstrates the superior-
ity of the proposed AAPC algorithm in exploiting net-
work bandwidths.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 describes
the network model and defines the scheduling prob-
lem. Section 4 details the proposed scheduling scheme.
Section 5 discusses implementation issues. Section 6 re-
ports experimental results. Finally, the conclusions are
presented in Section 7.

2. Related Work

AAPC has been extensively studied due to its im-
portance. A large number of optimal message schedul-
ing algorithms for different network topologies with dif-
ferent network models were developed. Many of the al-
gorithms were designed for specific network topologies
that are used in the parallel machines, including hy-



percube [6, 19], mesh [1, 14, 13, 17], torus [5, 9], k-ary
n-cube [19], and fat tree [3, 12]. Heuristic algorithms
were developed for AAPC on irregular topologies [10].
A framework for AAPC that is realized with indirect
communications was reported in [7]. Efficient AAPC
scheduling schemes for clusters connected by a single
switch was proposed in [15]. Some of the algorithms
in [15] are incorporated in the recent improvement of
MPICH library [18]. We consider Ethernet switched
clusters with one or more switches. AAPC on such clus-
ters is a special communication pattern on a tree topol-
ogy. To the best of our knowledge, message scheduling
for such cases has not been developed.

3. Network Model and Problem Defini-

tion

In an Ethernet switched network, machines con-
nected to an Ethernet switch can send and receive at
the full link speed simultaneously since links operate in
the duplex mode. The switches use a spanning tree al-
gorithm to determine forwarding paths that follow a
tree structure [16]. Thus, the physical topology of the
network is always a tree.

The network can be modeled as a directed graph
G = (V, E) with nodes V corresponding to switches
and machines, and edges E corresponding to unidirec-
tional channels. Let S be the set of all switches in the
network and M be the set of all machines in the net-
work (V = S ∪ M). Let u, v ∈ V , a directed edge

(u, v) ∈ E if and only if there is a link between node
u and node v. We will call the physical connection be-
tween node u and node v link (u, v), which corresponds
to two directed edges (u, v) and (v, u). Since the net-
work topology is a tree, the graph is also a tree: there is
a unique path between any two nodes. Node u ∈ M can
only be a leaf node. Figure 1 shows an example clus-
ter.
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Figure 1. An example Ethernet Switched Cluster

The terminologies used in this paper are defined
next. A message, u → v, is a communication transmit-

ted from node u to node v. The notion path(u, v) de-
notes the set of directed edges in the unique path
from node u to node v. For example, in Figure 1,
path(n0, n3) = {(n0, s0), (s0, s1), (s1, s3), (s3, n3)}.
Two messages, u1 → v1 and u2 → v2, are said to
have contention if they share a common edge. A pat-
tern is a set of messages. The AAPC pattern on a net-
work G = (S ∪ M, E) is {u → v | u 6= v; u, v ∈ M}.
The message size is denoted as msize. In a con-
tention free pattern, no two messages have contention.
A phase is a contention free pattern. The load on an
edge is the number of times the edge is used in the pat-
tern. The most loaded edge is called a bottleneck edge.
Since the topology is a tree, edges (u, v) and (v, u) al-
ways have the same load. We will use the terms “the
load of an edge (u, v)” and “the load of a link (u, v)” in-
terchangeably. The load of AAPC pattern is equal to
the load of a bottleneck edge. |S| denotes the size of a
set S. Since scheduling for AAPC when |M | ≤ 2 is triv-
ial, we will assume that |M | ≥ 3.

Let edge (u, v) be one of the bottleneck edges for the
AAPC pattern. Assume that removing link (u, v) par-
titions graph G = (S ∪ M, E) into two sub-graphs,
Gu = (Su ∪ Mu, Eu) and Gv = (Sv ∪ Mv, Ev). Gu is
the connected component including node u, and Gv is
the connected component including node v. AAPC re-
quires |Mu| × |Mv| × msize bytes data to be trans-
ferred across the link (u, v) in both directions. Let B

be the bandwidth on all links. The best case time to
complete AAPC is |Mu|×|Mv |×msize

B
. The peak aggre-

gate throughput of AAPC is bounded by

|M | × (|M | − 1) × msize
|Mu|×|Mv|×msize

B

=
|M | × (|M | − 1) × B

Mu × Mv

In general networks, this peak aggregate through-
put may not be achieved due to node and link conges-
tion. However, as will be shown later, for the tree topol-
ogy, this physical limit can be approached through mes-
sage scheduling.

4. AAPC Message Scheduling

In the following, we will present an algorithm that
constructs phases for AAPC. The phases conform to
the following constraints, which are sufficient to guar-
antee optimality: (1) no contention within each phase;
(2) every message in AAPC appears exactly once in the
phases; and (3) the total number of phases is equal to
the load of AAPC on a given topology. If phases that
satisfy these constraints can be carried out without
inter-phase interferences, the peak aggregate through-
put is achieved.



