
An Empirical Approach for Efficient All-to-All Personalized

Communication on Ethernet Switched Clusters ∗

Ahmad Faraj Xin Yuan

Department of Computer Science, Florida State University, Tallahassee, FL 32306

{faraj, xyuan}@cs.fsu.edu

Abstract

All–to–all personalized communication (AAPC) is
one of the most commonly used communication patterns
in parallel applications. Developing an efficient AAPC
routine is difficult since many system parameters can af-
fect the performance of an AAPC algorithm. In this pa-
per, we investigate an empirical approach for automat-
ically generating efficient AAPC routines for Ethernet
switched clusters. This approach applies when the appli-
cation execution environment is decided, and it allows ef-
ficient customized AAPC routines to be created. Exper-
imental results show that the empirical approach gener-
ates routines that consistently achieve high performance
on clusters with different network topologies. In many
cases, the automatically generated routines out-perform
conventional AAPC implementations to a large degree.

Keywords: All–to–all personalized communication,
Ethernet switched cluster, empirical technique, clus-
ter computing, MPI.
Technical areas: MPI, cluster computing.

1. Introduction

All–to–all personalized communication (AAPC) is
one of the most common communication patterns in
high performance computing. In AAPC, each node in
a system sends a different message of the same size
to every other node. The Message Passing Interface
(MPI) routine that realizes AAPC is MPI Alltoall [14].
AAPC appears in many high performance applications,
including matrix transpose, multi-dimensional convolu-
tion, and data redistribution.

Switched Ethernet is the most widely used local–
area–network (LAN) technology. Many Ethernet–
switched clusters of workstations are used to per-

∗ This work is partially supported by NSF grants ANI-0106706,
CCR-0208892, and CCF-0342540.

form high performance computing. For such clusters to
be effective, communications must be carried out as ef-
ficiently as possible.

Although a large number of AAPC algorithms have
been proposed [1, 5, 8, 9, 12, 16, 18, 21], developing
an efficient AAPC routine is still a challenging task.
The main challenge comes from the fact that many
system parameters can significantly affect the perfor-
mance of an AAPC algorithm. These system parame-
ters include operating system context switching over-
heads, the ratio between the network and the processor
speeds, the switch design, the amount of buffer mem-
ory in switches, and the network topology. These pa-
rameters are difficult to model, and it is virtually im-
possible for the routine developer to make the right
choices for different platforms.

The AAPC routines in existing communication li-
braries such as MPICH [15, 19] and LAM/MPI [11]
are implemented before the application execution en-
vironment is decided. As a result, these routines do
not sufficiently incorporate the knowledge of the sys-
tem parameters. For example, topology specific algo-
rithms cannot be used since the routines are imple-
mented before the topology is decided. Hence, although
these routines correctly carry out the AAPC operation
on different platforms, they cannot achieve high per-
formance in many cases.

In this paper, we investigate an empirical approach
for automatically generating efficient AAPC routines
for Ethernet switched clusters. This approach applies
when the application execution environment is decided.
Since the AAPC routines are finalized after the exe-
cution environment is fixed, architecture specific algo-
rithms can be considered. Furthermore, while it is dif-
ficult to model system parameters, the overall impact
of the system parameters on AAPC performance can
be measured empirically. By utilizing the platform spe-
cific information and employing the empirical approach
to select the best implementations, it is possible to cre-
ate an efficient customized AAPC routine for a partic-

ular platform.

We implemented an empirical based AAPC routine
generator for Ethernet switched clusters. The genera-
tor includes a module that takes topology information
as input and produces topology specific AAPC imple-
mentations. In addition, the generator also maintains
an extensive set of topology independent AAPC im-
plementations that can potentially achieve high per-
formance in different situations. The implementations
in the final customized AAPC routine are selected from
the topology independent and topology specific imple-
mentations using an empirical approach.

We present AAPC algorithms maintained in the
generator and describe the method to generate the cus-
tomized AAPC routines. We carried out extensive ex-
periments on Ethernet switched clusters with many
different network topologies. The results indicate that
the generated routines consistently achieve high per-
formance on clusters with different network topologies.
In many cases, the generated routines out-perform con-
ventional AAPC implementations, including the ones
in LAM/MPI [11] and a recently improved MPICH
[19], to a large degree.

