
CC–MPI: A Compiled Communication Capable MPI
Prototype for Ethernet Switched Clusters∗

Amit Karwande, Xin Yuan
Dept. of Computer Science

Florida State University
Tallahassee, FL 32306

{karwande,xyuan}@cs.fsu.edu

David K. Lowenthal
Dept. of Computer Science
The University of Georgia

Athens, GA 30602

dkl@cs.uga.edu

ABSTRACT
Compiled communication has recently been proposed to im-
prove communication performance for clusters of worksta-
tions. The idea of compiled communication is to apply more
aggressive optimizations to communications whose informa-
tion is known at compile time. Existing MPI libraries do not
support compiled communication. In this paper, we present
an MPI prototype, CC–MPI, that supports compiled com-
munication on Ethernet switched clusters. The unique fea-
ture of CC–MPI is that it allows the user to manage network
resources such as multicast groups directly and to optimize
communications based on the availability of the communi-
cation information. CC–MPI optimizes one–to–all, one–to–
many, all–to–all, and many–to–many collective communica-
tion routines using the compiled communication technique.
We describe the techniques used in CC–MPI and report its
performance. The results show that communication per-
formance of Ethernet switched clusters can be significantly
improved through compiled communication.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed Programming

General Terms
Performance

Keywords
Compiled Communication, MPI, Message Passing Library,
Clusters of Workstations

1. INTRODUCTION
∗This work was partially supported by NSF grants, CCR-
9904943, CCR-0073482, CCR-0105422, and CCR-0208892

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’03, June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/0006 ...$5.00.

As microprocessors become more and more powerful, clus-
ters of workstations have become one of the most common
high performance computing environments. Many institu-
tions have Ethernet–switched clusters of workstations that
can be used to perform high performance computing. One
of the key building blocks for such systems is a message
passing library. Standard message passing libraries, includ-
ing MPI [11] and PVM [24], have been implemented for such
systems. Current implementations, such as MPICH [12] and
LAM/MPI [28], focus on moving data across processors and
addressing portability issues. Studies have shown that cur-
rent implementations of message passing libraries are not
tailored to achieve high communication performance over
clusters of workstations [6].

Compiled communication has recently been proposed to
improve communication performance for clusters of work-
stations [32, 33]. In compiled communication, the compiler
determines the communication requirement of a program.
The compiler then uses its knowledge of the application
communications, together with its knowledge of the under-
lying network architecture, to directly manage network re-
sources, schedule the communications, and exploit optimiza-
tion opportunities. Compiled communication can perform
optimizations across communication patterns at the soft-
ware level, the protocol level, and the hardware level. It is
more aggressive than traditional communication optimiza-
tion techniques, which are either performed in the library
[3, 8, 27, 31] or in the compiler [1, 2, 7, 13, 16, 29].

Compiled communication offers many advantages over the
traditional communication method. First, by managing net-
work resources at compile time, some runtime communi-
cation overheads such as group management can be elimi-
nated. Second, compiled communication can use long–lived
connections for communications and amortize the startup
overhead over a number of messages. Third, compiled com-
munication can improve network resource utilization by us-
ing off–line resource management algorithms. Last but not
the least, compiled communication can optimize arbitrary
communication patterns as long as the communication in-
formation can be determined at compile time.

The limitation of compiled communication is that it can
only apply to static communications, that is, communica-
tions whose information can be determined at compile time.
It has been found that a large percent of communications
in scientific programs and in particular MPI programs are
static [10, 19]. Thus, compiled communication can be ef-
fective in improving overall communication performance by

optimizing common cases.
To facilitate compiled communication, mechanisms must

be incorporated in the communication library to expose net-
work resources to the users. Existing messaging libraries,
including MPICH [12] and LAM/MPI [28], hide network
details from the user and do not support compiled commu-
nication.

In this paper, we introduce an MPI prototype, CC–MPI,
that serves as a run-time system for compiled communica-
tion on Ethernet switched clusters. Since the targeted users
of CC–MPI are compilers and advanced programmers who
know system details, we will use the terms user, compiler,
and advanced programmer interchangeably throughout this
paper.

CC–MPI optimizes one–to–all, one–to–many, all–to–all,
and many–to–many collective communication routines. To
support compiled communication, CC–MPI extends the MPI
standard and uses separate routines for network control and
data transmission. Network resources are exposed to the
user through the network control routines, and various opti-
mizations can be performed by manipulating (moving, merg-
ing, eliminating) the network control routines. Based on the
availability of application communication information, CC–
MPI allows the user to use different combinations of network
control and data transmission routines for a communication
to achieve high performance.