Our scheduling algorithm has three components.
The first component identifies the root of the system.
For a graph G = (S ∪ M, E), the root is a switch that
satisfies two conditions: (1) it is connected to a bottle-
neck edge; and (2) the number of machines in each of
the subtrees connecting to the root is less than or equal

to |M |
2 . The second component performs global message

scheduling that determines the phases when messages
between two subtrees are carried out. Finally, the third
component performs global and local message assign-
ment, which decides the final scheduling of local and
global messages.

4.1. Identifying the Root

Let the graph be G = (S∪M, E). The process to find
a root in the network is as follows. Let link L = (u, v)
be one of the bottleneck links. Link L partitions the
graph into two subgraphs Gu and Gv . The load of link
L is thus, |Mu| × |Mv| = (|M | − Mv) × |Mv|. Assume
that |Mu| ≥ |Mv|. If in Gu, node u has more than one
branch containing machines, then node u is the root.
Otherwise, node u should have exactly one branch that
contains machines (obviously this branch may also have
switches). Let the branch connect to node u through
link (u1, u). Clearly, link (u1, u) is also a bottleneck link
since all machines in Gu are in Gu1

. Thus, we can re-
peat the process for link (u1, u). This process can be
repeated n times and n bottleneck links (un, un−1),
(un−1, un−2), ..., (u1, u), are considered until the node
un has more than one branch containing machines in
Gun

. Then, un is the root. Node un should have a nodal
degree larger than 2 in G.
Lemma 1: Using the above process to find the root,

each subtree of the root contains at most |M |
2 machines.

Proof: See [4].

4.2. Global Message Scheduling
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Figure 2. A two level view of the network

Let the root connect to k subtrees, t0, t1, ..., and
tk−1, with |M0|, |M1|, ..., and |Mk−1| machines re-
spectively. Figure 2 shows the two-level view of the
network. Only global messages use the links between
the subtrees and the root. Local messages only use
links within a subtree. Let us assume that |M0| ≥

Table 1. Phases from ring scheduling

Phase 0 Phase 1 ... Phase k − 2

t0 → t1 t0 → t2 ... t0 → tk−1

t1 → t2 t1 → t3 ... t1 → t0
... ... ... ...

tk−2 → tk−1 tk−2 → t0 ... tk−2 → tk−3

tk−1 → t0 tk−1 → t1 ... tk−1 → tk−2

|M1| ≥ ... ≥ |Mk−1|. Thus, the load of AAPC is
|M0|×(|M1|+|M2|+...+|Mk−1|) = |M0|×(|M |−|M0|),
and we must schedule both local and global mes-
sages in |M0| × (|M | − |M0|) phases while maintaining
contention-free phases. This is done in two steps. First,
phases are allocated for global messages where mes-
sages from one subtree to another subtree are treated
as groups. Second, individual global and local messages
are assigned to particular phases.

We will use the notation ti → tj to represent either
a message from a machine in subtree ti to a machine in
subtree tj or general messages from subtree ti to sub-
tree tj . The global message scheduling decides phases
for messages in ti → tj . Let us first consider a sim-
ple case where |M0| = |M1| = ... = |Mk−1| = 1. In this
case, there is |Mi| × |Mj | = 1 message in ti → tj . A
ring scheduling algorithm [18, 15] can be used to sched-
ule the messages in 1 × (k − 1) = k − 1 phases. In the
ring scheduling, ti → tj is scheduled at phase j − i− 1
if j > i and phase (k − 1) − (i − j) if i > j. The ring
scheduling produces k − 1 phases as shown in Table 1.

When scheduling messages with any number of ma-
chines in a subtree, we group all messages from one
subtree to another into consecutive phases. The total
number of messages from ti to tj is |Mi|×|Mj |. We ex-
tend ring scheduling to allocate phases for groups of
messages. In the extended ring scheduling, for subtree
ti, the messages to other subtrees follow the same or-
der as the ring scheduling. For example, for t1, mes-
sages in t1 → t2 happen before messages in t1 → t3,
messages in t1 → t3 happen before messages in t1 → t4,
and so on. Specifically, the phases are allocated as fol-
lows. Note that messages in ti → tj occupy |Mi|× |Mj|
consecutive phases.

• When j > i, messages in ti → tj start at phase p

= |Mi| ×
∑j−1

k=i+1 |Mk|. If i + 1 > j − 1, p = 0.

• When i > j, messages in ti → tj start at phase p

= |M0| × (|M | − |M0|)− (|Mj | ×
∑i

k=j+1 |Mk|).

Lemma 2: Using the extended ring scheduling de-
scribed above, the resulting phases have the follow-
ing two properties: (1) the number of phases is |M0| ×
(|M | − |M0|); and (2) in each phase, global messages
do not have contention on links connecting subtrees to
the root.
Proof: See [4].
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Figure 3. Global message scheduling for the ex-
ample in Figure 1

Figure 3 shows the scheduling of global messages for
the example shown in Figure 1. In this figure, there are
three subtrees: t0 = ts0 with |M0| = 3, t1 = ts3 with
|M1| = 2, and t2 = tn5 with |M2| = 1. Following the
above equations, messages in t1 → t2 start at p = 0,
messages in t0 → t2 start at p = 6, and messages in
t2 → t0 start at p = 0. Figure 3 also shows that some
subtrees are idle at some phases. For example, subtree
t1 does not have a sending machine in phase 2.

