
Bandwidth Efficient All-to-All Broadcast

on Switched Clusters

Ahmad Faraj Pitch Patarasuk Xin Yuan

Department of Computer Science, Florida State University

Tallahassee, FL 32306

{faraj, patarasu, xyuan}@cs.fsu.edu

Abstract

We develop an all-to-all broadcast scheme that
achieves maximum bandwidth efficiency for clusters
with tree topologies. Using our scheme for clusters with
cut-through switches, any tree topology can support all-
to-all broadcast as efficiently as a single switch connect-
ing all machines when the message size is sufficiently
large. Since a tree topology can be embedded in almost
any connected network, it follows that efficient all-to-
all broadcast can be achieved in almost all topologies,
regular or irregular. To perform all-to-all broadcast ef-
ficiently on clusters with store-and-forward switches,
the algorithm must minimize the communication path
lengths in addition to maximizing bandwidth efficiency.
This turns out to be a harder algorithmic problem. We
develop schemes that give solutions to common cases
for such systems. The performance of our algorithms
is evaluated on Ethernet switched clusters with differ-
ent topologies. The results confirm our theoretical find-
ing. Furthermore, depending on the topology, our algo-
rithms sometimes out-perform the topology-unaware al-
gorithms used in MPI libraries, including MPICH and
LAM/MPI, to a very large degree.

1 Introduction

Clusters of workstations, which employ a pile of in-
expensive commodity workstations and networking de-
vices, have become a common environment for high
performance computing. High-end clusters are usually
connected by cut-through switches such as Myrinet [6]
while low-end clusters may still use store-and-forward
switches such as Ethernet. We will use the term cut-
through/store-and-forward cluster to refer to a cluster
with cut-through/store-and-forward switches. In a cut-
through cluster, the communication time of a message

is virtually independent of the communication path
length. In a store-and-forward cluster, the communica-
tion time of a message may be significantly affected by
the path length of the message. In this paper, we con-
sider homogeneous clusters with an arbitrary (regular
or irregular) topology, where all links and all machines
are the same.

All–to-all broadcast, also known as all-gather [13], is
one of the most common collective communication op-
erations in high performance computing. In this oper-
ation, each node sends the same data to all other nodes
in the system. The Message Passing Interface routine
that realizes this operation is MPI Allgather [13]. Let
the message size be msize, the number of machines be
P , and the link bandwidth be B. By definition, each
node must receive a total of (P −1)×msize data from
other nodes. Thus, the minimum time to complete the

operation is (P−1)×msize

B
. This is the absolute lower

bound on the time to complete all–to–all broadcast.
Regardless how the network is connected, no all–to–all
broadcast algorithm can have a shorter time.

We develop an algorithm that achieves maximum
bandwidth efficiency for all–to–all broadcast on tree
topologies. Using this algorithm, all–to–all broadcast
on a cut-through cluster with any tree topology has a

completion time close to (P−1)×msize

B
, the lower bound.

In other words, using this algorithm, the reduction in
the network connectivity in a tree topology as com-
pared to the system connected by a single switch al-
most results in no performance degradation for this
operation. Since a tree topology can be embedded in
most connected networks, it follows that the nearly op-
timal all-to-all broadcast algorithm can be obtained for
most topologies, regular or irregular, by first finding a
spanning tree of the network and then applying our al-
gorithm. Note that some routing schemes may prevent
a tree from being formed in a connected network. Our
approach cannot be applied to such systems.

In order to perform all-to-all broadcast efficiently on
a store-and-forward cluster, the algorithm must mini-
mize the communication path lengths in addition to
achieving maximum bandwidth efficiency. This turns
out to be a much harder algorithmic problem. While
we cannot prove formally, we suspect this problem to
be NP-complete. We develop schemes that give solu-
tions to special cases that are common in practice. No-
tice that even for store-and-forward clusters, the ma-
jor issue is still bandwidth efficiency. This is particu-
larly true for clusters connected by a small number of
switches, which are common in practice.

Based on our algorithms, we develop an automatic
routine generator that takes the topology information
as input and generates topology-aware all-gather rou-
tines. We evaluate the performance of the algorithms
using an Ethernet switched cluster with different net-
work topologies. Our performance study confirms that
our algorithms achieve nearly optimal performance on
clusters with different topologies. Using our algo-
rithms, the performance of all–to–all broadcast on mul-
tiple switches is similar to that on a single switch. The
study also shows that the topology-unaware algorithms
used in MPICH[12] and LAM/MPI[11] are not effec-
tive on some topologies. Depending on the topology,
our algorithms sometimes out-perform the MPICH and
LAM/MPI routines to a very large degree (e.g. by a
factor of more than 10).

The rest of the paper is organized as follows. Section
2 discusses the related work. Section 3 describes the
network model and the problem definition. Section 4
details the schemes to solve the problems. Section 5
reports experimental results. Finally, the conclusions
are presented in Section 6.

2 Related work

All–to–all broadcast has been extensively studied.
Many all–to–all broadcast algorithms were designed for
specific network topologies that are used in parallel ma-
chines, including hypercube [8, 20], mesh [15, 18, 21],
torus [21], k-ary n-cube [20], fat tree [10], and star [14].
Work in [9] optimizes MPI collective communications,
including MPI Allgather, on wide area networks. The
study in [3] investigates efficient all-to-all broadcast
on SMP clusters. Work in [22] explores the design
of NIC-based all-gather with different algorithms over
Myrinet/GM. Some efforts [16, 19] have focused on
developing algorithms for different message sizes, and
some of these algorithms have been incorporated in the
recent MPICH library [12]. In [2], the authors devel-
oped an efficient all-gather algorithm for small mes-
sages. The study in [1] compares a dissemination-based

all-gather with the recursive doubling algorithm [19] on
Ethernet and Myrinet. The most related research to
this work is presented in [7] where nearly optimal all-
to-all broadcast schemes were developed for clusters
connected by one or two switches. Yet, as indicated
in [7] and [5], the algorithm proposed for the general
topology in [7] is not always optimal for clusters with
more than two switches. In this paper, we develop
schemes that allow performing nearly optimal all-to-all
broadcast on almost all topologies.