The rest of the paper is organized as follows. Section
2 describes the related work. Section 3 discusses the
network and performance models. Section 4 presents
AAPC algorithms. Section 5 describes the procedure
to generate the customized routines. Section 6 reports
experimental results. Finally, the conclusions are pre-
sented in Section 7.

2. Related Work

AAPC has been extensively studied due to its im-
portance. A large number of optimal AAPC algorithms
for different network topologies with different network
models were developed. Many of the algorithms were
designed for specific network topologies that are used
in parallel machines, including hypercube [9, 21], mesh
[1, 8, 16, 18], torus [12], k-ary n-cube [21], and fat tree
[4]. Topologies independent AAPC algorithms were
proposed in [8, 19]. Heuristic algorithms were devel-
oped for AAPC on irregular topologies [13]. A frame-
work for AAPC that is realized with indirect commu-
nications was reported in [10]. Efficient AAPC schedul-
ing schemes for clusters connected by a single switch
was proposed in [17]. While the existing AAPC algo-
rithms take some aspects of the architecture into con-
sideration, they may not achieve the best performance
in practice since other system parameters may also af-
fect the performance. This paper is not concerned with
a particular AAPC algorithm, instead, it focuses on us-
ing an empirical approach to obtain customized AAPC

routines that are efficient in practice. The empirical
technique has been applied successfully to various com-
putational library routines [6, 22]. This approach has
also been applied to tune one-to-all and one-to-many
types of collective communications [20]. The issues in
one-to-all and one-to-many communications are differ-
ent from those in AAPC.

3. Performance model

We will describe the cost model that we use to es-
timate the communication performance of the algo-
rithms. Our model reflects the following costs:

1. Per pair communication time. The time taken to
send a message of size n between any two nodes
can be modeled as α + nβ, where α is the startup
overhead and β is the per byte transmission time.

2. Sequentialization overheads. Some algorithms par-
tition AAPC into a number of phases. A commu-
nication in a phase can only start after the com-
pletion of some communications in the previous
phases. This sequentialization may limit the par-
allelism in AAPC. We use the notation θ to denote
the sequentialization overheads between 2 phases.
For an algorithm that realizes AAPC in m phases,
the sequentialization overheads is (m − 1)θ.

3. Synchronization overheads. Many AAPC algo-
rithms introduce synchronization to reduce net-
work contention. There are two types of synchro-
nizations, the system wide synchronization and
the light-weight synchronization that ensures that
a communication happens before another. The
light-weight synchronization, also called light bar-
rier, is usually implemented by having one node
send a zero byte message to another node. We
will use δl to denote the cost of a light-weight syn-
chronization. The system wide synchronization
is typically implemented with a barrier opera-
tion (e.g. MPI Barrier in MPI). We will use δh

to denote the cost of a system wide synchroniza-
tion. In most cases, δh is larger than δl, which in
turn, is larger than θ.

4. Contention overheads. Contention can happen in
three cases: node contention when more than one
node tries to send messages to the same node, link
contention when more than one communication
uses the same links in the network, and switch con-
tention when the amount of data passing a switch
is more than what the switch can handle. We will
use γn to denote node contention, γl for link con-
tention, and γs for switch contention. We will use

γ = γn + γl + γs to denote the sum of all con-
tention costs.

Using this model, the time to complete a collective
communication is expressed in five terms: the startup
time term that is a multiple of α, the bandwidth term
that is a multiple of nβ, the sequentialization costs
term that is a multiple of θ, the synchronization costs
term that is a multiple of δl or δh, and the contention
costs term that is a combination of γn, γl, and γs.
Notice that some parameters in the model such as
the sequentialization costs and contention costs can
contribute significantly to the overall communication
costs; however, they are difficult to quantify. In prac-
tice, they cannot be measured accurately since they
are non-deterministic in nature. As a result, this cost
model is used only to justify the selection of algorithms,
but not to accurately predict the performance.

4. AAPC algorithms

This section describes the potential AAPC algo-
rithms, including both topology independent algo-
rithms and topology specific algorithms. We will as-
sume that p is the number of processes and n is the
message size.