4.3. Global and Local Message Assignment

Let the root connect to k subtrees, t0, t1, ..., tk−1,
with |M0|, |M1|, ..., |Mk−1| machines respectively.
|M0| ≥ |M1| ≥ ... ≥ |Mk−1|. As shown in the pre-
vious subsection, global messages are scheduled in
|M0|×(|M |−|M0|) phases. Consider subtree ti, the to-
tal number of local messages in ti is |Mi| × (|Mi| − 1),
which is less than the total number of phases. Thus,
if in each phase, one local message in each subtree
can be scheduled without contention with the global
messages, all messages in AAPC can be scheduled in
|M0|×(|M |−|M0|) phases. The contention free schedul-
ing of global and local messages is based on the follow-
ing lemma.

Lemma 3: Let G = (S ∪M, E) be a tree and x 6= y 6=
z ∈ S ∪ M , path(x, y) ∩ path(y, z) = φ.
Proof: Assume that path(x, y) ∩ path(y, z) 6= φ. There
exists an edge (u, v) that belongs to both path(x, y)
and path(y, z). As a result, the composition of the
partial path path(y, u) ⊆ path(y, z) and path(u, y) ⊆
path(x, y) forms a non-trivial loop: edge (u, v) is in the
loop while edge (v, u) is not. This contradicts the as-
sumption that G is a tree. 2

Lemma 4: Using the global message schedul-
ing scheme, at each phase, the global messages do not
have contention.
Proof: Let the root connect to subtrees t0, t1, ...,
tk−1. From Lemma 2, at each phase, there is no con-
tention in the link connecting a subtree to the root.
Also, there is no contention when there is only one
global message in a subtree in a phase. Thus, the only
case when global messages may have contention in-
side a subtree is when there are two global mes-
sages involving nodes in a subtree in a phase: one

global message, x → o1, is sent into the subtree and
the other one, o2 → y, is sent out from the sub-
tree (x, y ∈ Mi; o1 and o2 are in other subtrees). The
sub-path for x → o1 inside ti is equal to path(x, root)
and the sub-path for o2 → y is equal to path(root, y).
From Lemma 3, these two paths do not have con-
tention inside ti. 2

The contention free scheduling of local messages is
also based on Lemma 3. Let u, v ∈ ti and u 6= v. From
Lemma 3, there are three cases when message u → v

can be scheduled without contention (with global mes-
sages) in a phase: (1) node v is the sender of a global
message, and node u is the receiver of a global mes-
sage; (2) node v is the sender of a global message, and
there is no receiving node of a global message in ti;
and (3) node u is the receiver of a global message, and
there is no sending node of a global message. Note that
by scheduling at most one local message in each sub-
tree, our scheduling algorithm does not have to con-
sider the specific topologies of the subtrees.

Let us now consider global messages assignment.
Let us number the nodes in subtree ti as ti,0, ti,1,
..., ti,(|Mi|−1). To realize inter-subtree communication
ti → tj , 0 ≤ i 6= j < k, each node in ti must
communicate with each node in tj in the allocated
|Mi| × |Mj | phases. The algorithm uses two different
methods to realize inter-subtree communications. The
first scheme is the broadcast scheme. In this scheme,
the |Mi|×|Mj | phases are partitioned into |Mi| rounds
with each round having |Mj | phases. In each round, a
different node in ti sends one message to each of the
nodes in tj . This method has the flexibility in select-
ing the order of the senders in ti in each round and the
order of the receivers in tj within each round. The fol-
lowing pattern is an example of such scheme:
ti,0 → tj,0, ..., ti,0 → tj,|Mj |−1, ti,1 → tj,0, ..., ti,1 → tj,|Mj |−1,

..., ti,|Mi|−1 → tj,0, ..., ti,|Mi|−1 → tj,|Mj |−1.