3 Network model and problem defini-

tion

We consider homogeneous clusters of workstations
that consist of a number of workstations connected by
switches. A cluster can be either a cut-through cluster
or a store-and-forward cluster. We assume that all ma-
chines and all links in the cluster are the same. Each
switch may connect to a number of workstations and
to some other switches. The links operate in the du-
plex mode that supports simultaneous communications
on both directions of the link with the full bandwidth.
Each switch provides a crossbar connectivity for its in-
put and output ports.

We focus on bandwidth efficient all–to–all broad-
cast schemes, which can be applied when the message
size is sufficiently large. Hence, we will assume that
the message size, msize, is sufficiently large such that
communication time is dominated by the bandwidth
term. Other communication overheads, such as soft-
ware startup overheads, are relatively insignificant and
are ignored. Let the path length for the message be d.
In a cut-through cluster with no network contention,
the communication time for an msize-byte message is
roughly msize

B
. Note that the communication time in a

cut-through cluster is independent of d. Let pkt be the
packet size in a store-and-forward cluster. The commu-
nication time for an msize-byte message in a store-and-
forward cluster is roughly msize

B
+(d−1)× pkt

B
. Depend-

ing on the value of msize and pkt, the term (d−1)× pkt

B
,

introduced by the store-and-forward mechanism, may
significantly affect the overall communication time.

In a topology where there are multiple paths be-
tween two nodes, the routing issue needs to be consid-
ered. However, the major result of this paper is that
a tree topology can support the all–to–all broadcast
as efficiently as any other topology. Since our tech-
niques are developed for the tree topology, where there
is only a single path between each pair of nodes and
the routing issues do not exist, we will focus on the
tree topology and ignore the routing issues in the rest
of the paper. Figure 1 shows an example cluster that

has a tree topology. Some networks such as Ethernet
only support the tree topology [17] while others such
as Myrinet can support arbitrary irregular topologies.

The network can be modeled as a directed graph
G = (V, E) with nodes V corresponding to switches
and machines and edges E corresponding to unidirec-
tional channels. Let S be the set of switches in the
network and M be the set of machines in the network.
V = S ∪ M . Let u, v ∈ V , a directed edge (u, v) ∈ E

if and only if there is a link between node u and node
v. We will call the physical connection between node u

and node v link (u, v). Thus, link (u, v) corresponds to
two directed edges (u, v) and (v, u) in the graph. For
the tree topology, we assume that the switches can only
be intermediate nodes while the machines can only be
leaves. A switch as a leaf in the tree will not partici-
pate in any communication and, thus, can be removed
from the graph. We assume that there is at least one
switch in the tree and the root of the tree is a switch.
The root switch is only used to identify the starting
point for the Depth First Search (DFS) and postorder
traversal algorithms. The location of the root switch is
otherwise insignificant in our algorithms.

The terminologies used in this paper are defined
next. A message, u → v, is a communication trans-
mitted from node u to node v. A pattern is a set of
messages. We will use the notion u → v → w →
... → x → y to represent the pattern that consists of
messages u → v, v → w, ..., and x → y. The no-
tion path(u, v) denotes the set of directed edges in the
unique path from node u to node v. For example, in
Figure 1, path(n1, n4) = {(n1, S1), (S1, S0), (S0, n4)}.
The path length is defined as the number of switches a
message travels through. For example, the path length
of n1 → n4 is 2. Two messages, u1 → v1 and u2 → v2,
are said to have contention if they share a common
edge. A pattern is contention free if there is no con-
tention between each pair of the messages in the pat-
tern. |S| denotes the size of set S.

n0

n2

n4

n1

n3

n5

S0 S1

Figure 1. An example switched cluster with a
tree topology

3.1 The logical ring algorithm

As discussed in the introduction, the minimum time
to complete all-to-all broadcast with a message size of

msize is (P−1)×msize

B
. We will show that this lower

bound can be approached for clusters with a tree topol-
ogy, which implies that this bound can be approached
for almost any topology since a tree topology can be
embedded in most connected networks. Our schemes
use the logical ring algorithms, which were proposed for
single-switch clusters and two-switch clusters [7, 12].
Let the cluster contain P machines, numbered as n0,
n1, ..., nP−1. Let F : {0, ..., P − 1} → {0, ..., P − 1}
be a one-to-one mapping function. Thus, nF (0), nF (1),
..., nF (P−1) is a permutation of n0, n1, ..., nP−1. The
algorithm works by repeating the following logical ring
pattern P − 1 times:

nF (0) → nF (1) → ... → nF (P−1) → nF (0).

In the first iteration, each node nF (i), 0 ≤ i ≤ P −1,
sends its own data to node nF ((i+1) mod P) and receives
data from node nF ((i−1) mod P). In subsequent itera-
tions, each node nF (i) forwards what it received in the
previous iteration to node nF ((i+1) mod P) (and receives
from node nF ((i−1) mod P)). After P − 1 iterations, all
data from all nodes reach all nodes in the system. Note
that in each iteration, each node must copy the data it
receives into the right place of the output buffer.