4.1. Algorithms for small messages

In general, algorithms for AAPC with small mes-
sages are concerned about reducing the startup and
sequentialization costs while algorithms for large mes-
sages usually attempt to reduce the contention and the
synchronization costs. Since the startup and sequen-
tialization costs do not depend on the network topol-
ogy, all algorithms for small messages are topology in-
dependent.
Simple. This algorithm basically posts all receives and
all sends, starts the communications, and waits for all
communications to finish. Let i → j denote the com-
munication from node i to node j. The order of commu-
nications for node i is i → 0, i → 1, ..., i → p− 1. The
estimated time is (p − 1)α + (p − 1)nβ + γ. This algo-
rithm does not have sequentialization overheads since
all communications are carried out in one phase.
Spreading Simple. This algorithm is similar to the
simple algorithm except that the order of communi-
cations for node i is i → i + 1, i → i + 2, ...,
i → (i+p−1) mod p. By changing the order of commu-
nications, node contention may potentially be reduced.
The estimated time is the same as that for the sim-
ple algorithm except that the γ term might be smaller.

Simple and spreading simple algorithms minimize
the sequentialization costs. Another extreme is to min-

imize the startup costs. The Bruck[2] and recursive

doubling algorithms achieve this by minimizing the
number of messages that each node sends at the cost
of sending extra data.

Recursive doubling. This algorithm first performs
an all-gather operation, which distributes all data in
each node to all other nodes, and then copies the right
portion of the data to the receiving buffer. Thus, in
terms of communication, the recursive doubling algo-
rithm for AAPC is similar to the recursive doubling al-
gorithm for an all-gather operation with a message size
of pn. Details about this algorithm can be found in [19].
When the number of nodes is a power of two, the esti-
mated time is lg(p)α + (p − 1)pnβ + (lg(p) − 1)θ + γ.
When the number of processes is not a power of two,
the cost almost doubles [19].

Bruck. This is another lg(p)-step algorithm that sends
a less amount of extra data in comparison to the recur-
sive doubling algorithm. Details can be found in [2, 19].
When the number of processes is a power of two, the es-
timated time is lg(p)α + np

2
lg(p)β + (lg(p) − 1)θ + γ.

The startup costs term and the sequentialization costs
terms for this algorithm are exactly the same as those
for the recursive doubling algorithm. However, the
bandwidth term is smaller. This algorithm also works
with slightly larger overheads when the number of pro-
cesses is not a power of two.

Between the two extremes, the generator maintains
the 2D mesh and 3D mesh algorithms that repre-
sent compromises between minimizing the number of
messages and minimizing the number of phases. Like
the recursive doubling algorithm, both algorithms per-
form all-gather followed by a copy.

2D mesh. This algorithm applies only when p = x×y

where the processes are organized as a logical x × y

mesh. The algorithm tries to find the factoring such
that x and y are close to

√
p. In the worst case, x = 1,

y = p, and this algorithm degenerates to the simple al-
gorithm. Assume that x = y =

√
p, the all-gather op-

eration is first performed in the x dimension with mes-
sage size equals to pn and then in the y dimension with
message size equal to p

√
pn. Thus, the estimated time

is 2(
√

p − 1)α + (p − 1)pnβ + θ + γ. Compared to the
simple algorithm, this algorithm sends a smaller num-
ber of messages, but more data. The communications
in this algorithm are carried out in two phases result-
ing in a θ term in the estimated time. Compared to
the recursive doubling algorithm, this algorithm sends
a larger number of messages in a smaller number of
phases.

3D mesh. This algorithm applies only when p =
x×y× z where the processes are organized as a logical
x× y × z mesh. The algorithm tries to find the factor-

ing such that x, y, and z are close to 3
√

p. In the worst
case, it degenerates to the 2D mesh algorithm or even
the simple algorithm. Assume x = y = z = 3

√
p, the es-

timated time is 3(3
√

p − 1)α + (p − 1)pnβ + 2θ + γ.
Compared to the 2D mesh algorithm, this algorithm
sends a smaller number of messages, but consists of
three phases, which introduce a 2θ sequentialization
overhead.

4.2. Algorithms for large messages

To achieve high performance for AAPC with large
messages, one of the most important issues is to reduce
network contention in the system. However, it must be
noted that a contention free AAPC algorithm may not
achieve the best performance in practice since most
systems can handle a certain degree of contention ef-
fectively, which indicates that algorithms that allow a
limited degree of contention will likely offer the high-
est performance. Next, we will describe the AAPC al-
gorithms for large messages.

