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Abstract

Programmers of embedded systems often develop software in
assembly code due to inadequate support from compilers and the
need to meet critical speed and/or space constraints. Many em-
bedded applications are being used as a component of an increas-
ing number of critical systems. While achieving high performance
for these systems is important, ensuring that these systems execute
correctly is vital. One portion of this process is to ensure that code-
improving transformations applied to a program will not change
the program’s semantic behavior, which may be jeopardized when
transformations are specified manually. This paper describes a
general approach for validation of many low-level code-improving
transformations made either by a compiler or specified by hand.
Initially, we associate a region of the program representation with
a code-improving transformation. Afterwards, we calculate the re-
gion’s effects on the rest of the program before and after the trans-
formation. The transformation is considered valid when the effects
before and after the transformation are identical. We implemented
an automatic validation system in the vpo compiler. The system
is currently able to validate all code-improving transformations in
vpo except transformations that affect blocks across loop levels.

1 Introduction
Software is being used as a component of an increasing number

of critical systems. Ensuring that these systems execute correctly
is vital. One portion of this process is to ensure that the compiler
produces machine code that accurately represents the algorithms
specified at the source code level. This is a formidable task since
an optimizing compiler not only translates the source code to ma-
chine code, it may apply hundreds or thousands of compiler opti-
mizations to even a relatively small program. However, it is cru-
cial to try to get software correct for many systems. This problem
is exacerbated for embedded systems development, where often
either applications are developed in assembly code manually or
compiler generated assembly is modified by hand to meet speed
and/or space constraints. Code-improving transformations accom-
plished manually are much more suspect than code generated au-
tomatically by a compiler.

An optimizing compiler or assembly programmer applies a se-
quence of code-improving transformations to the representation of
a program. Each transformation consists of a set of changes, where
these changes may result in machine instructions being deleted, in-
serted, or modified. However, the program representation before
and after the changes associated with a code-improving transfor-
mation should be semantically equivalent.

Rather than trying to prove the equivalence of an entire source
program and object program, we use two techniques that dramati-
cally simplify the task of validating code-improving optimizations.
First, we show the equivalence of the program representation be-
fore and after each improving transformation. While many code-
improving transformations may be applied to a program represen-
tation, each individual transformation typically consists of only a
few changes. Also, if there is an error, then the compiler writer or
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assembly programmer would find it desirable for a system to iden-
tify the transformation that introduced the error. Second, for each
code-improving transformation we only attempt to show the equiv-
alence of the region of the program associated with the changes
rather than showing the equivalence of the entire program repre-
sentation. We have found that the region of the program repre-
sentation that is changed by a code-improving transformation is
typically quite small. We show equivalence of the region before
and after the transformation by demonstrating that the effects the
region will have on the rest of the program will remain the same.

In the subsequent sections of the paper we describe the gen-
eral approach used for validating intraprocedural (within a sin-
gle function) low-level code-improving transformations. An auto-
matic validation system based on the proposed approach has been
implemented in the vpo compiler [2] and is currently able to val-
idate all code-improving transformations in vpo except those that
affect blocks across loop levels. While the implementation is spe-
cific to vpo, the general validation approach can also be applied
when compiling for embedded systems.

2 Related Work
There has been much work in the area of attempting to prove

the correctness of compilers [5, 6, 8, 9, 15]. Compilers are quite
complex programs and proving the correctness of any large pro-
gram is a difficult task. More success has been made in the area
of validating compilations rather than the compiler itself. For in-
stance, equivalence of source and target programs have been veri-
fied for an expression language that contains no loops or function
calls [4]. Likewise, there has been progress in proving type, mem-
ory safeness, and other related properties of a compilation rather
than the equivalence of source and target programs [14, 10, 11].
Proving these types of properties is important and these techniques
could be used in conjunction with the approach described in this
paper, which attempts to prove that the effects a region has on reg-
isters and memory are identical before and after a transformation.

