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Abstract

In this paper, we investigate the compiler algorithms to support compiled com-

munication in multiprocessor environments and study the benefits of compiled com-

munication assuming that the underlying network is an all–optical Time–Division–

Multiplexing (TDM) network. We present an experimental compiler, E–SUIF, that

supports compiled communication for High Performance Fortran (HPF) like programs

on all–optical TDM networks, describe and evaluate the compiler algorithms used in

E–SUIF. We further demonstrate the effectiveness of compiled communication on all–

optical TDM networks by comparing the performance of compiled communication with

that of a traditional communication method using a number of application programs.
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1 Introduction

In traditional high performance computing systems, communication optimizations are per-

formed either in the compiler by considering the communication requirement of the programs

or in the communication library by exploiting architectural features of the underlying network

to realize communication routines efficiently. In both cases, the optimizations are inherently

limited. Specifically, the optimizations in the compiler typically cannot exploit architectural

features of the network since the communication library usually hides the network details,

while the optimizations in the communication library cannot be performed across commu-

nication patterns since the communication library does not have the information about the

sequence of communication patterns in an application program. Compiled communication

overcomes these limitations and exploits more optimization opportunities.

In compiled communication, the compiler analyzes a program to determine its communi-

cation requirement. The compiler then uses the knowledge of the underlying network and

the communication requirements to manage network resources statically. Since a typical

network has limited resources and cannot efficiently support arbitrary communication pat-

terns, the compiler must partition the program into phases such that each phase contains a

fixed, pre–determined pattern that can be supported efficiently. The compiler then manages

the communications within each phase statically and inserts code at phase boundaries to

reconfigure the network to support the communications within each phase.

Compiled communication offers many advantages over traditional communication meth-

ods. First, by managing network resources at compile time, some runtime communication

overheads, such as buffer management, can be eliminated. Second, compiled communication

can use long–lived connections for communication and amortize the startup overhead over

a number of messages. Third, compiled communication can improve network resource uti-

lization by using off–line resource management algorithms. Last but not the least, compiled

communication can optimize arbitrary communication patterns (when the patterns can be

determined at the compile time) instead of a set of predefined collective communications
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supported by a communication library. Generally, compiled communication allows broader

program optimization in comparison to library based communication since compiled com-

munication is not limited to individual communication. The limitation of compiled commu-

nication is that it is effective only for the communication patterns that are known at compile

time. Studies [17] have shown that more than 99% of communication patterns in scientific

programs can be determined completely or parametrically at compile time. Only less than

1% are unknown at compile time. Thus, using the compiled communication technique is

likely to improve the overall communication performance for scientific programs.

All–optical interconnection networks are promising networks for future parallel comput-

ers. Multiplexing techniques, such as time–division multiplexing (TDM) [19, 25, 27] and

wavelength–division multiplexing (WDM) [3], are typically used to exploit the large band-

width in optical networks. While all–optical networks have the potential to provide large

bandwidth, dynamic all–optical communication requires an all–optical path to be established

before the data transmission starts. This connection management task places strict demands

on the control of the interconnection network. Specifically, the network control, be it cen-

tralized or distributed, is usually performed in the electronic domain and thus is very slow

in comparison to the large bandwidth supported by optical data paths. In this paper, we

attempt to use the compiled communication technique to reduce the connection management

overhead for the communication patterns that can be determined at compile time.

We study the compiler algorithms for supporting compiled communication in multipro-

cessor environments and demonstrate the benefits of compiled communication on all–optical

TDM networks. We present our experimental compiler, E–SUIF, which is an extension of

the Stanford SUIF(Stanford University Intermediate Format) compiler [1]. E–SUIF supports

compiled communication for High Performance Fortran (HPF) like programs on all–optical

TDM networks. Although E–SUIF targets all–optical TDM networks, most of the compiler

algorithms can also apply to other types of networks.
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Figure 1: The E–SUIF compiler

The major components in E–SUIF are shown in Figure 1. The first component of E–

SUIF, communication analysis, analyzes the logical communication requirement of a pro-

gram and performs a number of high–level communication optimizations, such as message

vectorization. The analyzer represents the logical communication requirement using Sec-

tion Communication Descriptors (SCDs) [24]. The second component, logical to physical

processor mapping, derives physical communications, that is, communications on physical

processors, from SCDs. The resource scheduling algorithms take network specific informa-

tion and communication patterns in application programs as inputs and determine whether

a communication pattern can be supported by the underlying network, and if the pattern

can be supported, how the network resources are allocated to support the communication

pattern. In E–SUIF, network resources are communication channels in optical TDM net-

works. Notice that this module is architectural dependent. For different networks, different

network resources can be managed by the compiler and different optimizations can be applied

in compiled communication. The third component, communication phase analysis, utilizes

the resource scheduling algorithms to partition the program into phases such that commu-

nications in each phase can be supported efficiently by the underlying network and that
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there is a minimal number of phases at runtime. The E–SUIF compiler outputs a program

with physical communications, phases and the resource scheduling for each phase, and thus,

supports the compiled communication technique.

In this paper, we describe and evaluate the compiler algorithms used in E–SUIF. We fur-

ther demonstrate the benefits of compiled communication on all–optical TDM networks by

comparing the performance of compiled communication with that of a traditional communi-

cation method using a number of application programs. Notice that there are many issues

in optimizing parallel applications, such as the mapping of processing and data into physical

processes. In this paper, however, we focus on optimizing communication through compiled

communication and assume that those issues are addressed by other parts of the compiler.