Ring. This algorithm partitions the all-to-all commu-
nication into p−1 steps (phases). In step i, node j sends
a messages to node (j + i) mod p and receives a mes-
sage from node (j − i) mod p. Thus, there is no node
contention if all phases execute in a lock-step fashion.
Since different nodes may finish a phase and start a
new phase at different times, this algorithm only re-
duces node contention. The ring algorithm does not
consider switch contention and link contention. The es-
timated time is (p−1)(α+nβ)+(p−2)θ+γn+γs +γl.

Ring with light barrier. In this algorithm, light bar-
riers are added between the communications in differ-
ent phases to eliminate potential node contention. Note
that we assume that node contention happens when
more than one node sends large data messages to a re-
ceiver and ignore the node contention caused by a large
data message and a tiny synchronization message. The
estimated time is (p− 1)(α + nβ) + (p− 2)δl + γs + γl.
Compared to the ring algorithm, this algorithm incurs
overheads for the light barriers while reducing the con-
tention overheads.

Ring with MPI barrier. The ring with light bar-
rier algorithm allows the phases to proceed in an asyn-
chronous manner which may cause too many data to
be injected into the network. In this algorithm, MPI
barriers are added between two phases, which makes
the phases execute in a lock-step fashion resulting in
a less likely switch contention since the total amount
of data in the network at a given time is less than
the amount of data transferred in one phase. The esti-
mated time is (p − 1)(α + nβ) + (p − 2)δh + γl. Com-
pared to the ring with light barrier algorithm, this al-

gorithm increases synchronization overheads while re-
ducing the contention overheads.

Ring with N MPI barriers. Adding a barrier be-
tween every two phases may be an over-kill and may
result in the network being under-utilized since most
networks and processors can effectively handle a cer-
tain degree of contention. The ring with N MPI bar-
riers algorithm adds a total of N , 1 ≤ N ≤ p − 2,
barriers in the whole communication. An MPI bar-
rier is added every p−1

N+1
phases. This allows the con-

tention overheads and the synchronization overheads
to be compromised. The estimated time for this algo-
rithm is (p − 1)(α + nβ) + Nδh + γn + γs + γl. This
family of algorithms contains p−2 different algorithms
(the potential value for N being 1..p − 2): Ring with

N = 1 MPI barriers, Ring with N = 2 MPI bar-

riers, ..., Ring with N = p − 2 MPI barriers algo-
rithms. These algorithms are implemented as one rou-
tine with an algorithm parameter N .

Pair. This algorithm only works when the number of
processes is a power of two. This algorithm partitions
the all-to-all communication into p − 1 steps (phases).
In step i, node j exchanges a message with node j ⊕ i

(exclusive or). The estimated time is the same as that
for the ring algorithm. However, in the pair algorithm,
each node interacts with one other node in each phase
compared to two in the ring algorithm. The reduction
of the coordination among the nodes may improve the
overall communication efficiency. Similar to the ring
family algorithms, we have pair with light barrier,
pair with MPI barrier, and pair with N MPI bar-

riers algorithms.

The ring family and the pair family algorithms
try to remove node contention and indirectly reduce
other contention overheads by adding synchronizations
to slow down communications. These algorithms are
topology independent and may not be sufficient to
eliminate link contention since communications in one
phase may share the same link in the network. The
topology specific algorithm removes link contention by
considering the network topology.

Topology specific algorithm. We use a mes-
sage scheduling algorithm that we developed in [5].
This algorithm finds the optimal message schedul-
ing for a system with any number of Ethernet switches.
The idea is to partition the all–to–all communica-
tion into phases such that (1) communications within
each phase do not have contention, and (2) a mini-
mum number of phases are used to complete the com-
munication. To prevent communications in different
phases from affecting each other, light weight barri-
ers are added. Details about this algorithm can be
found in [5]. The estimated time for this algorithm de-

pends on the topology.

5. Generating AAPC routines

Armed with the algorithms described in the previous
section, the automatic AAPC routine generator uses an
empirical approach to determine the best AAPC imple-
mentations for a particular platform and for different
ranges of message sizes. The generator produces a cus-
tomized AAPC routine in three steps.

1. The topology specific implementation is generated
using the topology information. After this step,
the topology specific routine is treated the same
as other topology independent routines.