We describe the techniques used in CC–MPI and report
our performance study of CC–MPI. The results of our study
indicates that the communication performance of Ether-
net switched clusters can be improved substantially through
compiled communication. For example, on 16 nodes, CC–
MPI speeds up the IS benchmark (class A), a program from
the NAS suite [25], by 54% over LAM/MPI and 286% over
MPICH.

The contribution of this paper is as follows.

• We develop a compiled-communication capable MPI
library prototype that differentiates statically known
and unknown communications, allowing optimization
and significant performance gains for known commu-
nications.

• We develop three group management schemes for im-
plementing one–to–all and one–to–many communica-
tions.

• We design a number of phase communication schemes
for all–to–all and many–to–many communications.

The rest of the paper is organized as follows. The related
work is presented in Section 2. In Section 3, we describe MPI
collective communication routines and discuss features in
switched Ethernet that affect the method for efficient com-
munication. In Section 4, we present the techniques used in
CC–MPI. In Section 5, we report the results of the perfor-
mance study. Finally, Section 6 concludes the paper.

2. RELATED WORK
Extensive research has been conducted to improve com-

munication performance in high performance computing sys-
tems. Many projects have focused on reducing the commu-
nication overheads in the software messaging layer [3, 8, 27,
31]. CC–MPI is different from these systems in that it al-
lows users to select the most effective method based on mes-
sage sizes and network conditions. Many parallel compiler

projects also try to improve communication performance by
generating efficient communication code [1, 2, 7, 13, 16, 29].
The communication optimizations performed by these com-
pilers focus on reducing the number and the volume of com-
munications and are architecture independent. While CC–
MPI is not directly related to compiler optimization tech-
niques, compiler techniques developed, however, can enable
effective usage of CC–MPI.

The development of CC–MPI is motivated by compiled
communication [4, 5, 18, 32, 33] and the need to support
architecture-dependent communication optimization [14] at
the library level. While it has been found that informa-
tion about most communications in scientific programs and
in particular MPI programs can be determined at compile
time [10, 19], existing standard libraries, such as MPI [11]
and PVM [24], do not support any mechanisms to exploit
such information. CC–MPI is an attempt to extend the
standard MPI library to support the compiled communica-
tion model and to allow the user to perform architecture-
dependent communication optimization across communica-
tion patterns.

The success of the MPI standard can be attributed to the
wide availability of two MPI implementations: MPICH[12]
and LAM/MPI [28]. Many researchers have been trying to
optimize the MPI library [17, 21, 26, 30]. In [17], opti-
mizations are proposed for collective communications over
Wide-Area Networks. In [26], a compiler based optimiza-
tion approach is developed to reduce the software overheads
in the library, which focuses on point–to–point communica-
tions. In [21], MPI point–to–point communication routines
are optimized using a more efficient primitive (Fast Mes-
sage). Optimizations for a thread-based MPI implementa-
tion are proposed in [30]. Our research is different from the
existing work in that we develop a MPI library that allows
static communication information to be exploited.

3. BACKGROUND
CC–MPI optimizes one–to–all, one–to–many, many–to–

many, and all–to–all communication routines for Ethernet
switched clusters by exploiting special features in switched
Ethernet. In this section, we will briefly introduce MPI
collective communication routines and discuss the features
in switched Ethernet that affect communication efficiency.

3.1 MPI Collective Communication Routines
MPI is a library specification for message–passing, pro-

posed as a standard by a broad-based committee of ven-
dors, implementors and users. A set of standard collective
communication routines are defined in MPI. Each collective
communication routine has a parameter called a communi-
cator, which identifies the group of participating processes.
Next, we will briefly summarize the MPI collective commu-
nication routines. Details about these routines can be found
in the MPI specification [11].