Horwitz attempted to identify semantic differences between
source programs in a simple high-level language containing a lim-
ited number of constructs [7]. First, programs in this language
were represented in a program representation graph that identifies
dependences between statements. Next, a matching function ex-
amined both representations to determine if old and new represen-
tations were equivalent. While it is possible that a similar approach
using a matching function could be applied on a low-level repre-
sentation to validate some types of transformations (e.g. ones that
change the order of independent instructions such as instruction
scheduling), it is unclear how other transformations (e.g. ones that
change the form of instructions such as strength reduction) could
be validated using this approach. A related approach for prov-
ing semantic equivalence of different source programs is to derive
normal forms [3]. However, this has only been attempted on a
restricted high-level language without loops and function calls.

The credible compilation approach [13] attempts to vali-
date code-improving transformations on an intermediate machine-
independent representation, but uses a very different approach
from the one described in this paper. The compiler writer deter-



add pred blocks to region(region, block)
{

FOR each predecessor P of block DO
IF (!in region(region, block)) THEN

add block to region(P, region);
add pred blocks to region(P, region);

block->start = first RTL in block;
P->end = last RTL in block;

}

calculate insts in region(blkschanged, blksadded,
domblk, region)

{
FOR each block B in blkschanged DO

B->start = first RTL that was changed in B;
B->end = last RTL that was changed in B;
add block to region(B, region);

FOR each block B in blksadded DO
B->start = first RTL in B;
B->end = last RTL in B;
add block to region(B, region);

IF (!in region(region, domblk)) THEN
add block to region(domblk, region);

FOR each block B in blkschanged or blksadded DO
add pred blocks to region(B, region);

IF domblk->start == NULL THEN
domblk->start = conditional branch in domblk;

}

Figure 1. Calculating the Extent of a Region

mines the appropriate type of invariants for the analysis and trans-
formation of each different type of code-improving optimization
and the compiler automatically constructs a proof for these invari-
ants for each optimization. While this approach is quite powerful,
it puts a burden on a compiler writer to correctly identify the types
of changes associated with each optimization and to specify the
appropriate invariants that need to be proven correct.

The work most related to ours is by Necula [12]. He calculates
a symbolic state of each basic block and then attempts to prove
equivalence relations to show that two blocks are equivalent when
the symbolic state of blocks before and after a transformation dif-
fered. He was able to validate many optimization phases during
the compilation of gcc by the gcc compiler. However, a number
of false alarms occurred, indicating that the validation system was
not yet complete. This work differs from ours not only in that a
different method was used, but also that his approach was more
restrictive in that the branch structure of the program before and
after an optimization phase had to be identical. Our approach does
not have this restriction.

3 Determining the Region of Code Associated
with a Transformation

Vpo uses RTLs (register transfer lists) to represent machine in-
structions. The same intermediate representation could be used
to validate hand-specified transformations as well. Each register
transfer is an assignment that represents a single effect on a regis-
ter or memory cell of the machine. Thus, the RTL representation
served as a good starting point for calculating the semantic effects
of a region.

Determining the region of code that is associated with a code-
improving transformation requires capturing the changes to the
program representation caused by the transformation. This is dif-
ferent from program slicing [19], which starts from a subset of
program behavior and reduces the program to a minimal form that
produces the behavior. To validate a transformation, it is sufficient
to show that the effects of the changes associated with the transfor-
mation on the rest of the program are the same. Instructions that
affect the behavior of the changes do not have to be in the region
to capture the changes caused by the transformation.

We automatically detect changes associated with a transforma-
tion by making a copy of the program representation before each
code-improving transformation and comparing the program repre-

sentation after the transformation with the copy. After identifying
all of the basic blocks that have been syntactically changed (mod-
ified, deleted, or added), we find the closest block in the control-
flow graph that dominates all of the modified blocks. This dom-
inating block contains the entry point of the region. The region
consists of all instructions between the dominating block and the
RTLs that have been modified. The region before the transfor-
mation is the old region and the region after the transformation
is the new region. These two regions are considered counterparts
since they should have the same effects on the rest of the pro-
gram. Thus, proving program equivalence can be accomplished
by proving region equivalence. The effects of the old and new re-
gions are considered semantically equivalent if they are identical
at each exit point of the region. Note that the old and new regions
need not have the same basic block structure. Only the dominating
block and exit points of the two regions have to be identical, which
sometimes requires extending one or both of the regions.