2. The best implementations are determined for a
set of message sizes, which includes 1B, 64B,
256B, 1KB, 2KB, 4KB, 8KB, 16KB, 32KB, 64KB,
128KB, and 256KB. For each message size, the
best implementation is selected by running all
algorithms for the size and empirically measur-
ing the performance. The performance measure-
ment follows the approach in Mpptest [7], which
is shown in Figure 1.

MPI Barrier(MPI COMM WORLD);
start = MPI Wtime();
for (count = 0; count < ITER NUM; count ++) {

alltoall simple(...);
}
elapsed time = MPI Wtime() - start;

Figure 1. Measuring AAPC performance.

3. The exact message sizes that warrant the
changes of algorithms are determined in this
step. The generator logically partitions mes-
sage sizes into ranges including (1B, 64B),
(64B, 256B), ..., (128KB, 256KB). The sys-
tem assumes the same algorithm for message
sizes ≥ 256KB. The system examines each range
(s, e). If the same implementation is associ-
ated with both s and e, then the implementa-
tion is selected for the whole range (s, e). If s

and e are associated with different implementa-
tions, let Is be the implementation associated
with s and Ie be the implementation associ-
ated with e. The generator will determine the
size msize, s ≤ msize ≤ e, that the algo-
rithm should change from Is to Ie, that is, Is

is selected for range (s, msize) and Ie is se-
lected for range (msize, e). A binary search algo-
rithm is used to determine msize. For each point
in the binary search, the performance of both Is

and Ie is measured and compared. Once imple-
mentations are decided for the different ranges
of message sizes, the generator uses this infor-
mation to produce the final customized rou-
tine.

6. Experiments

S1

n31n17n16

S0

(b)

n15n1n0

S0

n0 n1 n7

S2

n16 n17 n23

S0

n15n1n0

(a)

S1

n8 n9 n15 n24 n25 n31

S3

(c)

Figure 2. Topologies used in the experiments

The experiments are performed on Ethernet-
switched clusters. The nodes in the clusters are
Dell Dimension 2400 with a 2.8GHz P4 proces-
sor, 128MB of memory, and 40GHz of disk space. All
machines run Linux (Fedora) with the 2.6.5-1.358 ker-
nel. The Ethernet card in each machine is Broadcom
BCM 5705 with the driver from Broadcom. These ma-
chines are connected to Dell Powerconnect 2224 and
Dell Powerconnect 2324 100Mbps Ethernet switches.

We conducted experiments on different topologies
that are depicted in Figure 2. Figure 2 (a) is a 16-
node cluster connected by a single switch. Clusters con-
nected by a single Ethernet switch is common in prac-
tice. Figure 2 (b) is a 32-node cluster, connected by 2
switches with 16 nodes on each switch. Part (c) is a 32-
node cluster of 4 switches with 8 nodes on each switch.
We will refer to these topologies as topology (a), topol-
ogy (b), and topology (c).

We compare the performance of the generated
AAPC routine with MPI Alltoall in LAM/MPI 6.5.9
and a recently improved MPICH 1.2.6 [19]. The gener-
ated routines use LAM/MPI point–to–point (send and
recv) primitives. We will use the term GENERATED
to denote the automatically generated routines. To
make a fair comparison, we port the MPI Alltoall rou-
tine in MPICH to LAM/MPI and use MPICH-LAM
to denote the ported routine.

6.1. The generated routines and genera-

tion time

Table 1 shows the algorithms selected in the au-
tomatically generated routines for the topologies in
Figure 2. For comparison purposes, the algorithms

Table 1. Algorithms in the generated routines

Topo. Generated AAPC routine
(a) Simple (1 ≤ n < 8718)

Pair with light barrier (8718 ≤ n < 31718)
Pair w. N=1 MPI barriers (31718 ≤ n < 65532)
Pair w. N=5 MPI barriers (65532 ≤ n < 72032)
Pair w. MPI barrier (72032 ≤ n)

(b) Bruck (1 ≤ n < 112)
Simple (112 ≤ n < 29594)
Ring w. light barrier (29594 ≤ n < 144094)
Ring w. N=1 MPI barriers (144094 ≤ n)

(c) Bruck (1 ≤ n < 112)
Simple (112 ≤ n < 581)
Ring (581 ≤ n < 8656)
Ring w. light barrier (8656 ≤ n < 65532)
Topology specific (65532 ≤ n)