3.2 Problem definition

All logical ring algorithms operate in the same fash-
ion. The key for a logical ring algorithm to achieve
good performance is to find the logical ring pattern
that carries out communications as efficiently as possi-
ble. This is the problem we consider in this paper.

Let the slowest communication time in the logical
ring pattern be tslowest, the total communication time
is (P − 1) × tslowest. In a cut-through cluster, if there
exists a mapping such that the logical ring pattern is
contention free, tslowest ≈

msize
B

and the total time for

the all-to-all broadcast operation is T ≈ (P−1)×msize

B
,

which is the theoretical lower bound. Hence, for a cut-
through cluster, the challenge is to find a mapping such
that the logical ring pattern is contention free. This
problem is stated as follows.
Problem 1 (finding a contention free logical ring): Let
G = (S ∪ M, E) be a tree graph. Let the number
of machines in the system be P = |M |, and let the
machines in the system be numbered as n0, n1, ...,
nP−1. The problem is to find a one-to-one mapping
function F : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} such

that the logical ring pattern nF (0) → nF (1) → ... →
nF (p−1) → nF (0) is contention free.

For clusters with store-and-forward switches, assum-
ing that the logical ring pattern is contention free
and that the longest path length in the pattern is d,
tslowest ≈ (d − 1) pkt

B
+ msize

B
, and the total time is

T ≈ (P−1)×msize

B
+ (d − 1) × (P − 1) × pkt

B
. Hence,

to minimize the communication time, the logical ring
must (1) be contention free, and (2) have the smallest
d, the longest path length in the ring. This problem is
stated as follows.
Problem 2 (Finding a contention free logical ring
with the smallest maximum path length): Let G =
(S ∪ M, E) be a tree graph. Let the number of
machines in the system be P = |M |, and let the
machines in the system be numbered as n0, n1, ...,
nP−1. The problem is to find a mapping func-
tion F : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} such
that (1) the logical ring pattern nF (0) → nF (1) →
... → nF (P−1) → nF (0) is contention free, and (2)
max 0 ≤ i ≤ P−1 {length(nF (i) → nF ((i+1) mod P))} is
minimized.

Clearly, Problem 1 is a sub-problem of Problem 2.
Unfortunately, we are only able to develop a polyno-
mial time solution for Problem 1, but not for Problem
2. We strongly suspect that Problem 2 is NP-complete
although we cannot prove it formally. We consider a
special case of Problem 2 that is common in practice
and establish the necessary and sufficient conditions
for a cluster to have a contention-free logical ring with
a maximum path length of 2. It must be noted that
obtaining a contention free logical ring pattern is the
major issue even in store-and-forward clusters. The
topologies in most practical clusters have small diame-
ters. The solution for Problem 1 can be directly applied
to such clusters to obtain nearly optimal performance.

Since the network contention can significantly af-
fect the performance of the logical ring algorithm, us-
ing the logical ring algorithm without carefully map-
ping the machines, as in MPICH[19], may result in
extremely poor performance. Consider the example in
Figure 1. Using the logical ring algorithm in MPICH
[19], where the mapping function is the identity func-
tion, the communication pattern in each iteration is
n0 → n1 → n2 → n3 → n4 → n5 → n0. The
link from S0 to S1 is used three times in an itera-
tion. The proper mapping may have a logical ring
of n0 → n2 → n4 → n5 → n3 → n1 → n0. In
this case, the MPICH algorithm would perform roughly
three times worse than the algorithm with a properly
mapped logical ring due to the contention on link (S0,
S1). This behavior is observed in our performance eval-
uation.

4 Constructing contention free logical

rings

4.1 Problem 1

Let G = (S∪M, E) be a tree graph. Let the number
of machines in the system be P = |M | and the ma-
chines in the system be numbered as n0, n1, ..., nP−1.
We will call this numbering scheme global numbering.
We assume that all switches are intermediate nodes in
the tree. Let G′ = (S, E′) be a subgraph of G that
only contains switches and the links between switches.
The algorithm, which will be called Algorithm 1, de-
termines the mapping for a contention free logical ring
pattern in two steps.

• Step 1: Number the switches based on the Depth
First Search (DFS) of G′. An example DFS num-
bering of the switches is shown in Figure 2. We
will denote the switches as s0, s1, ..., s|S|−1, where
si is the ith switch arrived in DFS traversal of G′.

• Step 2: Let the Xi machines connecting to switch
si, 0 ≤ i ≤ |S| − 1, be numbered as ni,0, ni,1, ...,
ni,Xi−1. We will call this local numbering. A one-
to-one mapping function (and its reverse function)
can be established between the global numbering
and local numbering. Xi may be 0 when no ma-
chine is connected to si. The contention free log-
ical ring is n0,0 → ... → n0,X0−1 → n1,0 → ... →
n1,X1−1 → ...n|S|−1,0 → ... → n|S|−1,X|S|−1−1 →
n0,0 (we will formally prove this). The mapping
function F for the above logical ring pattern can
be obtained using the mapping function from the
global numbering to the local numbering.

0

1

2 3

4

5

6 7

Figure 2. DFS numbering

Lemma 1: Let G′ = (S, E′) be the subgraph of G that
contains only switches and links between switches. Let
s0, s1, ..., s|S|−1 be the DFS ordering of the switches,
where si is the ith switch arrived in DFS traversal of
G′. Communications in the following pattern are con-
tention free: s0 → s1 → ... → s|S|−1 → s0.