Figure 1 shows the algorithm to determine the set of instruc-
tions that comprise the region. One should note that a changed
RTL includes an inserted RTL, an RTL deleted in the counterpart
region, or a marker for the point where an RTL was inserted in the
counterpart region. The example shown in Figure 2 illustrates how
the algorithm works. Consider the program representation shown
in Figure 2(a) that depicts the state of the program before a regis-
ter allocation transformation. The references to variable c are to
be replaced with a register and these references have been identi-
fied and are shown in boldface. The block that most closely domi-
nates all blocks containing the modifications (blocks 2, 3, and 4) is
block 1. The region consists of all RTLs between the ones that are
changed and this dominating point, which are shown in boldface
in Figure 2(b). Block 1 contains no RTLs that have been modified.
As shown in Figure 2(c), its conditional branch is included in the
region so conditions can be represented when transitions are made
to blocks 2 and 3.

There are cases when the extent of a region has to be recalcu-
lated. For instance, the points at which one region exits have to be
identical to the exit points in its counterpart region. If an exit point
in one region does not exist in its counterpart, then that exit point is
added to its counterpart region and the extent of the region is recal-
culated. Sometimes a region needs to be extended since its effects
are not the same as its counterpart region. For instance, consider
Figures 3(a) and 3(b). Only one change was detected, so the old
and new regions initially consist of a single instruction shown in



IC=r[8]?0;

PC=IC<0,L14;

... 1

...
r[8]=           ;     M[r[14]+.c] 4

r[8]=r[9];

r[8]=-r[8];

           =r[8];M[r[14]+.c]

3r[8]=r[9];

PC=L15;

M[r[14]+.c]           =r[8];

2

...
4

M[r[14]+.c]

3r[8]=r[9];

PC=L15;

M[r[14]+.c]

2

IC=r[8]?0;

PC=IC<0,L14;

... 1

     M[r[14]+.c]r[8]=           ;

r[8]=-r[8];

r[8]=r[9];

...
4

M[r[14]+.c]

3r[8]=r[9];

PC=L15;

M[r[14]+.c]

2

IC=r[8]?0;

... 1

     M[r[14]+.c]r[8]=           ;

r[8]=-r[8];

r[8]=r[9];

PC=IC<0,L14;

           =r[8];

           =r[8];            =r[8];

           =r[8];

(b) Extent of Region

after Propagating

to Dominating Block

(c) Extent of Region

after Including Branch

in Dominating Block

(a) Program Representation before

a Register Allocation Transformation

with Changes Identified

Figure 2. Example of Calculating the Extent of a Region

r[16]=0;

r[17]=HI[_string];

r[19]=r[17]+LO[_string];

r[17]=r[19];

...

...

r[16]=0;

r[17]=HI[_string];

r[19]=r[17]+LO[_string];

r[17]=r[16]+r[19];

...

...

r[16]=0;

r[17]=HI[_string];

r[19]=r[17]+LO[_string];

r[17]=r[19];

...

...

r[16]=0;

r[17]=HI[_string];

r[19]=r[17]+LO[_string];

r[17]=r[16]+r[19];

...

...

(a) Old Region before Extension (b) New Region before Extension (c) Old Region after Extension (d) New Region after Extension

Figure 3. Example of Extending the Scope of a Region

boldface. Obviously, these two regions in isolation do not have the
same effect. However, there is a reference to r[16] in one region
that is not in the other. If the effects of the two regions are not
identical and there are more uses or sets of a specific register or
a variable in one region, then the regions are extended to include
an additional set of that register or variable. Figures 3(c) and 3(d)
show the extension of the old and new regions to include the set
of r[16], which allows identical effects to be calculated for each
region.

4 Calculating the Effects of a Region
Each region consists of a single entry point and one or more

exit points. A separate set of effects is calculated for each exit
point from the region. The old and new regions are considered
equivalent only if for each exit point they have the same effects.
Figure 4 shows the algorithm to calculate the effects of a region.
Loops are processed innermost first. The effects of each node at
the same loop level are calculated only after all of its non-back
edge predecessors have been processed. More details regarding
this algorithm will be illustrated in the following subsections.