Table 2. Algorithms in LAM/MPI and MPICH

LAM/MPI MPICH
Simple Bruck (1 ≤ n ≤ 256)

Spreading Simple (257 < n ≤ 32K)
Pair (32K < n and p is a power of 2)
Ring (32K < n and p is not a power of 2)

in LAM/MPI and MPICH are depicted in Table 2.
From Table 1, we can see that for different topolo-
gies, the optimal algorithms for AAPC are quite dif-
ferent, which indicates that the one-scheme-fits-all ap-
proach in MPICH and LAM cannot achieve good per-
formance for different topologies. As will be shown in
the performance study, while the MPICH AAPC al-
gorithms are more sophisticated than the LAM/MPI
AAPC algorithm, they perform worse for some topolo-
gies. This indicates that, to achieve good AAPC per-
formance, the ability to adapt to the network topology
is at least as important as finding good algorithms. The
topology specific routine was selected for topology (c).
For other topologies, using system wide synchroniza-
tions is effective in reducing network contention with-
out knowing the network topology.

The time for generating the tuned routine is 1040
seconds for topology (a), 8913 seconds for topology (b),
and 7294 seconds for topology (c). The tuning time
depends on many factors such as the number of al-
gorithms, the network topology, and how the perfor-
mance is measured. The time is in par with that for
other empirical approach based systems such as AT-
LAS [22]. Hence, like other empirical based systems,
our approach can be used when the routine tuning time
is relatively insignificant, e.g. when the application has
a long execution time, or when the application needs
to be executed repeatedly on the same system.

6.2. Performance

Figure 1 shows the code segment we use for measur-
ing the performance. The number of iterations in each

execution is varied according to the message size: more
iterations are used for small message sizes to offset
the clock inaccuracy. For the message ranges 1B-3KB,
4KB-12KB, 16KB-96KB, 128KB-384KB, and 512KB-,
we use 100, 50, 20, 10, and 5 iterations, respectively.
The results are the averages of three executions. We
use the average time among all nodes as the perfor-
mance metric. Before we present the results, we will
point out two general observations in the experiments.
For all example topologies:

1. Ignoring the minor inaccuracy in performance
measurement, the generated AAPC routine never
performs worse than the best of LAM, MPICH,
and MPICH-LAM.

2. There exist some ranges of message sizes such
that GENERATED out-performs each of LAM,
MPICH-LAM, and MPICH by at least 40%.

Figure 3 shows the performance on topology (a). For
small messages (1 ≤ n ≤ 256), both LAM and GEN-
ERATED use the simple algorithm, which offers higher
performance than the Bruck algorithm used in MPICH.
When the message size is 512 bytes, MPICH changes
to the spreading simple algorithm, which has similar
performance to the simple algorithm. GENERATED,
LAM, and MPICH-LAM have similar performance for
message sizes in the range from 257 bytes to 9K bytes.
As shown in Figure 3 (c), GENERATED significantly
out-performs other schemes when the message size is
larger than 16KB. For example, when the message size
is 128KB, the time for GENERATED is 200.1ms and
the time for MPICH (the best among LAM, MPICH,
and MPICH-LAM) is 348.2ms, which constitutes a 74%
speedup.

The results for topology (b) are shown in Figure 4.
For this topology, the simple algorithm in LAM per-
forms reasonably well for medium and large sized mes-
sages. In many cases, the simple algorithm performs
better than the algorithms used in MPICH. GEN-
ERATED and LAM have similar performance for a
very wide range of medium and large messages. For
small messages, GENERATED offers higher perfor-
mance than LAM in some cases and MPICH in other
cases. For example, for the message size of 1 byte, the
time for GENERATED and MPICH-LAM is 0.66ms
while the time for LAM is 2.40ms. GENERATED im-
proves over LAM by 264%. For the message size of 256
bytes, the time for GENERATED and LAM is 7.6ms
while the time for MPICH-LAM is 11.2ms. GENER-
ATED improves over MPICH-LAM by 47%.