The second scheme is the rotate scheme. Let
D be the greatest common divisor of |Mi| and
|Mj |. Thus, |Mi| = a × D and |Mj | = b × D. In
this scheme, the pattern for receivers is a repeti-
tion of Mi times of some fixed sequence that enumer-
ates all nodes in tj . One example of a fixed sequence
is tj,0, tj,1, ...tj,|Mj |−1, which results in a receiver pat-
tern of tj,0, tj,1, ...tj,|Mj |−1, tj,0, tj,1, ...tj,|Mj |−1, ..., tj,0, tj,1, ...

tj,|Mj |−1. Unlike the broadcast scheme, in a ro-
tate scheme, the sender pattern is also an enumera-
tion of all nodes in ti in every |Mi| phases. There is
a base sequence for the senders, which can be an ar-
bitrary sequence that covers all nodes in ti. In
the scheduling, the base sequence and the “ro-
tated” base sequence are used. Let the base se-
quence be ti,0, ti,1, ...ti,|Mi|−1. The base sequence



Table 2. Rotate pattern for realizing ti → tj when |Mi| = 6 and |Mj | = 4

phase comm. phase comm phase comm phase comm

0 ti,0 → tj,0 6 ti,0 → tj,2 12 ti,1 → tj,0 18 ti,1 → tj,2

1 ti,1 → tj,1 7 ti,1 → tj,3 13 ti,2 → tj,1 19 ti,2 → tj,3

2 ti,2 → tj,2 8 ti,2 → tj,0 14 ti,3 → tj,2 20 ti,3 → tj,0

3 ti,3 → tj,3 9 ti,3 → tj,1 15 ti,4 → tj,3 21 ti,4 → tj,1

4 ti,4 → tj,0 10 ti,4 → tj,2 16 ti,5 → tj,0 22 ti,5 → tj,2

5 ti,5 → tj,1 11 ti,5 → tj,3 17 ti,0 → tj,1 23 ti,0 → tj,3

Table 3. Mapping between senders and the receivers in Step 2.

round 0 round 1 ... round |M0| − 2 round |M0| − 1 ...

send recv send recv ... send recv send recv ...

t0,0 t0,1 t0,0 t0,2 ... t0,0 t0,|M0|−1 t0,0 t0,0 ...

t0,1 t0,2 t0,1 t0,3 ... t0,1 t0,0 t0,1 t0,1 ...

... ... ... ... ... ... ... ... ... ...

t0,|M0|−2 t0,|M0|−1 t0,|M0|−2 t0,0 ... t0,|M0|−2 t0,|M0|−3 t0,|M0|−2 t0,|M0|−2 ...

t0,|M0|−1 t0,0 t0,|M0|−1 t0,1 ... t0,|M0|−1 t0,|M0|−2 t0,|M0|−1 t0,|M0|−1 ...

can be rotated once, which produces the sequence
ti,1, ...ti,|Mi|−1, ti,0. Sequence ti,2, ...ti,|Mi|−1, ti,0, ti,1 is
the result of rotating the base sequence twice. The re-
sult from rotating the base sequence n times can be
defined similarly. The senders are scheduled as fol-
lows. The base sequence is repeated b times for the
first a × b × D phases. Then, at phases that are mul-
tiples of a × b × D phases, rotations are performed
to find a new sequence that is repeated b times. It
can be shown that all messages in ti → tj are real-
ized in the rotate scheme.

Table 2 shows an example when |Mi| = 6 and
|Mj | = 4. In this case, a = 3, b = 2, and D = 2. The
receivers repeat the pattern tj,0, tj,1, tj,2, tj,3. The base
sequence for the senders is ti,0, ti,1, ti,2, ti,3, ti,4, ti,5.
This sequence is repeated 2 times. At phase
2 ∗ 3 ∗ 2 = 12, the senders follow a rotated se-
quence ti,1, ti,2, ti,3, ti,4, ti,5, ti,0 and repeat the pat-
tern 2 times. It can be verified that all messages in
ti → tj are realized.

The following two lemmas illustrate the properties
of the broadcast pattern and the rotate pattern.

Lemma 5: In the broadcast pattern that realizes ti →
tj , each sender ti,k occupies |Mj | continuous phases.

Proof: Straight-forward from the definition of the
broadcast pattern. 2.

Lemma 6: In the rotate pattern that realizes ti → tj ,
counting from the first phase for messages in ti → tj ,
each sender in ti happens once in every |Mi| phases and
each receiver in tj happens once in every |Mj | phases.

Proof: Straight-forward from the definition of the ro-
tate pattern. 2.

Either the broadcast pattern or the rotate pattern
can be used to realize messages in ti → tj , 0 ≤ i 6=
j < k. The challenge in the scheduling, however, is
that we must be able to embed all local messages in
the |M0| × (|M | − |M0|) phases. The scheduling algo-

rithm is shown in Figure 4. The algorithm consists of
six steps. We will explain each step next.

In the first step, messages from t0 to all other sub-
trees tj , 1 ≤ j < k are scheduled using the rotate
scheme. First, the receivers in t0 → tj are assigned such
that at phase p, node tj,(p−|M0|×(|M |−|M0|)) mod |Mj | is
the receiver. The pattern aligns the receivers with the
receivers in ti → tj when i > j. As will be shown in
Step 5, this alignment is needed to correctly schedule
local messages. The rotate pattern ensures that each
node in t0 appears once as the sender in every |M0|
phases counting from phase 0.