The rest of the paper is organized as follows. Section 2 describes the related work. Sec-

tion 3 introduces the programming model. Section 4 presents the communication analysis

algorithms. Section 5 introduces the communication phase analysis algorithms. Section 6

evaluates the compiler algorithms. Section 7 reports the performance study of compiled

communication on all–optical TDM networks. Section 8 concludes the paper.

2 Related work

Many projects have focused on reducing the communication overheads in the software mes-

saging layer [8, 9, 18]. While this approach is beneficial for all types of communications, it

does not expose architectural dependent optimization opportunities to the compiler.

Many parallel compiler projects tried to improve communication performance by generat-

ing efficient communication code for distributed memory machines [1, 2, 7, 10, 12, 21]. To

simplify the compilation, these compilers use the dynamic communication model and do not

exploit the potential of compiled communication. Communication analysis and optimiza-

tion has been applied in parallel compilers. Early approaches optimize communications in a

single loop nest using data dependence information [1, 12]. Later, data flow analysis tech-
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niques have been developed to obtain information for global communication optimizations

[7, 10, 15, 24]. However, the analysis only obtains logical communication information, which

is insufficient for compiled communication. The interaction between other components, such

as program partitioning and data mapping, and the communication sub-system, has also

been investigated [22], which offers another dimension for communication optimization.

Research on compiled communication has drawn the attention of a number of research

groups [4, 6, 11, 16]. In [4], the compiler applies the compiled communication technique

specifically to the stencil communication pattern. In [16], a special purpose machine is

designed to support compiled communication. Compiled communication was proposed for

a general purpose machine using a multistage interconnection network [6]. However, since

the multi–stage interconnection network without multiplexing has very limited capacity to

support connections, compiled communication results in excessive synchronization overhead.

The work in [11] proposed to amortize the startup overhead using long–lived connections and

to perform architecture–dependent communication optimizations. However, the compiler in

[11] can only recognize a very limited number of communication patterns. E–SUIF is more

powerful in physical communication analysis.

The E–SUIF compiler is built on top of the Stanford SUIF compiler [1]. The SUIF compiler

provides an excellent compiler infrastructure for Fortran and C languages. However, it does

not support compiled communication. In this work, we incorporate all necessary algorithms

to support compiled communication, including communication analysis, resource scheduling,

and communication phase analysis, into the SUIF compiler.

3 Programming Model

We consider structured HPF–like programs, which contain conditionals and nested loops, but

no arbitrary goto statements. The array subscripts are assumed to be of the form α ∗ i + β,

where α and β are invariants and i is a loop index variable. The programmer explicitly
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ALIGN (i, j) with VPROCS(2*j, i+2, 1) :: x
ALIGN (i) with VPROCS(1, i+1, 2) :: y

(1) DO 100 i = 1, 5
(2) DO 100 j = 1, 5

Comm : [y, (i), [src = (1, i + 1, 2), dst = (2 ∗ j, i + 2, 1), NULL], NULL]
(3) 100 x(i, j) = y(i) + 1

Figure 2: A HPF-like program

specifies the data alignments and distributions. To simplify the discussion, we assume in

this paper that all arrays are aligned to a single virtual processor grid template, and the

data distribution is specified through the distribution of the template. For example, in the

program in Figure 2, shared arrays x and y are aligned to V PROCS. E–SUIF handles

multiple virtual processor grids.

Arrays are aligned to the virtual processor grid by simple affine functions. The alignments

allowed are scaling, axis alignment and offset alignment. The mapping from a point ~d in

the data space to the corresponding point ~v in the virtual processor grid is specified by an

alignment matrix M and an alignment offset vector ~α, that is, ~v = M ~d+~α. The distribution

of the virtual processor grid can be cyclic, block or block–cyclic. Assuming that there are

p processors in a dimension, and the block size of that dimension is b, the virtual processor

v is in physical processor v mod (p∗b)
b

. For cyclic distribution, b = 1. For block distribution,

b = N/p, where N is the size of the dimension. We will use the notation block–cyclic(b, p)

to denote the block–cyclic distribution with block size of b over p processors for a specific

dimension of a distributed array.

4 Communication analysis

To support compiled communication, the compiler must have the knowledge of the physical

communication requirement of a program, that is, communication patterns on the physical

processors. In the rest of the paper, we will use physical communication to denote com-
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munication patterns on the physical processors and logical communication to denote logical

communication patterns on the logical processor grids. E–SUIF obtains physical commu-

nication requirement of a program in two steps. In the first step, logical communication

analysis analyzes the logical communication requirement of the program and carries out a

number of high level communication optimizations. In the second step, the physical commu-

nication analysis derives physical communications from logical communications. Next, we

will discuss these two steps.

4.1 Logical communication analysis

E–SUIF uses a demand driven communication analyzer [24] to analyze the logical commu-

nication requirement of a program. The analyzer performs message vectorization, global

redundant communication elimination and global message scheduling [7] optimizations and

represents logical communications using Section Communication Descriptors (SCDs). In the

rest of this subsection, we will describe SCD and how SCDs are used to represent logical

communications. Details about the communication optimizations and the analyzer can be

found in [24].

A Section Communication Descriptor (SCD) describes a logical communication by speci-

fying the source array region involved in the communication and the communication pattern

for each element in the array region. A SCD = [N,D,CM,Q] consists of four components.

The first component is an array name N and the second component is the array region

descriptor D. The third component is the communication mapping descriptor CM that de-

scribes the source–destination relationship of the logical communication. Finally, the fourth

component is a qualifier descriptor Q that specifies iterations during which communication

is performed.