Proof: An example is depicted in Figure 2, which shows
the contention free pattern 0 → 1 → 2 → ... → 7 → 0.
We will formally prove this lemma by induction.

Base case: When there is one switch, there is no com-
munication and thus no contention.

Induction case: Assume that the communication pat-
tern in a k-switch system does not have contention.
Consider a (k + 1)-switch system with switches s0, s1,
..., sk. Removing the last switch sk from the system, we
obtain a k-switch system. The DFS ordering of the k-
switch system is exactly the same as the (k +1)-switch
system with sk removed. Hence, from the induction
hypothesis, the communication pattern in the k-switch
system, that is, s0 → s1 → ... → sk−1 → s0, does
not have contention. Now, let us consider the (k + 1)-
switch system where we need to prove that pattern
s0 → s1 → ... → sk → s0 does not have contention.
The pattern in the (k+1)-switch system adds two com-
munications sk−1 → sk and sk → s0 to and removes
one communication sk−1 → s0 from the pattern in the
k-switch system. Thus, to prove that the pattern in the
(k + 1)-switch system is contention free, we only need
to show that communications sk−1 → sk and sk → s0

do not introduce contention.

Based on the way DFS operates, switch sk must be
the child of one of the switches along the path from s0

to sk−1. Hence, there are three cases to be considered:
sk is a child of sk−1, sk is a child of s0, and sk is a child
of a switch s′i along the path from s0 to sk−1. These
three cases are depicted in Figure 3. In the proof of
the three cases, we use the following two facts.

• Fact (a): the link directly connecting switch sk

does not have contention with all communications
in the k-switch system. This is because the link is
not part of the k-switch system.

• Fact (b): from the induction hypothesis, commu-
nication sk−1 → s0 does not have contention with
communications in pattern s0 → s1 → ... → sk−1.

S0

Sk

Sk−1

S’1

S0

Sk

Sk−1

Sk−1

Sk

S0

S’i

S’1

Case (1) Case (2) Case (3)

Figure 3. Three cases

Now, let us consider the three cases in Figure 3.

• Case (1): Switch sk is a child of sk−1. sk−1 → sk

does not have contention with any other commu-
nications (Fact (a)). sk → s0 is the concatena-
tion of two paths: sk → sk−1 and sk−1 → s0.
sk → sk−1 does not have contention with all other
communications (Fact (a)) and sk−1 → s0 does
not introduce contention (Fact (b)).

• Case (2): Switch sk is a child of some node s′i along
the path from s0 to sk−1. In this case, sk−1 → sk

is the concatenation of two paths: sk−1 → s′i and
s′i → sk. sk−1 → s′i does not have contention with
all other communications since it is a sub-path of
sk−1 → s0 (Fact (b)). Path s′i → sk does not cause
contention (Fact (a)). Similar arguments apply to
sk → s0.

• Case (3): Switch sk is a child of s0. This follows
similar arguments as in Case (1).

Thus, the pattern s0 → s1 → ... → s|S|−1 → s0 is
contention free. 2

Theorem 1: The logical ring pattern resulted from
Algorithm 1 is contention free.

Proof: Algorithm 1 basically obtains the logical ring
mapping by (1) grouping all machines connected to a
switch together, and (2) ordering the groups of ma-
chines based on the DFS order of the switches. To
prove that the mapping is contention free, we must
show that all links between a machine and a switch
are contention free and all links between switches are
contention free. Since each node sends and receives ex-
actly once in the logical ring pattern, a link between
a machine and a switch is used in both direction ex-
actly once, which indicates that there is no contention
on these links. For the links between switches, since
the algorithm orders the group of machines (connected
to each switch) based on the DFS order, it can be eas-
ily shown that the usage of the inter-switch links in the
logical ring is exactly the same as the pattern described
in Lemma 1. From Lemma 1, there is no contention on
the links between switches. 2

Using Algorithm 1, the contention free logical ring
can be found for a tree topology. In networks with
an arbitrary topology, this contention free logical ring
can be found by first finding a spanning tree and then
applying Algorithm 1. The two steps may be combined
by using the DFS tree to realize the logical ring.

4.2 Problem 2

To solve Problem 2, we must find a contention free
logical ring with the smallest maximum path length.

We were not able to either design a polynomial algo-
rithm that exactly solves Problem 2 or prove this prob-
lem to be NP-complete. Thus, we have to leave this
general problem open. However, we develop a scheme
that gives the exact solution for a common case when
each switch in the cluster directly connects to either
more machines than switches or the same number of
machines and switches. This special case is significant
also because such a cluster is the only type that allows
a contention free logical ring with a maximum path
length of 2 to be formed. The result can be used by a
network designer to design a store-and-forward cluster
with efficient all-to-all broadcast support. Note that
logical rings with a maximum path length of 1 only
exist for clusters connected by a single switch. For
clusters with multiple switches, the smallest possible
maximum path length in the logical ring is 2 since for
each switch, there exists at least one node that com-
municates with a node in another switch. The path
length for this communication is at least 2. The fol-
lowing theorem summarizes the results.

Theorem 2: For a tree graph G = (S ∪ M, E), there
exists a contention free logical ring with a maximum
path length of 2 if and only if the number of machines
directly connected to each switch is larger than or equal
to the number of switches directly connected to the
switch.