Function MPI Barrier blocks the callers until all mem-
bers in the communicator call the routine, and MPI Bcast
broadcasts a message from a root process to all processes
in the communicator. The MPI Gather and MPI Gatherv
routines allow each process in the communicator to send
data to one process, while MPI Scatter allows one process
to send a different message to each other process. Function
MPI Scatterv generalizes MPI Scatter by allowing different-
sized messages to each process. it can perform one–to–

many communications within the communicator by care-
fully selecting the input parameters. The MPI Allgather and
MPI Allgatherv routines gather fixed- or variable-sized infor-
mation, respectively, from all processes and puts the results
to all processes. Function MPI Alltoall is a generalization
of MPI Allgather that allows different messages can be sent
to different processes. The general form of all–to–all com-
munication is MPI Alltoallv, which allows many–to–many
or one–to–many communications to be performed by care-
fully selecting the input arguments. Finally, MPI Reduce
performs global reduction operations, MPI Reduce scatter
additionally puts the result to all processes, and MPI Scan
performs a prefix reduction on data distributed across the
members of a communicator.

CC–MPI implements a subset of MPI routines, includ-
ing all the routines required to execute the NAS parallel
benchmarks [25]. CC–MPI optimizes the collective commu-
nication routines that contain one–to–all, one–to–many, all–
to–all and many–to–many communication patterns. More
specifically, MPI Bcast and MPI Scatter contain the one–
to–all pattern, MPI Scatterv contains the one–to–all or one–
to–many pattern, MPI Allgather and MPI Alltoall contain
the all–to–all pattern, and MPI Alltoallv contains the all–
to–all or many–to–many pattern. The one–to–all, one–to–
many, all–to–all and many–to–many communication pat-
terns are also part of the communications in MPI Barrier
and MPI Reduce Scatter.

3.2 Switched Ethernet
CC–MPI is designed for Ethernet switched homogeneous

clusters. We assume that TCP/IP protocols are running
on the end hosts and IP multicast can be used through the
UDP interface. To achieve optimal performance, CC–MPI
exploits the following features in switched Ethernet.

• Switched Ethernet supports broadcast at the hard-
ware level. This indicates that using multicast primi-
tives to realize broadcast types of routines, including
MPI Bcast, MPI Scatter, and MPI Scatterv, will likely
result in good communication performance.

• Ethernet switches support unicast traffic effectively
when there is no network contention in the system.
However, when multiple large messages simultaneously
target the same output port of an Ethernet switch,
the communication performance may degrade signif-
icantly since Ethernet does not have a good mecha-
nism for multiplexing to share the bandwidth. Hence,
a communication library should avoid this scenario to
achieve high performance.

• Multicast traffic in switched Ethernet negatively af-
fects unicast traffic. Multicast should be used with
great caution in Ethernet switched clusters.

4. CC-MPI
CC–MPI supports compiled communication by separating

network control from data transmission. For each commu-
nication routine, zero, one or more network control routines
and one or more data transmission routines are supported
in the library. This way, different combinations of network
control and data transmission can be used for a commu-
nication to achieve optimal performance. This allows the

user to directly manage network resources, amortize the net-
work control overhead over a number of communications,
and use more efficient methods for static communications
when more information about the communication is known.
A number of factors allow CC–MPI to achieve high commu-
nication performance. First, CC–MPI uses different meth-
ods for each type of communication. Each method does
not have to be effective for all situations. It only needs to
be effective in some cases, because CC–MPI relies on its
user to select the best method for a communication. This
gives CC–MPI more flexibility in using customized commu-
nication methods. Second, some communication routines
in CC–MPI make more assumptions about the communica-
tions to be performed than the general-case routines. With
these assumptions, more effective communication routines
are developed. Although such routines are not general, they
provide high performance when applicable.

CC–MPI focuses on optimizing one–to–all, one–to–many,
all–to–all, and many–to–many communications. To present
the techniques used in CC–MPI, we will use one representa-
tive routine for each communication pattern. More specif-
ically, we will use MPI Bcast to illustrate how we imple-
ment one–to–all communication, MPI Scatter for one–to–
all personalized communication, MPI Scatterv for one–to–
many personalized communication, MPI Alltoall for all–to–
all communication, and MPI Alltoallv for many–to–many
communication. This section first describes techniques used
in one–to–all and one–to–many communications, including
issues related to multicast. Then, we discuss all–to–all and
many–to–many communications, including our use of phased
communication [15] to avoid network contention.

4.1 One–to–all and One–to–many Communi-
cations

MPI Bcast, MPI Scatter, and MPI Scatterv realize one–
to–all and one–to–many communications. These routines
are traditionally implemented using unicast primitives with
a logical tree structure [12, 28]. In addition to unicast
based implementations, CC–MPI also provides implemen-
tations using multicast. Multicast based implementations
can potentially achieve higher communication performance
than a unicast based implementation because multicast re-
duces both the message traffic over the network and the
CPU processing at the end hosts and because Ethernet sup-
ports broadcast at the hardware level. However, due to the
complexity of reliable multicast protocols and other related
issues, a multicast based implementation does not always
perform better than a unicast based implementation.