D represents the source array region involved in the communication using bounded regular

section descriptor (BRSD)[5]. It contains a vector of subscript values. Each element in the

vector is either (1) an expression of the form α ∗ i + β, where α and β are invariants and i
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is a loop index variable, or (2) a triple l : u : s, where l, u and s are invariants. The triple,

l : u : s, defines a set of values, {l, l + s, l + 2s, ..., u}, as in the HPF array statement.

The source–destination mapping CM is denoted as [src → dst, qual]. Both src and dst are

vectors whose elements are of the form α∗ i+β, where α and β are invariants and i is a loop

index variable. The pair src and dst specifies the logical source and destination relation of

the communication. That is, given a logical processor of the source, which can be computed

from the source data element in D, the logical processor of the destination can be calculated

through this relation. To specify the broadcast communication, the mapping qualifier list,

qual, is introduced. Qual contains a list of range descriptors. Each range descriptor is of the

form i = l : u : s, where l, u and s are invariants and i is a loop index variable. Each range

descriptor specifies the range of a variable in dst but not in src. Notation qual = NULL

denotes that no mapping qualifier is needed.

The qualifier Q is a range descriptor of the form i = l : u : s, where i is the loop index

variable of the loop that directly encloses the SCD. This qualifier indicates the iterations of

the loop in which the SCD is performed. If the SCD is to be performed in every iteration in

the loop, Q = NULL. Q will be referred to as the communication qualifier.

Consider the example in Figure 2. The assignment statement at line (3) requires communi-

cation. Let us assume the owner computes rule, which requires that the processor that owns

the array element in the left hand side of an assignment statement performs the assignment

and that shared array elements in the right hand side of the assignment statement must be

transmitted to the processor that owns the left hand side array element. The communica-

tion for moving y(i) from its owner to the processor that owns x(i, j) can be represented as

[y, (i), [src = (1, i + 1, 2), dst = (2 ∗ j, i + 2, 1), NULL], NULL]. This communication can be

vectorized and moved out of the loops. When the communication is hoisted out of the j loop

in line (2), the analyzer will detect that there is a broadcast for each element y(i) and put

j = 1 : 5 : 1 in the mapping qualifier to represent the broadcast. When the communication

is then hoisted out the the i loop in line (1), the array elements are aggregated as 1 : 5 : 1.
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As a result, the communication is placed outside the loop and is represented as

SCD = [y, (1 : 5 : 1), [src = (1, i + 1, 2), dst = (2 ∗ j, i + 2, 1), qual = {j = 1 : 5 : 1}], NULL].

4.2 Physical communication analysis

This subsection describes the algorithms to compute physical communications from SCDs.

We assume that the physical processor grid has the same number of dimensions as the logical

processor grid. Processor grid will denote both physical and logical processor grids. Notice

that this is not a restriction because a dimension in the physical processor grid can always

be collapsed by assigning a single physical processor to that dimension. Notice also that

calculating physical communication does not take the network topology into consideration.

4.2.1 One–Dimensional arrays and one–dimensional processor grids

Let us consider the case where the distributed array and the processor grid are one-dimensional.

We are interested in deriving physical communication from a SCD = [N = A,D,CM =

[src → dst, qual], Q], where src = α ∗ i + β and dst = γ ∗ i + δ. We assume that α 6= 0,

γ 6= 0, and qual = NULL. The cases where α = 0, γ = 0 or qual 6= NULL will be

considered later when multi-dimensional arrays and processor grids are discussed. Let the

alignment matrix and the offset vector be MA and vA, that is, element A[n] is owned by

logical processor MA ∗ n + vA. Assuming that the distribution of the logical processor tem-

plate is block–cyclic(b, p), the physical source processor for communicating A[n] is given by

(MA∗n+vA) mod (p∗b)
b

. The logical destination processor can be computed by first solving the

equation (MA ∗ n + vA) = α ∗ i + β to obtain i = (MA∗n+vA−β)
α

and then replacing the value

of i in dst to obtain the logical destination processor γ ∗ (MA ∗n + vA − β)/α + δ. Thus, the

physical destination processor is given by

γ∗(MA∗n+vA−β)/α+δ) mod (p∗b)
b

.

The array region D may need to be expanded using the communication qualifier Q or using

the range for a loop index variable when the communication is inside a loop. The physical
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Compute 1–dimensional pattern(D, CM.src, CM.dst)

Let D = l : u : s, CM.src = α ∗ i + β, CM.dst = γ ∗ i + δ

if (l contains variables) then

return all–to–all connections
end if

if (α, β, γ or δ are variables) then

return all–to–all connections
end if

if (s contains variables) then s = 1
pattern = φ

for each element i in D do

pattern = pattern + communication of element i

if (communication repeated) then

return pattern

end if

end for

Figure 3: Algorithm for 1-dimensional arrays and 1-dimensional processor grids

communication pattern for the SCD can be obtained by considering all elements in the array

region D. Computing the physical communication of a SCD using this brute–force method,

however, is both inefficient and, sometimes, infeasible when D cannot be determined at

compile time. Fortunately, for a general block–cyclic(b, p) distribution, we do not need

to examine every element in D to determine the physical communication as shown in the

following lemma (the proof of the lemma can be found in [26]).

Lemma: Assume that the template is distributed using the block–cyclic(b, p) distribution.

Let SCD = [A,D = l : u : s, CM = [src → dst, qual], Q], assuming u is infinite, there exists

a k, k ≤ p2b2, such that the communication for all m ≥ k, A[l + m ∗ s] has the same source

and destination as the communication for A[l + (m − k) ∗ s].