4.1 Merging Effects
Effects in a region are merged for two reasons. First, merging

obtains an order-independent representation of effects. Second,
merging eliminates the use of temporaries within the region. Fig-
ure 5 displays the merging of effects in the regions shown in Figure
3(c) and Figure 3(d). Each RTL is merged into the effects one at
a time. Note that when the destination of an effect is no longer
live, then the effect is deleted. The point where a register dies is
depicted to the right of that RTL. The liveness of registers and vari-
ables in a region is calculated using a demand-driven approach, as
opposed to the traditional dataflow analysis used in vpo. For in-
stance, step 2 in Figure 5(a) deletes the effect that updates r[17]
since the register is no longer live. The final effects of the old

and new regions in Figure 5 will be identical after simplification,
which is described later in the paper.

The actual implementation of the merging was accomplished
using a directed acyclic graph (DAG), which effectively conserves
storage since common-subexpressions occurring in the effects of
a region are stored only once. A DAG node is created for each
source term in an RTL assignment and the source term is re-
placed by a reference to the node. For example, the merging
of r[10]=r[8]-2; with r[11]=r[10]+r[10]; results in
r[10]=n1 and r[11]=n2, where two DAG nodes n1 and n2 are
created with n1=r[8]-2 and n2=n1+n1. Without a DAG repre-
sentation for effects, merging can quickly result in exponentially
growing storage requirements for effects.

4.2 Representing Conditional Effects
Sometimes assignments of expressions to registers or variables

need to be conditional. Conditional assignments can occur due to
two reasons, determining if the addresses of two memory refer-
ences are equal and conditional control flow. Vpo cannot always
determine if the addresses of two memory references are equal.
Consider merging the effects for the region in Figure 6(a), where a
set and a use may reference the same memory location. The value
assigned to r[5] depends on whether r[2] equals r[3]. Fig-
ure 6(b) shows the merged effect with a guarded expression. All
guards in a guarded expression are disjoint. Figures 6(c) and 6(d)
show how guards are introduced due to potential aliasing from two
sets to memory. An alias between a use followed by a set does not
require a conditional assignment when merged since the subse-
quent set cannot affect the preceding use.

Conditional assignments also occur due to conditional control
flow. Consider the region in Figure 7. Step 1 shows the results after
merging effects in each of the three basic blocks separately. Note
that the value assigned to the PC (program counter) is a guarded
expression. Step 2 shows the effects from block 1 on the transition
to block 2. A guarded expression is now assigned to the variable



merge effects in node(n, effects)
{

effects = "";
FOR each RTL r in n DO

merge effects(effects, r);
}

calc pred effects(preds, preds effects, guard)
{

p = first pred in preds;
guard = p->guard;
FOR each remaining p in preds DO

guard ||= "∨" || p->guard;
FOR each unique dst d

of the effects in preds DO
new effect = "<d>=";
FOR each effect e in preds DO

IF e->dst == d THEN
new effect ||=

"<e->src> if <guard of e>";
IF other preds q that did not set d THEN

new effect ||=
"<d> if (∨ of all guards of q)";

new effect ||= ");";
}

process node in region(n)
{

IF any unprocessed pred of n THEN
return;

calc pred effects(n->preds, pred effects, n->guard);
merge effects(preds effects, n->effects);
add guard to effects(n->guard, n->effects);
mark n as being processed;
FOR each successor s of n DO

process node in region(s);
}

calculate region effects(region)
{

FOR each node n in region DO
merge effects in node(n);

FOR each loop l in region (innermost first) DO
process node in region(l->header->node);
calculate exit condition

(l->effects, exit cond);
replace recurrs with fp funcs

(l->effects, exit cond);
replace loop with single node

(region, l->effects);
process node in region(region->top);

}

Figure 4. Calculating the Effects of a Region

r[16]=0;0.
r[17]=HI[_s];
r[19]=r[17]+LO[_s];   r[17]:

1. r[17]=HI[_s]; r[16]=0;
r[19]=r[17]+LO[_s];   r[17]:

2. r[19]=HI[_s]+LO[_s]; r[16]=0;
r[17]=r[16]+r[19];    r[16]:

3.