There are two issues to be addressed when using multicast:
reliability and group management. The current TCP/IP
protocol suite only supports unreliable IP multicast through
the UDP interface. MPI, however, requires 100% reliabil-
ity. CC–MPI uses an ACK-based reliable multicast proto-
col [20] to reliably deliver multicast messages. We adopt
this protocol for its simplicity. Group management is an-
other issue to be addressed in a multicast-based implemen-
tation. Basically, a multicast group must be created before
any multicast message can be sent to that group. A group
management scheme determines when to create/destroy a
multicast group. Given a set of N processes, the number
of potential groups is 2N . Thus, it is impractical to estab-
lish all potential groups for a program, and group manage-
ment must be performed as the program executes. In fact,

most network interface cards limit the number of multicast
groups; as an example, Ethernet cards allow only 20 such
groups simultaneously. Because the group management op-
erations require the coordination of all members in the group
and are expensive, the ability to manage multicast groups
effectively is crucial for a multicast-based implementation.
CC–MPI supports three group management schemes: the
static group management scheme, the dynamic group man-
agement scheme, and the compiler–assisted group manage-
ment scheme.

Static group management scheme In this scheme,
a multicast group is associated with each communicator.
The group is created/destroyed when the communicator is
created/destroyed. Because a communicator is usually used
by multiple communications in a program, the static group
management scheme amortizes the group management over-
heads and makes the group management overhead negligi-
ble. This scheme is ideal for one–to–all communications,
such as MPI Bcast. Using the static group management
scheme, MPI Bcast can be implemented by having the root
(sender) send a reliable broadcast message to the group.

A multicast based MPI Scatter is a little more compli-
cated. In the scatter operation, different messages are sent
to different receivers. To utilize the multicast mechanism,
the messages for different receivers must be aggregated to
send to all receivers. For example, if messages m1, m2 and
m3 are to be sent to processes p1, p2 and p3, the aggregate
message containing m1, m2 and m3 will be sent to all three
processes as one multicast message. Once a process receives
the aggregated multicast message, it can identify its portion
of the message (because the message sizes to all receivers
are the same and are known at all nodes assuming a correct
MPI program) and copy the portion to user space. In com-
parison to the unicast based MPI Scatter, where the sender
loops through the receivers sending a unicast message to
each of the receivers, the multicast based implementation
increases the CPU processing in each receiver because each
receiver must now process a larger aggregated message, but
decreases the CPU processing in the root (sender), as fewer
system calls are needed. Because the bottleneck of the uni-
cast implementation of MPI Scatter is at the sender side,
it is expected that the multicast based implementation of-
fers better performance when the aggregated message size
is not very large. When the size of the aggregated message
is too large, the multicast based implementation may per-
form worse than the unicast based implementation because
it slows down the receivers.

Realizing MPI Scatterv is similar to realizing MPI Scatter,
with some complications. In MPI Scatterv, different re-
ceivers can receive different sized messages and each receiver
only knows its own message size. While the sender can still
aggregate all unicast messages into one large multicast mes-
sage, the receivers do not have enough information to de-
termine the layout and the size of the aggregated message.
CC–MPI resolves this problem by using two broadcasts in
this function. The first broadcast tells all processes in the
communicator the amount of data that each process will
receive. Based on this information, each process can com-
pute the memory layout and the size of the aggregated mes-
sage. The second broadcast sends the aggregate message.
Notice that it is difficult (although possible) to perform
broadcast with an unknown message size. This is because
MPI Bcast requires the message size to be specified. As a

result, MPI Scatterv is implemented with two MPI Bcast
calls. MPI Scatterv can realize one–to–many communica-
tion by having some receivers not receive any data. Us-
ing the static group management scheme, the one–to–many
communication is converted into an one–to–all communica-
tion because all processes in the communicator must receive
the aggregated message. This is undesirable because it keeps
the processes that are not interested in the communication
busy. In addition, this implementation sends a reliable mul-
ticast message to a group that is larger than needed, which
can affect the performance of the reliable multicast commu-
nication. The dynamic group management scheme and the
compiler–assisted group management scheme overcome this
problem.