The implication of the lemma is that the physical communication pattern for a SCD can

be determined by examining the communications for at most p2b2 elements. In addition,

when the upper bound of D is unknown, the communication pattern can be approximated

by considering all elements up to the repetition point.

Figure 3 shows the algorithm to compute the physical communication pattern for a 1–

dimensional array and an 1–dimensional virtual processor grid. Given D = l : u : s and
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Compute communication pattern(SCD)
Let SCD = [A,D,CM,Q]
if (the form of CM cannot be processed) then

return all-to-all connections
end if

pattern = {(∗, ∗, ..., ∗) → (∗, ∗, ..., ∗)}
for each dimension i in array A do

Let sd be the corresponding dimension in source processor grids.
Let dd be the corresponding dimension in destination processor grids.
if (dd exists) then

1dpattern = compute 1-dimensional pattern(D[i], CM.src[sd], CM.dst[dd])
else

1dpattern = compute 1-dimensional pattern(D[i], CM.src[sd], ⊥)
end if

pattern = cross product(pattern, 1dpattern)
end for

pattern = source processor constants(pattern)
for each element i in the mapping qualifier do

Let dd be the corresponding destination processor dimension.
1dpattern = compute 1-dimensional pattern(CM.qual[i], ⊥, CM.dst[dd])
pattern = cross product(pattern, 1dpattern)

end for

pattern = destination processor constants(pattern)
return pattern

Figure 4: Algorithm for multi–dimensional arrays

CM = [α ∗ i + β → γ ∗ i + δ,NULL], if l contains variables or if any of α, β, γ or δ is a

symbolic constant, the communication is approximated with all–to–all connections. When

s contains variables, it will be approximated by 1, that is, D is approximated by a superset

l : u : 1. After the testing and approximations, the algorithm accumulates the connection

requirement for communicating each element in D until the repetition point is reached.

The algorithm in Figure 3 is an O(p2b2) algorithm that computes physical communications

for general block–cyclic(b, p) distributions. For block distributions, a more efficient O(p2)

algorithm can be designed.

4.2.2 Multi–dimensional arrays and multi–dimensional processor grids

The algorithm to compute physical communications for multi–dimensional arrays and multi–

dimensional processor grids is given in Figure 4. In the algorithm, we use the notion ⊥

12



to represent a “don’t care” parameter. In an n–dimensional processor grid, a processor

is represented by an n–dimensional coordinate (p1, p2, ..., pn). The algorithm determines

all pairs of source and destination processors that require communication by reducing the

problem into computing 1–dimensional communication sub–problems.

The first step in the algorithm is to check whether the mapping relation can be processed.

If one loop induction variable occurs in two or more dimensions in CM.src or CM.dst, the al-

gorithm cannot find the correlation between dimensions in source and destination processors,

and the communication pattern for the SCD is approximated by all–to–all connections.

If the SCD passes the mapping relation test, the algorithm initializes the communication

pattern to be (∗, ∗, ..., ∗) → (∗, ∗, ..., ∗). The wild card * in pattern means that the particular

dimension has not been processed. The algorithm then determines for each dimension in the

data space the corresponding dimension sd in the source processor grid. If it does not exist,

the data dimension is not distributed and does not need be considered. If there exists such a

dimension, the algorithm then tries to find the corresponding dimension dd in the destination

processor grid by checking whether there is a dimension dd such that CM.dst[dd] contains

the same looping index variable as the source dimension CM.src[sd]. If such dimension

exists, the algorithm computes 1-dimensional communication pattern between dimension sd

in the source processor and dimension dd in the destination processor, then cross–products

the 1-dimensional communication pattern into the n-dimensional communication pattern.

Here, the cross–product operation is similar to the cross product of sets except that specific

dimensions are involved in the operation. When dd does not exist, the algorithm determines

a degenerated 1-dimensional pattern, where only source processors are considered, and cross-

products the degenerate 1-dimensional pattern into the communication pattern. This is the

case when γ = 0 and the destination is mapped to a constant logical processor. After all

dimensions in the data space are considered, there may still exist dimensions in the source

processor (in the virtual processor grid) that have not been considered. These dimensions

should be constants that can be determined from the alignment matrix and the alignment
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offset vector. This is the case when α = 0 and the source is mapped to a constant logical

processor. The algorithm fills in the constants in the source processors. Dimensions in

destination processor may not be fully considered yet. When CM.qual 6= NULL, the

algorithm finds for each item in CM.qual the corresponding dimension in the destination

processor, computes all possible processors in that dimension and cross–products the list

into the communication list. Finally, the algorithm fills in all constant dimensions in the

destination. The constant dimensions in the processor grids corresponds to the cases where

CM.src[sd] = α ∗ i + β with α = 0 and CM.dst[dd] = γ ∗ i + δ with γ = 0.

Consider the example in Figure 2. Let us assume that the virtual processor grid, V PROCS,

is distributed as (block–cyclic(2,2), block–cyclic(2,2), block–cyclic(1,1)). As discussed ear-

lier, the logical communication is represented as

[y, (1 : 5 : 1), [src = (1, i + 1, 2), dst = (2 ∗ j, i + 2, 1), qual = {j = 1 : 5 : 1}], NULL].