r[17]=r[16]+r[19];    r[16]:

r[17]=r[16]+r[19];    r[16]:

r[17]=0+HI[_s]+LO[_s]; r[19]=HI[_s]+LO[_s];

0.
r[17]=HI[_s];
r[19]=r[17]+LO[_s];    r[17]:

1. r[17]=HI[_s];
r[19]=r[17]+LO[_s];    r[17]:
r[17]=r[19];

2. r[19]=HI[_s]+LO[_s];
r[17]=r[19];

3. r[17]=HI[_s]+LO[_s]; r[19]=HI[_s]+LO[_s];

r[16]=0;               r[16]:

r[17]=r[19];

(b) Merging Effects in New Region(a) Merging Effects in Old Region

Figure 5. Merging Effects within a Single Block

M[r[2]]=r[4];
r[5]=M[r[3]];

r[5]=

{

r[4] if r[2] = r[3]
M[r[3]] if r[2] 6= r[3]

}

; M[r[2]]=r[4];

(a) Potential Set/Use Alias (b) Potential Set/Use Alias
Region before Merging Region after Merging

M[r[2]]=r[4];
M[r[3]]=r[5];

M[r[3]]=r[5]; M[r[2]]=

{

r[5] if r[2] = r[3]
r[4] if r[2] 6= r[3]

}

;

(c) Potential Set/Set Alias (d) Potential Set/Set Alias
Region before Merging Region after Merging

Figure 6. Conditional Effects Due to Potential Aliasing



1. Block 1 after merging effects:
M[r[14]+.val]=r[8]; PC=(B3 if r[8]≥0);
Block 2 after merging effects:
M[r[14]+.val]=-r[8];
Block 3:
r[8]=M[r[14]+.val];

2. Effects from block 1 on transition to block 2:
M[r[14]+.val]=(r[8] if r[8]<0);

3. Effects from block 1 on transition to block 3:
M[r[14]+.val]=(r[8] if r[8]≥0);

4. Block 2 after merging effects with block 1:
M[r[14]+.val]=(-r[8] if r[8]<0);

5. Block 3 after merging effects with blocks 1 and 2:

r[8]=

{

r[8] if r[8]≥0
-r[8] if r[8]<0

}

if r[8] ≥ 0 ∨ r[8] < 0;

.val:

r[9]:

. .
. . .

IC=r[8]?0;

M[r[14]+.val]

M[r[14]+.val]

             =r[8];

             =r[9];

r[8]=             ;     M[r[14]+.val]

.

r[9]=-r[8];

B1

B2

B3

PC=(B3 if IC>=0);     IC:

6. Block 3 after simplification:

r[8]=

{

r[8] if r[8]≥0
-r[8] if r[8]<0

}

;

Figure 7. Example of Calculating Effects with Conditional Control Flow

val since a change in state should only occur in this effect if the
transition to block 2 is taken. Step 3 shows comparable effects
from block 1 on the transition to block 3. Step 4 shows the effects
in block 2 after merging with the effects in block 1. The effect
from block 1 shown in step 2 is removed since we have an assign-
ment to the same variable in block 2. Guards are propagated along
transitions between nodes in the region. Thus, the assignment in
block 2 only occurs when r[8]<0. Step 5 shows the effect in
block 3 after merging with the effects in blocks 1 and 2. Step 6
shows the same effects after simplifying the guards.

4.3 Representing Effects from Loops
A region may span multiple basic blocks that cross loop nest-

ing levels. Merging the effects across loop nesting levels requires
calculating the effects of an entire loop. One issue that must be
addressed is how to represent a recurrence, which involves the use
of a variable or register that is set on a previous loop iteration.
An induction variable is one example of a simple recurrence. We
represent a recurrence as a recursive function using the following
notation. The label distinguishes the loop in which the recurrence
occurs. The new value represents the next value of the recurrence.
References to w in the new value represent the previous value of
the recurrence. The initial value is the initial value of the recur-
rence. The condition indicates when the recurrence is no longer
applied. Thus, this notation is used to represent a sequential or-
dering of effects, where each instance represents the effect on a
different iteration of a loop.

y(〈label〉, 〈new value〉, 〈initial value〉) until 〈condition〉
We define the semantics of the recurrence
y(〈label〉, 〈initial value〉, 〈new value〉) by defining func-
tion F as