Proof: We will first prove the necessary condition. As-
sume that there exists a switch, A, that directly con-
nects to more switches than machines. Let us refer
to the switches directly connected to A as A-neighbor
switches. Let all nodes connecting to A through an A-
neighbor switch form an A-neighbor subtree. Clearly,
the number of A-neighbor subtrees is equal to the num-
ber of A-neighbor switches. Under the assumption that
all switches are intermediate nodes in the tree topol-
ogy, each A-neighbor subtree contains at least one ma-
chine. Since there are more A-neighbor subtrees than
the number of machines attached to A, in the logi-
cal ring, at least one machine in an A-neighbor sub-
tree must send a message to a machine in another A-
neighbor subtree. The path length of this communica-
tion is at least 3 (2 A-neighbor switches plus A). Hence,
to have a logical ring with a maximum path length of 2,
each switch must directly connect to at least the same
number of machines as the number of switches.

Before we prove the sufficient condition, let us in-
troduce the concept of a logical array pattern of a tree
(or a subtree), which is rooted at a switch. We also
use the term the logical array of a switch to denote the
logical array of the tree rooted at the switch. Let the
tree (subtree) contain Y nodes, n0, n1, ..., and nY −1.
Let F : {0, ..., Y − 1} → {0, ..., Y − 1} be a one-to-

one mapping function. The logical array pattern is
nF (0) → nF (1) → ... → nF (Y −1). We distinguish the
first machine, nF (0), and the last machine, nF (Y −1),
of the logical array from other machines in the logical
array since these two machines must be treated differ-
ently. From the definition, we can see that the logical
array differs from the logical ring by excluding the last
communication nF (Y −1) → nF (0).

First machine
Last machine

subtrees

Root

Figure 4. Constructing the logical array for an
intermediate switch
Now, let us consider the sufficient condition. As-

sume that the number of machines directly connected
to each switch is equal to or larger than the number
of switches directly connected to the switch. The algo-
rithm performs a postorder traversal of the switches.
For each subtree associated with a non-root switch,
the algorithm finds the logical array pattern that sat-
isfies the following three conditions: 1) the logical ar-
ray pattern is contention free, 2) the maximum path
length in the pattern is less than or equal to 2, and
3) the first machine, nF (0), and the last machine,
nF (Y −1), are directly connected to the root of the sub-
tree. More specifically, the algorithm processes each
non-root switch as follows.

• Case (1): the switch does not directly connect to
other switches except its parent. If the switch is
directly connected to a single node n0, then the
first node as well as the last node in the subtree is
n0, and the logical array pattern is n0. When the
switch is directly connected to X nodes, n0, ...,
nX−1, the first node is n0, the last node is nX−1,
and the array pattern is n0 → n1 → ... → nX−1.
It can be verified that the three conditions are met.

• Case (2): the switch directly connects to some
switches other than its parent and some machines.
We will use the term “sub-switches” to denote the
switches directly connected to the current switch
other than its parent. Each sub-switch is the root
of a subtree. Since the switches are processed fol-
lowing the postorder traversal order, the logical ar-
rays for all sub-switches have been computed. Let
the current switch connect to i sub-switches, de-
noted as t0, t1, ..., ti−1, and j machines, denoted as

m0, m1, ..., mj−1. We have j ≥ i+1 since the par-
ent switch does not count in i. For sub-switch tk,
0 ≤ k ≤ i−1, we will use tFk , tLk , and tFk → ... → tLk
to denote the first machine, the last machine, and
the logical array respectively. The logical array
for the current switch is m0 → tF0 → ... → tL0 →
m1 → tF1 → ... → tL1 → m2 → ... → mi−1 →
tFi−1 → ... → tLi−1 → mi → mi+1 → ... → mj−1.

This case is depicted in Figure 4.

Now let us examine the three conditions for the
logical array of the current switch. It is obvious
that the logical array of the current switch is con-
tention free if the logical arrays of the sub-switches
are contention free. The path length for messages
mk → tFk , 0 ≤ k ≤ i−1, and messages tLk → mk+1,
0 ≤ k ≤ i − 1, is exactly 2 since tF

k and tLk are at-
tached to the sub-switch tk. Since the logical ar-
rays of sub-switches tFk → ... → tLk , 0 ≤ k ≤ i − 1,
have a maximum path length of 2, the logical ar-
ray pattern of the current switch has a maximum
path length of 2. The first machine m0 and the last
machine mj−1 are attached to the current switch.
Hence, all three conditions are met.

The processing of root is similar except that we con-
struct the logical ring pattern instead of the logical ar-
ray pattern. Let the root directly connect to i top level
sub-switches and j machines. When the root does not
connect to sub-switches, i = 0. Let us denote the i

sub-switches as as t0, t1, ..., ti−1 and the j machines as
m0, m1, ..., mj−1. We have j ≥ i. For each sub-switch
tk, 0 ≤ k ≤ i − 1, we use tFk , tLk , and tFk → ... → tLk to
denote the first node, the last node, and the logical ar-
ray respectively. The logical ring pattern for the tree is
m0 → tF0 → ... → tL0 → m1 → tF1 → ... → tL1 → m2 →
... → mi−1 → tFi−1 → ... → tLi−1 → mi → mi+1 →
... → mj−1 → m0. Note that when i = j, tLi−1 sends to
m0 in the logical ring. Following similar arguments as
in Case (2), the ring pattern for the root is contention
free with a maximum path length less than or equal
to 2. Thus, when each switch connects to at least the
same number of machines as the number of switches,
a contention free logical ring with a maximum path
length of 2 can be constructed. 2

The proof of the sufficient condition is a construc-
tive algorithm. We will call this algorithm that finds
a 2-hop contention free logical ring Algorithm 2. Fig-
ure 5 shows the results of applying Algorithm 1 and
Algorithm 2 to an 8-machine cluster. As can be seen
from the figure, both mappings are contention free. Al-
gorithm 1 computes a logical ring that has a maxi-
mum hop of 4 (from node 7 to node 0 in Figure 5 (a))
while the logical ring computed using Algorithm 2 has

0

0

1 2 3

2 3 4 5 6 71

(a) Logical ring from algorithm 1

0

0 1 2 3

1

2

3

4

5

6

7

(b) Logical ring from algorithm 2

Figure 5. Logical rings from Algorithm 1 and
Algorithm 2

a maximum hop of 2 as shown in Figure 5 (b). For a
store-and-forward cluster, using a 2-hop logical ring is
expected to perform better than a 4-hop logical ring.