The physical communication for this SCD is computed as follows. First consider the di-

mension 0 in the array y. From the alignment, the algorithm knows that dimension 1 in the

virtual processor grid corresponds to this dimension in the data space. Checking dst in CM ,

the algorithm finds that dimension 1 in destination corresponds to dimension 1 in source

processors. Applying the 1-Dimensional mapping algorithm, an 1–dimensional communica-

tion pattern {0 → 1, 1 → 0} with ss = 1 and dd = 1 is obtained. Thus the communication

list becomes {(∗, 1, ∗) → (∗, 0, ∗), (∗, 0, ∗) → (∗, 1, ∗)} after taking the cross product with the

1–dimensional pattern. Next, the other dimensions in source processors, including dimension

0 that is always mapped to processor 0 and dimension 2 that is always mapped to processor 1

are considered. After filling in the physical processor in these dimensions in source processors,

the communication pattern becomes {(0, 1, 1) → (∗, 0, ∗), (0, 0, 1) → (∗, 1, ∗)}. Considering

the qual in M , the dimension 0 of the destination processor can be either 0 or 1. Applying

the cross product operation, the new communication list {(0, 1, 1) → (0, 0, ∗), (0, 1, 1) →

(1, 0, ∗), (0, 0, 1) → (0, 1, ∗), (0, 0, 1) → (1, 1, ∗)} is obtained. Finally, the dimension 2 in

the destination processor is always mapped to processor 0. Thus, the final physical commu-
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nication is given by

{(0, 1, 1) → (0, 0, 0), (0, 1, 1) → (1, 0, 0), (0, 0, 1) → (0, 1, 0), (0, 0, 1) → (1, 1, 0)}.

There are several levels of approximations in computing the physical communication.

First, when the algorithm cannot correlate the source and destination processor dimensions

from the mapping relation, the algorithm uses an approximation of all–to–all connections.

If the mapping relation contains sufficient information to distinguish the relation of the

source and destination processor dimensions, computing the communication pattern for a

multi-dimensional array reduces to computing 1-dimensional communication patterns, thus

the approximations within each dimension are isolated to that dimension and will not affect

the patterns in other dimensions. Using this multi-level approximation scheme, some useful

information is obtained even when the compiler does not have complete information for a

communication.

5 Communication Phase analysis

An all–optical TDM network can only support a limited multiplexing degree and thus, may

not be able to support an arbitrary communication pattern without incurring large control

overheads. Thus, the compiler must partition a program into phases such that each phase

contains communications that can be effectively supported by the underlying networks. This

task is called communication phase analysis. E–SUIF utilizes the resource management al-

gorithms we developed in [23] to perform communication phase analysis. Given a physical

communication pattern and an all–optical TDM networks architecture, these algorithms

determine whether the communication pattern can be supported by the network. If the

network can support the communication pattern, the algorithms also determine the channel

assignment to support the communication pattern. The goal of communication phase anal-

ysis is to partition the program into phases such that each phase contains communications

that can be effectively supported and to minimize the number of phases in the program to
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reduce the synchronization overhead.

The communication phase analysis is carried out in a recursive manner on the high level

SUIF representation of a program. SUIF represents a program in a hierarchical manner.

A procedure contains a list of SUIF nodes, where each node can be of different types and

may contain sub–lists. Some SUIF node types are TREE FOR, TREE LOOP, TREE IF,

TREE BLOCK and TREE INSTR. A TREE FOR node represents a for–loop structure. It

contains four sub–lists, lb list which contains the nodes to compute the lower bound, ub list

which contains the nodes to compute the upper bound, step list which contains the nodes to

compute the step, and body which contains the loop body. A TREE LOOP node represents

a while–loop structure. It contains two sub–lists, test and body. A TREE IF node represents

an if–then–else structure. It contains three sub–lists, header which is the test part, then part

which contains the nodes in the then part, and else part. A TREE BLOCK node represents

a block of statements, it contains a sub–list body. A TREE INSTR nodes represents a

statement.

In the analysis, two variables, pattern and kill phase, are associated with each composite

node that contains sub–lists. The variable pattern records the communication pattern that

is exposed from its sub–lists. The variable kill phase has a boolean value indicating whether

its sub–lists contain communication phases. The communication phase analysis algorithm in

E–SUIF is shown in Figure 5. Given a list of SUIF nodes, which is the SUIF program rep-

resentation, the algorithm first recursively examines the sub–lists of all nodes and annotates

the composite nodes with pattern and kill phase, then considers the phases in the list. This

post–order traversal of the SUIF program accumulates the communications in the innermost

loops first, and thus captures the communication locality when it exists and is supported by

the underlying network.

After all sub–lists are analyzed, the program becomes a straight line program (list), whose

nodes are annotated with pattern and kill phase. The algorithm examines all these an-

notations in each node from back to front. A variable c pattern is used to maintain all
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Communication Phase Analysis(list)
Input: list: a list of SUIF nodes
Output: pattern: communication pattern exposed out of the list

kill phase: whether there are phases within the list

Analyze communication phases for the sub–lists for each node.
c pattern = NULL, kill phase = 0
For each node n in list in backward order do

if (n is annotated with kill phase) then

Generate a new phase for c pattern after n.
c pattern = NULL, kill phase = 1

end if

if (n is annotated with communication pattern a) then

new pattern = c pattern + a

if (the network can support new pattern) then

c pattern = new pattern
else

Generate a new phase for c pattern after n.
c pattern = a, kill phase = 1

end if

end if

end for

return c pattern and kill phase

Figure 5: Communication phase analysis algorithm

Communication Phase Analysis for TREE IF

Analyze the header list.
Analyze the then part list.
Analyze the else part list.
Let comb = the combined communications from the three sub–lists.
If (there are phase changes in the sub–lists) then

Generate a phase in each sub–list for the communication exposed.
pattern = NULL, kill phase = 1

if (the network cannot support comb) then

Generate a phase in each sub–list for the communication exposed.
pattern = NULL, kill phase = 1

else

pattern = comb, kill phase = 0
end if

Annotate the TREE IF node with pattern and kill phase.