F = λf.λi.if i =
0 then 〈initial value〉 else (λw.〈new value〉) (f (i − 1))

The semantics of y is defined as the application of the fixpoint Y
combinator to F , which results in a function that given an itera-
tion number i (i ≥ 0) returns the value of the recurrences at that
iteration. For example, the value of the recurrence y(B2, w +1, 1)
at iteration 10 is
Y(λf.λi.if i = 0 then 1 else (λw.w + 1〉) (f (i − 1)) 10 = 11

A sequence can be used to represent recursive functions when
the new value is obtained by incrementing the current value, which
is the case for basic induction variables. We adopt a notation that is
similar to the notation used for chains of recurrences [1, 17] (CRs).
CRs represent Newton series conversion for polynomials. Each
sequence has the following form, which is similar to a recursive
function. Unlike recursive functions, some algebraic operations
can be applied to sequences. An example of representing effects
from loops can be found in [18].

{〈label〉, 〈initial value〉, 〈increment〉} until 〈condition〉

5 Simplifying Effects
Merging and subsequent simplification of effects results in

canonical representations that enable a structural comparison to
show that effects are semantically identical. The canonical rep-
resentations of the effects corresponding to the exit points of old
and new regions are compared by vpo to determine that the se-
mantic effect of the transformed region of code is unchanged. The
equivalence of the modified region is a sufficient condition for the
correctness of a transformation, but is not a necessary condition.

Normal forms are essential for theorem proving systems for
proving the equivalence between two programs, see e.g. [3]. In
our approach, a normal form defines an equivalence class of ef-
fects that are semantically identical. We developed a rewrite sys-
tem that derives normal forms whenever possible (e.g. expanded
forms for arithmetic expressions and disjunctive normal forms for
logical expressions) but does not attempt to calculate normal forms
for logical expressions involving relations. More details about the
rewriting rules used to simplify effects can be found in [18].

The effects of each exit point of the region need to be simpli-
fied and compared with its counterpart effects within vpo. While
analyzing the control–flow graph of the affected region of code,
vpo builds a directed acyclic graph (DAG) representation for the
effects, as described previously. The nodes in the final DAG (ob-
tained after all effects have been merged) are marked when the
node is used in an effect corresponding to an exit point of the re-
gion of code. The marking proceeds by recursively analyzing the
expressions stored at the nodes in the DAG. Marking the DAG ef-
fectively eliminates unused expressions. Unused expressions typi-



Program Description Num Trans Validated Region Size Overhead
ackerman benchmark that performs recursive function calls 89 100.0% 3.18 13.64
arraymerge benchmark that merges two sorted arrays 483 89.2% 4.23 63.89
banner poster generator 385 90.6% 5.42 34.13
bubblesort benchmark that performs a bubblesort on an array 342 85.4% 6.10 34.37
cal calendar generator 790 91.1% 5.16 105.64
head displays the first few lines of files 302 89.4% 8.42 152.64
matmult multiplies 2 square matrices 312 89.7% 5.55 28.97
puzzle benchmark that solves a puzzle 1928 78.5% 5.85 128.98
queens eight queens problem 296 85.8% 6.79 73.65
sieve finds all prime numbers between 3 and 16383 217 80.6% 6.85 21.90
sum prints the checksum and block count for a file 235 91.9% 8.62 195.19
uniq report or filter out repeated lines in a file 519 91.1% 4.21 163.26
average 492 88.6% 5.87 84.64

Table 1. Benchmarks

cally are expressions assigned to registers or variables that are not
live at the exit point of the region.

For each marked node visited in a postorder traversal of the
DAG, the term stored at the marked node is simplified if not al-
ready simplified by rewriting the term into a canonical representa-
tion, where references in the term to other nodes are replaced by
references to canonical representations of the terms in the nodes.
When calculating the canonical representation of an effect, em-
bedded references to canonical representations need not be sim-
plified again. Finally, the effects at the exit points of the regions
are simplified and the DAG node references are replaced by their
canonical representations.