The results for topology (c) are shown in Fig-
ure 5. For small messages, the trend is similar to
that for topology (b). For medium and large mes-

0

1

2

3

4

5

6

7

1 32 64 128 256 512 1K

T
im

e
(m

s)

Message size (bytes)

MPICH
LAM

MPICH-LAM
GENERATED

(a) Small message sizes

0

10

20

30

40

50

60

2K 3K 4K 6K 8K 12K 16K 24K

T
im

e
(m

s)

Message size (bytes)

MPICH
LAM

MPICH-LAM
GENERATED

(b) Medium message sizes

0

100

200

300

400

500

600

700

800

32K 48K 64K 128K 256K

T
im

e
(m

s)

Message size (bytes)

MPICH
LAM

MPICH-LAM
GENERATED

(c) Large message sizes

Figure 3. Performance for topology (a)

0

5

10

15

20

25

30

35

40

1 32 64 128 256 512 1K

T
im

e
(m

s)

Message size (bytes)

MPICH
LAM

MPICH-LAM
GENERATED

(a) Small message sizes

0

100

200

300

400

500

600

700

800

2K 3K 4K 6K 8K 12K 16K 24K

T
im

e
(m

s)

Message size (bytes)

MPICH
LAM

MPICH-LAM
GENERATED

(b) Medium message sizes

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

32K 48K 64K 128K 256K

T
im

e
(m

s)

Message size (bytes)

MPICH
LAM

MPICH-LAM
GENERATED

(c) Large message sizes

Figure 4. Performance for topology (b)

sages, GENERATED performs noticeably better than
LAM, MPICH, and MPICH-LAM. For a very wide
range of medium and large sized messages, GENER-
ATED is about 10% to 35% faster than the best among
LAM, MPICH, and MPICH-LAM. For example, for the
message size of 32KB, the time for GENERATED is
842.7ms while the time for LAM (the best among LAM,
MPICH, and MPICH-LAM) is 977.2ms: a 16% im-
provement. For the message size of 128KB, the time for
GENERATED is 3451ms while the time for MPICH-
LAM is 4590ms: a 33% improvement.

There are some interesting points to be noted in the
performance results. First, while MPICH attempts to
improve the AAPC performance by using more sophis-
ticated AAPC algorithms, our experimental results do
not give clear indications whether the MPICH AAPC
routine is better than or worse than the simple AAPC
implementation in LAM. This is because an AAPC al-
gorithm achieves good performance only on particular
platforms. Hence, to consistently achieve high perfor-
mance on different platforms, it is essential that differ-
ent AAPC algorithms are used. Such adaptability can-
not be supported in conventional AAPC implementa-
tions, but can be provided with an empirical approach.

Second, an AAPC implementation that takes into con-
sideration some of the parameters may not be suffi-
cient to yield good performance. MPICH attempts im-
prove AAPC performance by considering some param-
eters. The AAPC routine in MPICH is able to adapt
based on message sizes. However, as shown in the per-
formance study, the performance of the MPICH AAPC
routine is far from optimal. To consistently achieve high
performance, the aggregated effects of all major sys-
tem parameters must be considered. This problem is
addressed in an empirical approach.

7. Conclusion

Traditional AAPC implementations, such as the
ones in MPICH and LAM/MPI, suffer from an inherent
limitation: the architecture specific information can-
not be fully incorporated. This limitation is due to the
fact that the routines are implemented before the pro-
gram execution environment is decided. An empirical
approach overcomes this limitation and can produce
AAPC routines that are adaptable to different plat-
forms. We report an automatic AAPC routine genera-
tor that is based on an empirical approach and demon-

0
5

10
15
20
25
30
35
40
45

1 32 64 128 256 512 1K

T
im

e
(m

s)

Message size (bytes)

MPICH
LAM

MPICH-LAM
GENERATED

(a) Small message sizes

0
100
200
300
400
500
600
700
800
900

2K 3K 4K 6K 8K 12K 16K 24K

T
im

e
(m

s)

Message size (bytes)

MPICH
LAM

MPICH-LAM
GENERATED

(b) Medium message sizes

0

2000

4000

6000

8000

10000

12000

32K 48K 64K 128K 256K

T
im

e
(m

s)

Message size (bytes)

MPICH
LAM

MPICH-LAM
GENERATED

(c) Large message sizes

Figure 5. Performance for topology (c)

strate that an empirical approach is able to generate
AAPC routines that offer higher performance than con-
ventional AAPC implementations. It must be noted
that different timing mechanisms can result in very dif-
ferent tuned routines. For the empirical approach to be
effective, it is crucial to develop good timing mecha-
nisms that accurately measure the performance.