Figure 6: Communication phase analysis for TREE IF nodes
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Figure 7: An example of the communication phase analysis

communications currently accumulated. There are two cases when a phase is generated.

First, once a kill phase annotation is encountered, which indicates there are phases in the

sub–lists, thus, it does not make sense to maintain a phase passing the node since there are

phase changes during the execution of the sub–lists, a new phase is created to accommodate

the connection requirement after the node. Second, in the cases when adding a new com-

munication pattern into the current (accumulated) pattern exceeds the network capacity, a

new communication phase is needed.

Figure 6 describes the algorithm for analyzing the TREE IF node. The algorithm first

computes the phases for the three sub–lists. In the cases when there are phases within the

sub–lists and when the network does not have sufficient capacity to support the combined

communication, a phase is created in each of the sub–list to accommodate the corresponding

communications from that sub–list. Otherwise, the TREE IF node is annotated with the

combined communication indicating the communication requirement of the IF statement.

Algorithms to analyze other types of nodes are similar.

Figure 7 shows an example of communication phase analysis. The example contains six

communications, C0, C1, C2, C3, C4, and C5, an IF structure and a DO structure. The

algorithm first analyzes the sub–lists in the IF and DO structures. Assuming that the com-
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Prog. Description Distrib.
0001 Solution of 2-D Poisson Equation by ADI (*, block)
0003 2-D Fast Fourier Transform (*, block)
0004 NAS EP Benchmark - Tabulation of Random Numbers (*, block)
0008 2-D Convolution (*, block)
0009 Accept/Reject for Gaussian Random Number Generation (block)
0011 Spanning Percolation Cluster Generation in 2-D (*, block)
0013 2-D Potts Model Simulation using Metropolis Heatbath (*, block)
0014 2-D Binary Phase Quenching of Cahn Hilliard Cook Equation (*, block)
0022 Gaussian Elimination - NPAC Benchmark (*, cyclic)
0025 N-Body Force Calculation - NPAC Benchmark (block, *)
0039 Segmented Bitonic Sort (block)
0041 Wavelet Image Processing (*, block)
0053 Hopfield Neural Network (*, block)

Table 1: Benchmarks and their descriptions

bination of C1 and C2 can be supported by the underlying network and that combining

communications C1, C2 and C3 exceeds the network capacity, there are two phases in the

IF branches and the kill phase is set for the IF header node. Assume also that all commu-

nications of C5 within the loop can be supported by the underlying network. Figure 7 (a)

shows the result after the sub–lists are analyzed. Figure 7 (b) shows the analysis of the

main list after sub–lists are considered. The algorithm combines communications C4 and

C5. Since the IF header node is annotated with kill phase. A new phase is generated for

communications C4 and C5 after the IF structure. The algorithm then proceeds to create a

phase for communication C0. Figure 7 (c) shows the final result.

6 Performance of the compiler algorithms

This section evaluates the performance of the compiler algorithms for compiled communi-

cation in E–SUIF. We evaluated both the efficiency and the effectiveness of the algorithms.

We use the greedy scheduling algorithm [23] in the evaluation and assumed that the under-

lying network is an 8 × 8 torus with a maximum multiplexing degree of 10. Note that the

network topology, the network size and the multiplexing degree affect the performance of
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benchmarks size (lines) overall(sec.) logical(sec.) physical & phase(sec.)
0001 545 11.33 0.45 8.03
0003 372 24.83 0.50 11.80
0004 599 19.08 0.42 15.02
0008 404 27.08 0.68 13.28
0009 491 46.72 4.45 19.65
0011 439 14.78 0.57 11.37
0013 688 23.08 1.07 17.30
0014 428 15.58 1.03 11.38
0022 496 22.57 0.77 18.35
0025 295 5.77 0.78 3.35
0039 465 16.08 0.38 13.13
0041 579 9.93 0.28 6.62
0053 474 7.39 0.35 4.33

Table 2: Communication phase analysis time

the resource scheduling algorithm, which in turn, affects the communication phase analysis

algorithm. The performance results are obtained by running E–SUIF on SPARC 5 with 32

MB memory.

We use benchmarks, listed in Table 1, from the HPF benchmark suite [13] at Syracuse

University in the evaluation. In the table, the data distributions of the major arrays are

obtained from the original benchmark programs. Table 2 breaks down the compiler analysis

time (in the unit of seconds), showing the overall compile time, the time for logical commu-

nication analysis and the time for physical communication analysis and phase analysis. The

time for physical communication analysis and phase analysis accounts for a significant por-

tion of the overall compile time for all the programs. For these small programs the analysis

time is not significant. More efficient communication phase analysis algorithms are desirable

for large programs.

E–SUIF conservatively estimates the set of physical connections in each phase and uses a

resource scheduling algorithm to determine the multiplexing degree needed for each phase.