In the second step, messages in ti → t0 are assigned.
In this step, phases are partitioned into rounds with
each round having |M0| phases. The main objective of
this step is to schedule all local messages in t0. This
is achieved by creating the pattern shown in Table 3,
which is basically a rotate pattern for t0 → t0. Since
in step 1, each node in t0 appears as a sender in ev-
ery |M0| phases, the scheduling of receivers in ti → t0
can directly follow the mapping in Table 3. Using this
mapping, every node in t0 appears as a receiver in ev-
ery |M0| phases, which facilitates the use of a broad-
cast pattern to realize messages in ti → t0, i > 0. After
the receiver pattern is decided, the senders of ti → t0
are determined using the broadcast scheme with the
sender order ti,0, ti,1, ..., ti,|Mi|−1.

Step 3 embeds local messages in t0 in the first
|M0|× (|M0|−1) phases. Note that |M0|× (|M0|−1) ≤
|M0| × (|M | − |M0|). Since the global messages for
nodes in t0 are scheduled according to Table 3, for
each t0,n → t0,m, 0 ≤ n 6= m < |M0|, there exists a
phase in the first |M0| × (|M0| − 1) phases such that
t0,n is a receiver of a global message while t0,m is a
sender of a global message. Thus, all local messages in
t0, t0,n → t0,m, 0 ≤ n 6= m < |M0|, can be sched-
uled in the the first |M0| × (|M0| − 1) phases.



Input: Results from global message scheduling that identify which phases are used to
realize ti → tj for all 0 ≤ i 6= j < k

Output: (1) the phase to realize each global message
ti,i1 → tj,j1 , 0 ≤ i1 < |Mi|, 0 ≤ j1 < |Mj |, 0 ≤ i 6= j < k.

(2) the phase to realize each local message
ti,i1 → ti,i2 , 0 ≤ i1 6= i2 < |Mi|, 0 ≤ i < k.

Step 1: Assign phases to messages in t0 → tj , 1 ≤ j < k.
1.a: For each t0 → tj , the receivers in tj are assigned as follows:

at phase p in the phases for t0 → tj , machine tj,(p−|M0|×(|M|−|M0|)) mod |Mj | is the receiver.

/* it can be verified that a sequence that enumerates the nodes in tj is repeated |M0| times
in phases for t0 → tj . */

1.b: For each t0 → tj , the senders in t0 are assigned according to the rotate pattern with
the base sequence t0,0, t0,1, ..., t0,|M0|−1.

Step 2: Assign phases to messages in ti → t0, 1 ≤ i < k.
2.a: Assign the receivers in ti → t0:

/*Step 1.b organizes the senders in t0 in such a way that every |M0| phases, all nodes in t0
appear as the sender once. We call |M0| phases a round */

The receiver pattern in ti → t0 is computed based on the sender pattern in t0 → tj according
to the mapping shown in Table 3. Round r has the same mapping as round r mod |M0|.
/* the mapping ensures that the local messages in t0 can be scheduled */

2.b: Assign the senders in ti using the broadcast pattern with order ti,0, ti,1, ..., ti,|Mi|−1.

Step 3: Schedule local messages in t0 in phase 0 to phase |M0| × (|M0| − 1).
message t0,i → t0,j , 0 ≤ i 6= j < |M0|, is scheduled at the phase where t0,i is the receiver
of a global message and t0,j is the sender of a global message.

Step 4: Assign phases to global messages in ti → tj , i > j and j 6= 0.
Use the broadcast pattern with receivers repeating pattern tj,0, tj,1, ..., tj,|Mj |−1 for each

sender ti,k and senders following the order ti,0, ti,1, ti,k, ..., ti,|Mi|−1.

Step 5: Schedule local messages in ti, 1 ≤ i < k in phases for ti → ti−1.
/* the last phase for ti → ti−1 is the last phase |M0| × (|M | − |M0|) − 1.*/
Steps 1 through 4 ensure that for each local message ti,i1 → ti,i2,
there is a phase in the phases for ti → ti−1 such that ti,i2 is the sender
of a global message and either ti,i1 is a receiver of a global message or no node in ti

is receiving a global message. This step schedules ti,i1 → ti,i2 in this phase.

Step 6: Use either the broadcast pattern or the rotate pattern for messages in ti → tj , i < j and i 6= 0.
/* scheduling of these global message would not affect the scheduling of local messages. */

Figure 4. The global and local message assignment algorithm

In Step 4, global messages in ti → tj , i > j and j 6=
0 are assigned using the broadcast scheme as follows:
ti,0 → tj,0, ..., ti,0 → tj,|Mj |−1, ti,1 → tj,0, ..., ti,1 → tj,|Mj |−1,

ti,|Mi|−1 → tj,0 , ..., ti,|Mi|−1 → tj,|Mj |−1.