5 Experiments

We develop an automatic routine generator that
takes the topology information as input and generates,
based on the algorithms presented earlier, customized
topology-aware all–gather routines. In the experi-
ments, we examine the performance of the generated
routines on multiple topologies and compare it to the
performance of the all–gather routines in LAM/MPI
7.1.1 [11] and the recently improved MPICH 2-1.0.1
[12]. To realize the all-gather operation, LAM/MPI
uses an algorithm that performs a gather operation to
a root followed by a broadcast from the root to all
other nodes. The gather and broadcast operations are
performed using tree-based algorithms. Depending on
the message size and the number of nodes, MPICH
uses different algorithms to realize the all-gather oper-
ation [19]. Related to the setting in our experiments
where only medium and large sized messages are con-
sidered, in a 16-machine cluster, MPICH uses a recur-
sive doubling algorithm [19] when msize < 32KB and
the topology-unaware ring algorithm when msize ≥
32KB. In a 32-machine cluster, MPICH uses the re-
cursive doubling algorithm when msize < 16KB and
the topology-unaware ring algorithm when msize ≥
16KB. The topology-unaware ring algorithm is basi-
cally the logical ring algorithm with the logical ring
pattern of n0 → n1 → ... → nP−1 → n0.

MPI Barrier(MPI COMM WORLD);
start = MPI Wtime();
for (count = 0; count < ITER NUM; count ++) {

MPI Allgather(...);
}
elapsed time = MPI Wtime() - start;

Figure 6. Code segment for measuring
MPI Allgather performance.

S0

n0 n1 n2 n3

n4 n5 n6 n7

S3

S1 S2

n8 n9 n10 n11

n12 n13 n14 n15

n16 n17 n18 n19

n20 n21 n22 n23

n24

n27 n28 n29

n30

n31

n25

n26

n10n2 n18 n26

n3 n11 n19 n27

S1

n4 n12 n20 n28

n5 n21n13 n29

S2

n24

n25

n0 n8 n16

n1 n9 n17

S0

n7 n15 n23 n31

S3

n14

n30n6

n22

S3

S1 S2S0

n0 n1 n2

n3 n7

n8n4 n5 n6n9 n10

n11

n12 n13 n14

n15

S0

n0 n2 n4 n6

n8 n10 n12 n14

n1 n3 n5 n7

n9 n13 n15n11

S1

S0 S1 S2

n0 n4 n8 n12

n1 n5 n9 n13

S3

n2 n6 n10 n14

n3 n7 n11 n15

S0

n0 n1 n15

(a)

(b)

(c)

(d)

(e) (f)

Figure 7. Topologies used in the experiments

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

12
8K64

K

32
K

16
K8K4K

T
im

e
(m

s)

Message size

Topology (a)
Topology (b)
Topology (c)
Topology (d)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

12
8K64
K

32
K

16
K8K4K

T
im

e
(m

s)

Message size

Topology (a)
Topology (b)
Topology (c)
Topology (d)

 0

 50

 100

 150

 200

 250

12
8K64
K

32
K

16
K8K4K

T
im

e
(m

s)

Message size

Topology (a)
Topology (b)
Topology (c)
Topology (d)

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

12
8K64
K

32
K

16
K8K4K

T
im

e
(m

s)

Message size

LAM
MPICH-LAM

LR1

Figure 8. Performance of LR1, LAM, and
MPICH-LAM on topologies (a) to (d)

Our generated all–gather routines use LAM/MPI
7.1.1 point-to-point primitives and run over LAM/MPI
7.1.1. We use LR1 and LR2 to denote the routines ob-
tained from Algorithm 1 and Algorithm 2 respectively.
To report fair performance comparison, we port the
MPICH all–gather implementation to LAM/MPI. We
use MPICH-LAM to represent the ported all–gather
routine. We found that, in the newest MPICH, the
performance of the all–gather operation using native
MPICH and MPICH-LAM is very close. In the per-
formance evaluation, LR1 and LR2 are compared with
LAM and MPICH-LAM. We use the approach simi-
lar to Mpptest [4] to measure the performance of the
MPI Allgather routines. Figure 6 shows an exam-
ple code segment for measuring the performance. The
number of iterations is varied according to the message
size: more iterations are used for small message sizes
to offset the clock inaccuracy. For the message ranges
4KB-12KB, 16KB-96KB, and 128KB, we use 50, 20,
and 10 iterations respectively. The results are the av-
erages of three executions. We use the average time
among all nodes as the performance metric.