Table 3 shows the precision of the analysis. It compares the average number of connec-

tions and the average multiplexing degree in each phase obtained from the compiler with

those resulting from actual executions. For most programs, the analysis results match the
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benchmark ave. connections per phase ave. multiplexing degree
programs actual compiled percentage actual compiled percentage

0001 564.4 564.4 100% 9.1 9.1 100%
0003 537.6 537.6 100% 8.6 8.6 100%
0004 116.3 116.3 100% 5.5 5.5 100%
0008 562.6 562.6 100% 8.9 8.9 100%
0009 91.2 230.7 39.6% 4.3 6.6 65.1%
0011 126.3 126.3 100% 5.2 5.2 100%
0013 67.3 67.3 100% 3.1 3.1 100%
0014 126.4 126.4 100% 4.0 4.0 100%
0022 13.1 413.2 3% 4.6 8.9 52.7%
0025 80.0 80.0 100% 3.0 3.0 100%
0039 125.7 125.8 99.9% 8.8 8.8 99.9%
0041 556.1 556.1 100% 8.8 8.8 100%
0053 149.2 575.2 25.9% 9.0 9.1 98.9

Table 3: Analysis precision

actual program executions. For the programs where approximations occur, the multiplexing

degree approximation is better than the connection approximation as shown in benchmark

0022. This is mainly due to the approximation of the communications that are not vector-

ized. For such communications, if the underlying network can support all connections in a

loop, the phase will contain the loop and will support for all communications in the loop.

However, when estimating the average number of connections in each phase, the compiler

approximates each individual communication inside the loop with all communications of the

loop. Since the multiplexing degree determines the communication performance for a com-

munication pattern, this type of approximation does not hurt the compiled communication

performance, although in these cases, dynamic communication may be more efficient than

compiled communication.

7 Benefits of compiled communication

In this section, we demonstrate the advantages of compiled communication on optical TDM

networks by comparing the performance of compiled communication with that of a traditional

dynamic communication method using a number of application programs. The traditional
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communication method uses a path reservation protocol, called the forward path reservation

protocol [25] to reserve a path for each connection before the transmission of data takes

place. The forward reservation protocol works as follows. When the source node wants to

send data, it first sends a reservation packet towards to destination to establish a lightpath.

The reservation fails if the wavelength in some link along the path is not available. Otherwise,

the lightpath will be established between the source and the destination, and the destination

will notify the source that the lightpath has been established. After that, the source can

start sending data.

We use the communication completion time for each communication pattern as the per-

formance metric. For each communication pattern, the communication completion time is

defined as the time the program reaches the communication pattern to the time that all

messages are received. The runtime communication patterns of a program are obtained

by executing the program and collecting the communication traces. These communication

patterns are then fed into a cycle level network simulator that simulates both compiled

communication and dynamic communication.

We made the following general assumptions in the performance study. The network topol-

ogy is an 8 × 8 torus with variable multiplexing degrees. XY routing is used to establish

the connections in the torus. We assume that the physical identifiers of the processor fol-

low the row-major numbering and the mapping function between logical processor numbers

and physical identifiers is the identity function. Other assumptions that are specific to each

experiment will be specified in the experiment.

Two sets of experiments are performed in this study. The first set of experiments uses

hand–coded application programs whose communications are highly optimized for the Cray–

T3E. These application programs are not HPF–like programs and cannot be handled by the

current E–SUIF. Thus, this study only demonstrates the potential of compiled communi-

cation on these hand–coded programs by assuming a compiler that can accurately analyze

the communication requirement of the programs. The second set of experiments uses the
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HPF benchmarks described in Section 6 and considers all elements in compiled communi-

cation including the imprecision and approximation in communication analysis, connection

scheduling and communication phase analysis.

7.1 Hand–coded parallel application programs

This set of programs includes three programs, GS, TSCF and P3M . These programs are

well designed parallel applications. The communication performance is highly tuned for the

Cray–T3E. The GS benchmark uses Gauss–Siedel iterations to solve Laplace equation on

a discretized unit square with Dirichlet boundary conditions. The TSCF program simu-

lates the evolution of a self–gravitating system using a self consistent field approach. P3M

performs particle–particle particle–mesh simulation. Table 4 describes the static communi-

cation patterns that arise in these programs. While GS and TSCF programs contain only

one communication pattern each, P3M, which is a much larger program, contains five static

communication patterns. All of the above patterns are in the main iterations of the programs.

Pattern Type Description
GS shared array ref. PEs form a logically linear array, Each PE

communicates with two PEs adjacent to it.
TSCF explicit send/recv hypercube pattern
P3M 1 data redistrib. (:block, :block, :block) → (:, :, :block)
P3M 2 data redistrib. (:, :, :block) → (:block, :block, :)
P3M 3 data redistrib. (:block, :block, :) → (:, :, :block)
P3M 4 data redistrib. (:, :, :block) → (:block, :block, :block)
P3M 5 shared array ref. PEs are logically 3–D array, each PE

communicates with 26 PEs surrounding it

Table 4: Communication pattern description.

Table 5 shows the communication time for these communication patterns. Listed in the

tables are the size of the problem and the communication times in unit of time slots for

compiled communication and dynamic communication. A time slot is assumed to be the

time to send a packet of 64 bytes data. For a 100Mbps channel, the duration of the time

slot would be the time to transmit the data, 5.12µs, plus a small guard band between time
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slots. Notice that the software startup overhead at the end hosts is in the order of a few

microseconds for small messages in a well tuned messaging system [18], which corresponds

to around 1 time slot. In the simulation, we assume that the packet processing time at each

node is 1 time slot, which includes the software overheads at the end hosts. For compiled

communication, we assume sufficient multiplexing degree to support all the patterns. For

dynamic communication, we evaluated the performance of multiplexing degrees of 1, 2,

5 and 10. Notice that compiled communication can use different multiplexing degree at

different times for different patterns since the network configuration can change at phase

boundary, while dynamic communication can only use a fixed multiplexing degree to handle

all communication patterns [19]. The size of the problem affects the message size except for

the TSCF program.