It is possible to use an existing algebra system (e.g. Mapletm,
Mathematicatm, Reducetm) for the purpose of expression simpli-
fication. However, this approach would be hampered by imple-
mentation problems. To integrate a computer algebra system with
another program, a software bus (e.g. MathLinktm) would have to
be adopted for exchanging symbolic data between the computer al-
gebra system and the program. The overhead of exchanging sym-
bolic expressions over a software bus is prohibitive. On both sides
of the software bus, expressions have to be represented internally
and in possibly different formats. The storage saving DAG rep-
resentation in vpo for effects and their canonical representations
cannot be adopted when a software bus is used.

5.1 Simplifying Effects Using Ctadel
We modified the vpo compiler by inserting calls to CTADEL

to simplify effects. CTADEL [16] is an extensible rule-based
symbolic manipulation program implemented in SWI-Prolog [20].
The expression simplification is applied in the address space of the
vpo compiler by linking with the SWI-Prolog interpreter.

Besides the efficiency consideration of linking Prolog to the
vpo compiler, another reason for integrating CTADEL with vpo is
the ability of CTADEL to easily implement a rule-base for sim-
plifying effects. Using CTADEL allows us to more easily experi-
ment with the effect simplification as compared to implementing
the simplification directly in C.

The matching mechanism in CTADEL for applying rules is very
powerful. The system respects the properties of operators in an
expression to align the subexpression with the left-hand side of
a transformation rule. Associative and commutative properties of
operators are declared and the system will apply the rules by taking
these properties into account.

The symbolic simplification of effects is illustrated by an exam-
ple depicted in Figure 8. The calculation of effects proceeds from
the dominating block of the region (B1). The guarding conditions
that result from conditional control flow are propagated down and

used to guard RTLs. Effects from blocks are merged as described
in Section 4.

Note that the merging requires extensive symbolic simplifica-
tion of logical expressions and the application of rules for un-
nesting and lifting guarded expressions. Further note that the fi-
nal effects accurately describe the semantics of the region of code.
Clearly, block B5 is unreachable code. The semantic effect of the
code before and after the dead-code elimination transformation is
applied is unchanged. Note that the code after the transforma-
tion is not shown in this figure. Hence, the dead-code elimination
transformation example is validated.

6 Current Status
We have modified the vpo compiler to validate code-improving

transformations using the techniques described in this paper. Ta-
ble 1 shows some small test programs that we have compiled while
validating code-improving transformations. The third column in-
dicates the number of improving transformations that were applied
during the compilation of the program. The fourth column repre-
sents the percentage of the transformations where the effects of
the old and new regions associated with the transformation were
identical. The only transformations that have not been validated
are those with regions that span basic blocks at different loop nest-
ing levels since the ability to represent effects containing entire
loops (as shown in Section 4.3) has not yet been implemented.
All transformations applied to these test programs with regions
within a single loop level have been validated. We also plan to
later test our validation approach with larger test programs as well.
The fifth column represents the average static number of instruc-
tions for each region associated with all code-improving transfor-
mations during the compilation. This average illustrates that the
typical region associated with a transformation is quite small. The
final column denotes the ratio of compilation times when validat-
ing programs versus a normal compilation. The use of an inter-
pretive Prolog system to simplify effects did impact the speed of
the validation process. However, an overhead of about two orders
of magnitude would probably be acceptable, as compared to the
cost of not detecting potential errors. As can be seen in the table,
the compilation overhead is correlated with the size of the regions
associated with the transformations. Note that a user can select a
subset of transformations (e.g. ones recently implemented) to be
validated. In addition, validation would not be performed on every
compilation. If excessive compilation time becomes an issue, then
we will investigate slicing [19] the regions to reduce the number
of effects to simplify.

A variety of types of transformations in the vpo compiler have
been validated using our approach. These transformations in-



PC=IC>0,B6;

r[10]=0;r[10]=-1;
PC=B7;

PC=B7;
r[10]=1;

PC=IC:0,B4;

PC=IC<0,B8;
IC=r[8]?0;      r[8]

r[11]=-r[10];

. . .