In Step 5, we schedule local messages in sub-
trees ti, ti, 1 ≤ i < k, in the phases for ti → ti−1.
Note that |Mi−1| ≥ |Mi| and there are |Mi| × |Mi−1|
phases for messages in ti → ti−1, which is more than
the |Mi| × (|Mi| − 1) phases needed for local mes-
sages in ti. There are some subtle issues in this step.
First, all local messages are scheduled before assign-
ing phases to global messages in ti → tj , 1 ≤ i < j.
The reason that global messages in ti → tj , 1 ≤ i < j,

do not affect the local message scheduling in sub-
tree tn, 1 ≤ n < k, is that all local messages in tn are
scheduled in phases after the first phase for t0 → tn
(since |Mn| × |Mn−1| ≤ |M0| × |Mn|) while phases
for ti → tj , 1 ≤ i < j, are all before that phase. Sec-
ond, let us examine how exactly a communication
ti,i2 → ti,i1 is scheduled. From Step 4, the re-
ceiver in tj → ti, j > i, is organized such that,
at phase p, ti,(p−|M0|×(|M |−|M0|)) mod |Mi| is the re-
ceiver. From Step 1, receivers in t0 → ti are also aligned
such that at phase p, ti,(p−|M0|×(|M |−|M0|)) mod |Mi| is
the receiver. Hence, in the phases for ti → ti−1, ei-
ther ti,(p−|M0|×(|M |−|M0|)) mod |Mi| is a receiver



of a global message or no node in ti is receiv-
ing a global message. Thus, at all phases in ti → ti−1,
we can assume that the designated receiver is
ti,(p−|M0|×(|M |−|M0|)) mod |Mi| at phase p. In other
words, at phase p, ti,(p−|M0|×(|M |−|M0|)) mod |Mi|

can be scheduled as the sender of a local mes-
sage. Now, consider the sender pattern in ti → ti−1.
Since ti → ti−1 is scheduled using the broadcast pat-
tern, each ti,i1 is sending in |Mi−1| continuous phases.
Since the receiving pattern covers every node, ti,i2 ∈ ti,
in every |Mi| continuous phases and |Mi−1| ≥ |Mi|,
there exists at least one phase where ti,i1 is send-
ing a global message and ti,i2 is the designated re-
ceiver of a global message. Local message ti,i2 → ti,i1
is scheduled in this phase.

Finally, since all local messages are scheduled, we
can use either the broadcast scheme or rotate scheme
to realize messages in ti → tj , i < j and i 6= 0.

Theorem: The global and local message assignment
algorithm in Figure 4 produces phases that satisfy the
following conditions: (1) all messages in AAPC are re-
alized in |M0| × (|M | − |M0|) phases; and (2) there is
no contention within each phase.

Proof: From Lemma 2, all global messages are sched-
uled in |M0| × (|M | − |M0|) phases. Step 3 in the algo-
rithm indicates that local messages in t0 are scheduled
in |M0| × (|M0| − 1) phases. In Step 5, all local mes-
sages in ti are scheduled in the phases allocated to com-
munications in ti → ti−1. Thus, all messages in AAPC
are scheduled in |M0| × (|M | − |M0|) phases.

Lemma 4 shows that there is no contention among
global messages in each phase. Since local messages in
different subtrees cannot have contention and since in
one phase, at most one local message in a subtree is
scheduled, the contention can only happen between a
global message and a local message inside a subtree.
Yet, due to local message assignment done in steps 3
and 5 and from Lemma 3, all local messages have no
contention with global messages. Thus, there is no con-
tention within a phase. 2

Table 4 shows the result of the global and local mes-
sage assignment for the example in Figure 1. In this ta-
ble, we can assume t0,0 = n0, t0,1 = n1, t0,2 = n2,
t1,0 = n3, t1,1 = n4, and t2,0 = n5. We first deter-
mine the receiver pattern in t0 → t1 and t0 → t2. For
messages in t0 → t1, t1,(p−9) mod 2 is the receiver at
phase p, which means the receiver pattern from phase
0 to phase 5 are t1,1, t1,0, t1,1, t1,0, t1,1, t1,0. After that,
the rotation pattern is used to realize all messages in
t0 → t1 and t0 → t2. The results are shown in the
second column in the figure. In the second step, mes-
sages in t1 → t0 and t2 → t0 are assigned. Messages
in t2 → t0 occupy the first round (first three phases).

Since the sender pattern in the first round is t0,0, t0,1,
and t0,2, according to Table 3, the receiver pattern
should be t0,1, t0,2, t0,0. The receivers for t1 → t0 are as-
signed in a similar fashion. After that, the broadcast
pattern is used to realize both t1 → t0 and t2 → t0.
In Step 3, local messages in t0 are assigned in the first
3 × 2 = 6 phases according to the assignment of the
sender and receiver of global messages in each phase.
For example, in phase 0, local message t0,1 → t0,0 is
scheduled since node t0,0 is a sender of a global mes-
sage and t0,1 is a receiver of a global message. Note that
the mapping in Table 3 ensures that all local messages
in t0 can be scheduled. In Step 4, t2 → t1 is sched-
uled with a broadcast pattern. In Step 5, local mes-
sages in t1 and t2 are scheduled. The local messages in
t1 are scheduled in phases for t1 → t0, that is, from
phase 3 to phase 8. The alignment of the receivers in
t0 → t1 and t2 → t1 ensures that each machine in t1
appears as the designated receiver in every |M1| = 2
phases starting from the first phase for t0 → t1. No-
tice that in phase 6, the designated receiver is t1,1. In
t1 → t0, each node in t1 is the sender for |M0| = 3
consecutive phases and the receiver pattern in t1 cov-
ers every node in every 2 phases. All local messages in
t1 can be scheduled. In this particular example, mes-
sage t1,0 → t1,1 is scheduled at phase 7 where t1,0 is
a (designated) receiver of a global message and t1,1 is
a sender of a global message, and t1,1 → t1,0 is sched-
uled at phase 4. Finally, in Step 6, we use the broad-
cast pattern for messages in t1 → t2.