Pattern Problem Compiled Dynamic Communication
Size Communication d = 1 d = 2 d = 5 d = 10

GS 64 × 64 35 105 118 171 251
128 × 128 67 137 154 251 411
256 × 256 131 265 304 411 731

TSCF 5120 19 344 268 270 300
P3M 1 32 × 32 × 32 831 3905 3625 2018 1861

64 × 64 × 64 6207 12471 10754 10333 9619
P3M 2,3 32 × 32 × 32 382 9999 6094 4661 4510

64 × 64 × 64 2174 17583 14223 10360 9320
P3M 4 32 × 32 × 32 457 3309 2356 1766 1722

64 × 64 × 64 3369 9161 7674 7805 7122
P3M 5 32 × 32 × 32 40 583 374 371 480

64 × 64 × 64 68 673 457 445 505

Table 5: Communication time for static patterns.

The following observations can be made from the results in Table 5. First, the compiled

communication out–performs dynamic communication in all cases. The communication time

for dynamic communication was 2 to 30 times greater than that for compiled communication.

Larger performance gains are observed for communication with small message sizes (e.g.,

the TSCF pattern) and dense communication (e.g., the P3M 2 pattern). Second, a large

multiplexing degree does not always improve the communication performance for dynamic
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communication. For example, a multiplexing degree of 1 results in best performance for the

pattern in GS. This is because the dynamic control must use a fixed multiplexing degree and

is not able to adapt to the optimal multiplexing degree for a given communication pattern.

In this study we observe that for a well designed parallel program, the fine grain commu-

nications that result from shared array accesses usually cause sparse communications with

small message sizes. For a communication system to efficiently support such communication,

the system should have small latency. Optical networks that use dynamic communication

incur large startup overhead. Thus, they cannot support this type of communication effi-

ciently. As shown in our simulation results, compiled communication eliminates the startup

overhead and performs fine grain communications efficiently. We also observe that data re-

distributions can result in dense communications with large message sizes. In this case, the

control overhead does not significantly affect communication performance. However, dense

communication results in more network contentions in the communication system, and the

dynamic communication control system may not be able to resolve these contentions effi-

ciently. Our simulation shows that static management of the dense communication patterns

results in large performance gains.

7.2 HPF benchmarks

Table 6 shows the communication time (in unit of time slots) of the programs using compiled

communication with a maximum multiplexing degree of 10 and dynamic communication with

different multiplexing degrees 1, 4, 14, 20. In this experiment, compiled communication out–

performs dynamic communication with all multiplexing degrees for most of the programs.

The benefits of assigning communication channels statically at compile time and the elimi-

nation of the runtime path establishement overhead out–weights the bandwidth losses due

to the imprecision of compiler analysis. Performance degradation in compiled communi-

cation due to the conservative approximation in compiler analysis is observed in some of

the programs. For example, the compiler over–estimates the communication requirement in
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benchmarks 0009 and 0022. However, since the patterns approximated do not dominate the

total communication time, compiled communication still results in lower overall communi-

cation time for these two benchmarks. The simple communication phase analysis algorithm

implemented in E–SUIF always attempts to put as many communications into each phase

as possible. This sometimes has negative effects in the communication performance. As can

be seen in Table 6, for the benchmark 0013, the compiled communication performs worse

than dynamic communication with d = 1. The performance of the communication phase

analysis can be improved when the communication locality [20] of the program is taken into

consideration instead of blindly inserting patterns into each phase.

benchmarks Compiled Dynamic Communication
Communication d = 1 d = 4 d = 14 d = 20

0001 45,624 888,240 357,600 267,360 273,360
0003 752 14,804 5,960 4,456 4,556
0004 1,368 1,920 2,208 3,504 4,224
0008 2,256 44,412 17,880 13,368 13,668
0009 2,394 3,360 3,864 6,132 7,392
0011 105,252 141,052 181,506 372,678 484, 374
0013 166,280 154,080 256,240 779,920 1,086,160
0014 63,400 71,200 125,200 391,200 550,800
0022 3,244,819 6,844,054 6,402,631 6,516,485 6,925,278
0025 29,854 23,440 31,221 61,712 81,958
0039 68,704 115,488 136,390 214,042 261,832
0041 1,504 29,608 11,920 8,912 9,112

Table 6: Communication time for the HPF benchmarks.

In summary, compiled communication achieves high performance for all types of static

patterns even after taking the approximations in the compiler analysis algorithms into con-

sideration. Four factors contribute to the performance gain. First, compiled communication

eliminates dynamic control overhead. This is most significant for communications with small

message sizes. Second, compiled communication takes the whole communication pattern into

consideration, while dynamic communication, which considers the connection requests one

by one, suffers from the head–of–line effect. Third, the off–line message scheduling algo-

rithm further optimizes the communication efficiency for compiled communication. Fourth,
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compiled communication allows the system to use various multiplexing degrees for different

communication patterns, which allows the system to use optimal multiplexing degree to deal

with each particular communication pattern. In dynamic communication, control mechanism

for variable multiplexing degrees is too expensive to implement [19]. Fixing the multiplex-

ing degree in dynamic communication performs well for some communication patterns, but

poorly for other communication patterns.

8 Conclusion

In this paper, we present the E–SUIF compiler that supports compiled communication for

all–optical TDM networks, describe the compiler algorithms used in E–SUIF, evaluate the

compiled algorithms, and compare the performance of compiled communication with that

of dynamic communication. Our results show that compiled communication is efficient for

all–optical TDM networks. While the techniques in this paper are developed for all–optical

TDM networks, compiled communication can also improve the communication performance

on other types of networks. Most of the compiler analysis algorithms in E–SUIF can also be

applied to support compiled communication on other networks. The resource management

algorithms, however, need to be tailored for different networks.
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