1

3

4

2

r[8]>=0/\r[8]!=0

r[8]>=0

r[8]>=0

B1

B2

B4 B3

B5 B6

B7

B8

r[8]>=0/\r[8]=0

r[8]>=0/\r[8]=0/\r[8]>0 r[8]>=0/\r[8]=0/\r[8]<=0

r[8]<0

5

1. At transition (1) from block B5 after merging we find r[10] = {−1 if r[8] ≥ 0 ∧ r[8] = 0 ∧ r[8] > 0}

2. At transition (2) from block B6 after merging we find r[10] = {0 if r[8] ≥ 0 ∧ r[8] = 0 ∧ r[8] ≤ 0}

3. At transition (3) from block B3 after merging we find r[10] = {1 if r[8] ≥ 0 ∧ r[8] 6= 0}

4. After combining the effects of the blocks B5, B6, and B3 we obtain

r[10] =

{

1 if r[8] ≥ 0 ∧ r[8] 6= 0
0 if r[8] ≥ 0 ∧ r[8] = 0 ∧ r[8] ≤ 0
−1 if r[8] ≥ 0 ∧ r[8] = 0 ∧ r[8] > 0

}

simplify
=

{

1 if r[8] > 0
0 if r[8] = 0

}

5. Merging the above effects with the effects of block B7 yields

r[10] =

{

1 if r[8] > 0
0 if r[8] = 0

}

r[11] = −

{

1 if r[8] > 0
0 if r[8] = 0

}

simplify
=

{

−1 if r[8] > 0
0 if r[8] = 0

}

6. Merging the (empty) effects at transition (5) with the effects at transition (4) we obtain the effects of the region of code

r[10] =

{

{

1 if r[8] > 0
0 if r[8] = 0

}

if r[8] ≥ 0

r[10] if r[8] < 0

}

simplify
=

{

1 if r[8] > 0
0 if r[8] = 0
r[10] if r[8] < 0

}

r[11] =

{

{

−1 if r[8] > 0
0 if r[8] = 0

}

if r[8] ≥ 0

r[11] if r[8] < 0

}

simplify
=

{

−1 if r[8] > 0
0 if r[8] = 0
r[11] if r[8] < 0

}

where the guard condition r[8] ≥ 0 is derived by forming the disjunction of the guard conditions on the incoming edges to block B7,
which is the simplified form of

(r[8] ≥ 0 ∧ r[8] 6= 0) ∨ (r[8] ≥ 0 ∧ r[8] = 0 ∧ r[8] ≤ 0) ∨ (r[8] ≥ 0 ∧ r[8] = 0 ∧ r[8] > 0)

Figure 8. Example of Simplifying Effects



clude algebraic simplification of expressions, basic block reorder-
ing, branch chaining, common subexpression elimination, con-
stant folding, constant propagation, unreachable code elimina-
tion, dead store elimination, evaluation order determination, fill-
ing delay slots, induction variable removal, instruction selection,
jump minimization, register allocation, strength reduction, and
useless jump elimination. Unlike an approach that requires the
compiler writer to provide invariants for each different type of
code-improving transformation [13], our general approach was ap-
plied to all of these transformations without requiring any special
information. Thus, we believe that our approach could be used to
validate many hand-specified transformations on assembly code
by programmers of embedded systems.

7 Conclusions
This paper has described a general approach for validating low-

level code-improving transformations. First, the region in the pro-
gram representation associated with the changes caused by a code-
improving transformation is identified. Second, the effects of the
region before and after the transformation are calculated. Third, a
set of rules are applied in an attempt to obtain a normal form of
these effects. Finally, the effects of the region before and after the
transformation are compared. If the two sets of effects are identi-
cal, then the transformation is deemed valid. One should note that
the approach presented in this paper does not guarantee to show
that two arbitrary regions are semantically equivalent. However,
we have demonstrated that it is feasible to use our approach to
validate many conventional code-improving transformations.

Validating code-improving transformations has many potential
benefits. Validation provides greater assurance of correct compila-
tion of programs, which is important since software is being used
as a component of an increasing number of critical systems. The
time spent by compiler writers to detect errors can be dramatically
reduced since the transformations that do not preserve the seman-
tics of the program representation are identified during the com-
pilation. Finally, validation of hand-specified transformations on
assembly code can be performed, which can assist programmers
of embedded systems.
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