5. Implementation Issues

We develop an automatic routine generator that
takes the topology information as input and automat-
ically produces a topology-specific MPI Alltoall rou-
tine that is built on top of MPI point-to-point primi-
tives. The routine is intended to be used when the mes-
sage size is large. The software currently works with
LAM/MPI [8].

To be optimal, the AAPC phases must be separated
to preserve the contention-free schedule. A simple way
to achieve this is to add a barrier between each phase.
Using barriers, however, would incur substantial syn-
chronization overheads unless special hardware for the
barrier operation such as the Purdue PAPERS [2] is
available.

In our implementation, we use a pair-wise synchro-
nization scheme. When two messages a → b in phase p

and c → d in phase q have contention, p < q, the pair-
wise synchronization makes sure that these two mes-
sages do not occur at the same time by introducing
a synchronization message from node a to node c af-



Table 4. Results of global and local message assignment for the cluster in Figure 1

global messages local messages
phase t0 → {t1 , t2} t1 → {t2, t0} t2 → {t0, t1} t0 t1 t2

0 t0,0 → t1,1 t1,0 → t2,0 t2,0 → t0,1 t0,1 → t0,0

1 t0,1 → t1,0 t1,1 → t2,0 t2,0 → t0,2 t0,2 → t0,1

2 t0,2 → t1,1 t2,0 → t0,0 t0,0 → t0,2

3 t0,0 → t1,0 t1,0 → t0,2 t0,2 → t0,0

4 t0,1 → t1,1 t1,0 → t0,0 t0,0 → t0,1 t1,1 → t1,0

5 t0,2 → t1,0 t1,0 → t0,1 t0,1 → t0,2

6 t0,0 → t2,0 t1,1 → t0,0

7 t0,1 → t2,0 t1,1 → t0,1 t2,0 → t1,0 t1,0 → t1,1

8 t0,2 → t2,0 t1,1 → t0,2 t2,0 → t1,1

ter message a → b. Message c → d is performed after
node c receives the synchronization message. Some syn-
chronization messages may not be necessary as the or-
dering can be derived from other synchronization mes-
sages. Such synchronizations are referred to as redun-
dant synchronizations. For example, assume that mes-
sage m1 must synchronize with message m2 and with
another message m3. If message m2 also needs to syn-
chronize with message m3, then the synchronization
from m1 to m3 can be removed.

Our implementation computes the required synchro-
nizations as follows. For every communication at a
phase, we check if a synchronization is needed for ev-
ery other communication at later phases and build a
dependence graph. After deciding all synchronization
messages for all communications, we compute and re-
move redundant synchronizations in the dependence
graph. In code generation, synchronization messages
are added for all the remaining edges in the depen-
dence graph. This way, the AAPC algorithm maintains
a contention-free schedule while minimizing the num-
ber of synchronization messages.

6. Experiments

We evaluate the scheduling scheme by compar-
ing our automatically generated routine with the
original routine in LAM/MPI [8] and a recent im-
proved MPI Alltoall implementation in MPICH [18].
LAM/MPI implements all-to-all by simply post-
ing all nonblocking receives and sends and then wait-
ing for all communications to finish. Let N denote
the number of nodes in the system, and i → j de-
note the communication from node i to node j.
In this simple algorithm, the order of communica-
tions for node i is i → 0, i → 1, ..., i → N − 1.
The improved MPICH implementation uses differ-
ent techniques and adapts based on the message size
and the number of nodes in the system. For mes-
sages where 256 < msize ≤ 32768, a similar ap-
proach to that of LAM is used except that the or-
der of communications for node i is i → i + 1,
i → i + 2, ..., i → (i + N − 1) mod N . For mes-

sages larger than 32768, and when the number
of nodes is a power of two, MPICH uses a pair-
wise algorithm where node i sends and receives from
node i ˆ j at step j (1 ≤ j < N). When the num-
ber of nodes is not a power of two, a ring algo-
rithm is used. In this case, at step j, node i sends to
node i + j and receives from node i − j. Both pair-
wise and ring algorithms finish AAPC in N − 1
steps.