References

[1] S. Bokhari. Multiphase Complete Exchange: a Theoret-
ical Analysis. IEEE Trans. on Computers, 45(2), 1996.

[2] J. Bruck, C. Ho, S. Kipnis, E. Upfal, and D. Weath-
ersby. Efficient Algorithms for All-to-all Communi-
cations in Multiport Message-Passing Systems. IEEE
TPDS, 8(11):1143-1156, Nov. 1997.

[3] H. G. Dietz, T. M. Chung, T. I. Mattox, and T.
Muhammad. Purdue’s Adapter for Parallel Execution
andRapidSynchronization:TheTTL PAPERSDesign.
Technical Report, Purdue University School of Electri-
cal Engineering, January 1995.

[4] V. V. Dimakopoulos and N.J. Dimopoulos. Communi-
cations in Binary Fat Trees. In IEEE ICDCS, 1995.

[5] A. Faraj and X. Yuan. Message Scheduling for All–to–
all Personalized Communication on Ethernet Switched
Clusters. In IEEE IPDPS, April 2005.

[6] M. Frigo and S. Johnson. FFTW: An Adaptive Soft-
ware Architecture for the FFT. In Proceedings of the In-
ternational Conference on Acoustics, Speech, and Signal
Processing (ICASSP), volume 3, page 1381, 1998.

[7] W. Gropp and E. Lusk. Reproducible Measurements
of MPI Performance Characteristics. ANL/MCS-P755-
0699, Argonne National Labratory, June 1999.

[8] S.E. Hambrusch, F. Hameed, and A. A. Khokhar. Com-
munication Operations on Coarse-Grained Mesh Archi-
tectures.Parallel Computing, Vol. 21, pp. 731-751, 1995.

[9] S. L. Johnsson and C. T. Ho. Optimum Broadcast-
ing and Personalized Communication in Hypercubes.
IEEE Transactions on Computers, 38(9):1249-1268,
Sept. 1989.

[10] L. V. Kale, S. Kumar, K. Varadarajan. A Framework
for Collective Personalized Communication. In IEEE
IPDPS, April, 2003.

[11] LAM/MPI Parallel Computing. http://www.lam-
mpi.org/.

[12] C. C. Lam, C. H. Huang, and P. Sadayappan. Optimal
Algorithms forAll–to–All PersonalizedCommunication
on Rings and two dimensional Tori. JPDC, 43(1):3-13,
1997.

[13] W. Liu, C. Wang, and K. Prasanna. Portable and Scal-
able Algorithms for Irregular All–to–all Communica-
tion. In IEEE ICDCS, 1996.

[14] The MPI Forum. The MPI-2: Extensions to the Message
Passing Interface, July 1997.

[15] MPICH - A Portable Implementation of MPI.
http://www.mcs.anl.gov/mpi/mpich.

[16] N.S. Sundar, D. N. Jayasimha, D. K. Panda, and P. Sa-
dayappan. Hybrid Algorithms for Complete Exchange
in 2d Meshes. International Conference on Supercom-
puting, pages 181–188, 1996.

[17] A. Tam and C. Wang. Efficient Scheduling of Complete
Exchange on Clusters. In ISCA PDCS, Aug. 2000.

[18] R. Thakur and A. Choudhary. All-to-all Communica-
tion on Meshes with Wormhole Routing. 8th Interna-
tional Parallel Processing Symposium (IPPS), 1994.

[19] R. Thakur, R. Rabenseifner, and W. Gropp. Optimiz-
ingofCollectiveCommunicationOperations inMPICH.
ANL/MCS-P1140-0304, Math. and Computer Science
Division, Argonne National Laboratory, March 2004.

[20] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra. Automati-
cally TunedCollective Communications. InSC’00: High
Performance Networking and Computing, 2000.

[21] E. A. Varvarigos and D. P. Bertsekas. Communica-
tion Algorithms for Isotropic Tasks in Hypercubes and
Wraparound Meshes. Parallel Computing, Volumn 18,
pages 1233-1257, 1992.

[22] R. Clint Whaley and Jack Dongarra. Automatically
tuned linear algebra software. In SC’98: High Perfor-
mance Networking and Computing, 1998.