The experiments are performed on a 32-node Ether-
net switched cluster. The nodes of the cluster are Dell
Dimension 2400 with a 2.8MHz P4 processor, 128MB
of memory, and 40GHz of disk space. All machines run
Linux (Fedora) with 2.6.5-1.358 kernel. The Ethernet
card in each machine is Broadcom BCM 5705 with the
driver from Broadcom. These machines are connected
to Dell PowerConnect 2224 and Dell PowerConnect
2324 100Mbps Ethernet switches. Figure 7 shows the
topologies we used in the experiments. Parts (a) to (d)
of the figure represent clusters of 16 nodes connected
by 1, 2, and 4 switches with different topologies. Parts
(e) and (f) show 32-node clusters of 4 switches, each
having 8 machines attached. These two clusters have
exactly the same physical topology, but different node
assignments. We will refer to topologies in the figure
as topology (a), topology (b), topology (c), topology
(d), topology (e), and topology (f).

Figure 8 shows the performance of LAM, MPICH-
LAM, and LR1 on topologies (a) to (d). Figure 8 (a)
shows the performance of LAM. The LAM algorithm
has almost the same performance for topologies (a)-(d).
The tree-based algorithms used in the all–gather imple-
mentation do not exploit all network links and do not
create bottleneck links in all four topologies. However,
the network is under-utilized. As can be seen in Fig-
ure 8 (d), the LAM/MPI routine performs much worse
than MPICH and LR1. The results for MPICH are
shown in Figure 8 (b). MPICH changes the algorithm
when msize = 32KB. When msize < 32KB, MPICH
uses the recursive doubling algorithm, which has simi-

 0

 100

 200

 300

 400

 500

 600

12
8K64

K

32
K

16
K8K4K

T
im

e
(m

s)

Message size

LAM
MPICH-LAM

LR1

 0

 100

 200

 300

 400

 500

 600

12
8K64

K

32
K

16
K8K4K

T
im

e
(m

s)

Message size

LAM
MPICH-LAM

LR1

Figure 9. Performance of LR1, LAM, and
MPICH-LAM on topologies (e) and (f).

lar performance for all topologies. Using the topology-
unaware ring algorithm when msize ≥ 32KB, MPICH
provides very different performance for the four topolo-
gies. MPICH performs best on topology (a), where
the cluster is connected by a single switch. Topologies
(b), (c), and (d) result in different network contention,
which significantly affects the performance of MPICH.
Figure 8 (c) shows the results for LR1. We can see
that LR1 achieves very similar performance for all four
topologies, which is attributed to the ability of LR1
in finding the contention free logical ring on different
topologies. The performance of LR1 on all topologies is
similar to the performance of LR1 on the single switch
topology (topology (a)). This demonstrates the op-
timality of LR1 in terms of achieving nearly optimal
all-to-all broadcast performance on different topolo-
gies. Figure 8 compares LR1 with LAM and MPICH
on topology (d). As seen in the figure, LR1 performs
substantially better than LAM and MPICH. For ex-
ample, when the message size is 64KB, the completion
times for LR1, LAM, and MPICH-LAM are 116.9ms,
895.6ms, and 448.9ms respectively. This translates to
a 666.1% speedup over LAM and 284.0% over MPICH.

Figures 9 (a) and (b) show the performance results
for LAM, MPICH-LAM, and LR1 on topologies (e)
and (f) respectively. We can see the extreme poor
performance of LAM on both topologies. As shown
in Figure 9 (a), the topology-unaware ring algorithm
used in MPICH, when msize ≥ 16KB, achieves nearly
optimal performance (same as LR1) for this topol-
ogy. In this case, the topology-unaware ring algo-
rithm operates exactly the same as LR1. However,

msize LR1 Topo.(d) LR2 Topo.(d) LR1 Topo.(a)
(4-hop) (2-hop) (1-hop)

32KB 50.9ms 48.0ms 47.0ms
48KB 72.9ms 68.4ms 67.2ms
64KB 116.9ms 95.7ms 90.8ms
96KB 180.0ms 172.7ms 162.6ms
128KB 236.8ms 233.7ms 220.6ms

Table 1. LR1 .vs. LR2 on topology (d)

with the same physical topology and a different node
assignment in topology (f), the topology-unaware al-
gorithm performs much worse than LR1 as shown in
Figure 9 (b). This again shows that the performance
of MPICH depends heavily on the network configu-
ration. Unlike LAM and MPICH, LR1 achieves the
best performance for topologies (e) and (f). To illus-
trate, when the message size is 128KB, the completion
times for LR1, LAM, and MPICH-LAM on topology
(f) are 473.7ms, 5346ms, and 3595ms respectively. This
means that LR1 achieves a performance that is more
than 11 times better than LAM and almost 8 times
better than MPICH. The figures also show that LR1
performs better than the recursive doubling algorithm
when msize > 4KB.

Table 1 shows the impact of selecting a logical ring
with a shorter path length. For topology (d), LR1 re-
sults in a logical ring with a maximum path length of
4 hops, and LR2 results in a logical ring with a maxi-
mum path length of 2 hops. In addition to the results
of LR1 and LR2, the table also includes results for
topology (a), which is essentially a 1-hop ring. The
results for topology (a) is provided for references since
no logical ring algorithm can out-perform 1-hop ring.
There are two observations from the table. First, the
impact of path length on the performance is notice-
able, but not very large in comparison to the impact of
contention. Second, by minimizing the maximum path
length of the ring on the Ethernet switched cluster,
some performance improvement can be obtained. In
general, the 2-hop ring performs better than the 4-hop
ring, but worse than the 1-hop ring. Note that the the-
oretical lower bound time for all-to-all broadcast with
a message size of 64KB on a 16-node 100Mbps clus-
ter is 15×64×1024×8

100×106 = 78.6ms. Considering the pro-
tocol overheads in MPI and TCP/IP layers as well as
the software/hardware delays, the performance of LR2
(95.7ms) is very close to optimal.