We use LAM/MPI 6.5.9 in the experiments. The
MPICH implementation is slightly modified to work
with LAM/MPI. The experiments are performed on
a 32-node Ethernet switched cluster. The nodes of the
cluster are Dell Dimension 2400 with a 2.8MHz P4 pro-
cessor, 128MB of memory, and 40GHz of disk space.
All machines run Linux (Fedora) with 2.6.5-1.358 ker-
nel. The Ethernet card in each machine is Broadcom
BCM 5705 with the driver from Broadcom. These ma-
chines are connected to Dell PowerEdge 2224 and Dell
PowerEdge 2324 100Mbps Ethernet switches.
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Figure 5. Topologies used in the experiments

The topologies used in the experiments are shown
in Figure 5. Part (a) of the figure is a 24-node cluster
connected by a single 2324 switch. Both parts (b) and
(c) represent a 32-node cluster where 8 nodes are con-
nected to each of the 2224 switches. We will refer to
these topologies as topology (a), topology (b), and topol-
ogy (c).

We compare our algorithm against LAM/MPI and
MPICH in terms of the average completion or ex-
ecution time and the actual aggregate throughput.



The completion times reported are the averages of
three executions. In each execution, 10 iterations of
MPI Alltoall are measured and the average execution
time for each invocation of the routine is recorded.

msize LAM MPICH Ours

8KB 29.7ms 30.7ms 56.5ms

16KB 61.4ms 58.1ms 71.4ms

32KB 128.2ms 117.6ms 86.0ms

64KB 468.8ms 309.7ms 217.7ms

128KB 633.7ms 410.0ms 398.0ms

256KB 1157ms 721ms 715ms
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Figure 6. Results for topology (a)

Figures 6, 7, and 8 show the results for topologies
(a), (b), and (c), respectively. Notice that for different
topologies, the communication completion time is very
different. This is because different topologies create dif-
ferent types of bottleneck links and different loads on
the bottleneck links. The overall performance of LAM
is poor, which can be attributed to the simple algo-
rithm that does not perform any scheduling and re-
sults in severe network contention when the message
size is large. MPICH has an advantage over LAM as it
utilizes a number of different algorithms based on the
message size. Although these algorithms perform a lim-
ited form of message scheduling, they do not consider
the contention in the network links. Therefore, the per-
formance of MPICH depends heavily on the network
topology. As shown in the results in Figure 8 for topol-
ogy (c), MPICH has a similar performance to LAM.

Unlike LAM and MPICH, our generated routine of-
fers consistent better results when the message size is
sufficiently large. This demonstrates the superiority of
our algorithm in exploiting network bandwidths. To
elaborate, consider the results for topology (a) in Fig-
ure 6. When message sizes are 32KB and 64KB, the
generated routine performs significantly better than
LAM and MPICH. For example, when the message

msize LAM MPICH Ours

8KB 199ms 155ms 212ms

16KB 403ms 308ms 341ms

32KB 848ms 613ms 632ms

64KB 1827ms 1374ms 1428ms

128KB 3338ms 2989ms 2595ms

256KB 6550ms 5405ms 4836ms
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Figure 7. Results for topology (b)

size is 64KB, the completion time for LAM is 468.8ms,
309.7ms for MPICH, and 217.7ms for our generated
routine, which constitutes a speed up of 115% over
LAM and 42.3% over MPICH. Note that when the mes-
sage size is larger than 32KB, the automatically gen-
erated routine uses a similar algorithm for this topol-
ogy to the ring algorithm in MPICH. The difference
is that pair-wise synchronizations are inserted between
the phases in our algorithm to eliminate the contention
in end nodes. Without the synchronizations, a lim-
ited form of node contention exists, which is shown
in the experiment when the message sizes are 32KB

and 64KB. For message sizes > 128KB, the contention
in the switch becomes the dominant factor, and both
the generated routine and MPICH perform similarly.
Topologies (b) and (c) is different from topology (a) in
that there are bottleneck links between switches, which
indicates that the contention in the bottleneck link may
have a larger impact than that in the switches. In this
case, the generated routines, which use the scheduling
scheme that eliminates link contention, have a larger
advantage when the message size is large. For exam-
ple, when the message size is 128KB, the generated
routine achieves a speed up of 28.6% over LAM and
15.2% over MPICH on topology (b) and a speed up of
21% over LAM and 30% over MPICH on topology (c).



msize LAM MPICH Ours

8KB 242ms 238ms 271ms

16KB 495ms 476ms 443ms

32KB 1034ms 958ms 868ms

64KB 2127ms 2061ms 1700ms

128KB 4080ms 4379ms 3372ms

256KB 8375ms 8210ms 6396ms
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Figure 8. Results for topology (c)

7. Conclusion

In this paper, we introduce a message scheduling al-
gorithm for AAPC on Ethernet switched clusters. We
demonstrate that our AAPC algorithm can utilize net-
work bandwidths more effectively than existing AAPC
implementations in LAM/MPI and MPICH. The pro-
posed AAPC algorithm can be applied to other net-
works with a tree topology.
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