6 Conclusion

In this paper, we develop a bandwidth efficient all-
to-all broadcast scheme for switched clusters. Using
the proposed scheme, a cut-through cluster with any
topology that has a tree embedding can support all-to-

all broadcast as efficiently as a single switch connect-
ing all machines. We also develop techniques that can
achieve good all-to-all broadcast performance on store-
and-forward clusters that are common in practice. This
paper posts an open question: is the problem of find-
ing a contention free logical ring with the smallest path
length on a tree topology NP-complete? We hope this
open problem can be solved in the near future.

References

[1] G. D. Benson, C. Chu, Q. Huang, and S. G. Caglar,
“A Comparison of MPICH Allgather Algorithms on
Switched Networks,” In Proceedings of the 10th Eu-
roPVM/MPI 2003 Conference, Venice, Italy, pages
335–343, September 2003.

[2] J. Bruck, C. Ho, S. Kipnis, E. Upfal, and D. Weath-
ersby, “Efficient algorithms for all-to-all communica-
tions in multiport messagepassing systems,” IEEE
Transactions on Parallel and Distributed Systems,
8(11), pages 1143–1156, November 1997.

[3] M. Golebiewski, R. Hempel, and J. L. Traff, “Algo-
rithms for Collective Communication Operations on
SMP Clusters,” In The 1999 Workshop on Cluster-
Based Computing held in conjunction with 13th ACM-
SIGARCH International Conference on Supercomput-
ing (ICS’99), page 1115, June 1999.

[4] W. Gropp and E. Lusk, “Reproducible Measurements
of MPI Performance Characteristics.” Tech. Report
ANL/MCS-P755-0699, Argonne National Labratory,
June 1999.

[5] J. Han and C. Han, “Efficient All-to-All Broad-
cast in Switch-Based Networks with Irregular Topol-
ogy,” The Fourth International Conference on High-
Performance Computing in the Asia-Pacific Region,
Beijing, China, pages 112–116, May 2000.

[6] Myricom homepage, http://www.myri.com.

[7] M. Jacunski, P. Sadayappan, and D.K. Panda, “All-
to-All Broadcast on Switch-Based Clusters of Work-
stations,” Proceedings of 1999 International Parallel
Processing Symposium, San Juan, Puerto Rico, April
1999.

[8] S. L. Johnsson and C. T. Ho, “Optimum Broadcast-
ing and Personalized Communication in Hypercubes”,
IEEE Transactions on Computers, 38(9):1249-1268,
Sept. 1989.

[9] T. Kielmann and R. F. H. Hofman and H. E. Bal
and A. Plaat and R.A. F. Bhoedjang, “MagPIe:MPI’s
Collective Communication Operations for Clustered
Wide Area Systems,” In Proceeding Seventh ACM
SIGPLAN Symposium on Principles and Practice of

Parallel Programming, Atlanta, GA, pages 131–140,
May 1999.

[10] S. Kumar and L. V. Kale, “Scaling All-to-All Mul-
ticast on Fat-tree Networks,” The 10th International
Conference on Parallel and Distributed Systems (IC-
PADS 2004), Newport Beach, CA, pages 205-214, July
2004.

[11] LAM/MPI Parallel Computing, Available at
http://www.lam-mpi.org.

[12] “MPICH – A Portable Implementation of MPI,”
Available at http://www.mcs.anl.gov/mpi/mpich.

[13] The MPI Forum, “The MPI-2: Extensions to the Mes-
sage Passing Interface,” Available at http://www.mpi-
forum.org/docs/mpi-20-html/mpi2-report.html.

[14] E. Oh and I. A. Kanj, “Efficient All-to-All Broadcast
Schemes in Distributed-Memory Parallel Computers,”
The 16th International Symposium on High Perfor-
mance Computing Systems and Applications (HPCS
’02), IEEE, pages 65-70, 2002.

[15] D.S. Scott, “Efficient All–to–All Communication Pat-
terns in Hypercube and Meshtopologies,” the Sixth
Distributed Memory Computing Conference, pages
398-403, 1991.

[16] A. Tam and C. Wang, “Efficient Scheduling of Com-
plete Exchange on Clusters,” the ISCA 13th Interna-
tional Conference on Parallel and Distributed Com-
puting Systems, August 2000.

[17] A. Tanenbaum, “Computer Networks”, 4th Edition,
2004.

[18] R. Thakur and A. Choudhary, “All-to-all Communi-
cation on Meshes with Wormhole Routing,” 8th Inter-
national Parallel Processing Symposium (IPPS), April
1994.

[19] R. Thakur, R. Rabenseifner, and W. Gropp, “Op-
timizing of Collective Communication Operations in
MPICH,” ANL/MCS-P1140-0304, Mathematics and
Computer Science Division, Argonne National Labo-
ratory, March 2004.

[20] E. A. Varvarigos and D. P. Bertsekas, “Commu-
nication Algorithms for Isotropic Tasks in Hyper-
cubes and Wraparound Meshes,” Parallel Computing,
18(11):1233-1257, 1992.

[21] Y. Yang and J. Wang, “Efficient all-to-all broadcast in
all-port mesh and torus networks,” Proceedings of 5th
IEEE International Symposium on High-Performance
Computer Architecture (HPCA-5), Orlando, FL, pages
290-299, January 1999.

[22] W. Yu, D. Buntinas, and D. K. Panda, “Scal-

able and High Performance NIC-Based Allgather over

Myrinet/GM,” TR-22, OSU-CISRC, April 2004.