Dynamic group management scheme In this scheme,
a multicast group is created when needed. This group man-
agement scheme is built on top of the static group manage-
ment scheme in an attempt to improve the performance for
one–to–many communications. To effectively realize one–
to–many communication, the dynamic group management
scheme dynamically creates a multicast group, performs the
communication with only the intended participants, and de-
stroys the group. In MPI Scatterv, only the sender (root)
has the information about the group of receivers (each re-
ceiver only knows whether it is in the group, but not whether
other nodes are in the group). To dynamically create the
group, a broadcast is performed using the static group as-
sociated with the communicator. This informs all mem-
bers in the communicator of the nodes that should be in
the new group. After this broadcast, a new group can be
formed and the uninterested processes that are not in the
new group can move on. After the communication is per-
formed within the new group, the group is destroyed. With
the dynamic group management scheme, MPI Scatterv per-
forms three tasks: new group creation (all nodes must be in-
volved), data transmission (only members in the new group
are involved), and group destruction (only members in the
new group are involved). Dynamic group management intro-
duces group management overheads for each communication
and may not be efficient for sending small messages.

(1) DO i = 1, 1000
(2) MPI Scatterv(....)

(a) An example program

(1) MPI Scatterv open group(...)
(2) DO i = 1, 1000
(3) MPI Scatterv data movement(....)
(4) MPI Scatterv close group(...)

(b) The compiler–assisted group management scheme

Figure 1: An example of compiler–assisted group
management.

Compiler–assisted group management scheme In
this scheme, we extend the MPI interface to allow users to
directly manage the multicast groups. For MPI Scatterv,
CC–MPI provides three functions: MPI Scatterv open group,
MPI Scatterv data movement, and MPI Scatterv close group.
MPI Scatterv open group creates a new group for the partic-
ipating processes in a one–to–many communication and ini-

tializes related data structures. MPI Scatterv close group
destroys the group created. MPI Scatterv data movement
performs the data movement assuming that the group has
been created and that the related information about the
communication is known to all participated parties. Notice
that MPI Scatterv data movement requires less work than
MPI Scatterv with the static group management scheme.
This is because the message size for each process is known
to all processes when MPI Scatterv data movement is called,
so only one broadcast (as opposed to two) is needed in
MPI Scatterv data movement for sending the aggregate mes-
sage.

The MPI Bcast, MPI Scatter, and MPI Scatterv with the
static group management scheme are implemented as data
transmission routines in CC–MPI. MPI Scatterv with dy-
namic group management and MPI Scatterv data movement
are also data transmission routines. On the other hand,
MPI Scatterv open group and MPI Scatterv close group are
network control routines for MPI Scatterv. Note that when
compiled communication is applied, network control rou-
tines can sometimes be moved, merged, and eliminated to
perform optimizations across communication patterns. The
data transmission routines generally have to be invoked to
carry out the actual communications. Consider the exam-
ple in Figure 1, where MPI Scatterv is performed 1000 times
within a loop. Let us assume that the MPI Scatterv sends
to 5 nodes within a communicator that contains 30 nodes.
When static group management is used, all 30 nodes must
participate in the communication. When dynamic group
management is used, only the 5 nodes will participate in
the communication, which may improve reliable multicast
performance. However, a multicast group that contains the
5 nodes in the communication must be created/destroyed
1000 times. With compiled communication, if the compiler
can determine that the group used by the MPI Scatterv is
the same for all its invocations, it can perform group man-
agement as shown in Figure 1 (b). In this case, only 5 nodes
are involved in the communication, and the multicast group
is created/destroyed only once. This example demonstrates
that by using separate routines for network control (group
management) and data transmission, CC–MPI allows the
user to directly manage the multicast groups and to amortize
network control overheads over multiple communications. In
addition, CC–MPI also allows more efficient data transmis-
sion routines to be used when more information about a
communication is known.

4.2 All–to–all and Many–to–many Communi-
cations

MPI Alltoall, MPI Alltoallv, and MPI Allgather realize all–
to–all and many–to–many communications. There are many
variations in the implementation of these routines. One
scheme is to implement these complex all-to–all and many-
to-many communication patterns over simpler one-to-all and
one-to-many collective communication routines. For exam-
ple, for N nodes, MPI Allgather can be decomposed into N
MPI Bcast operations. While multicast can obviously im-
prove communication performance for one–to–all and one–
to–many communications, it may not improve the perfor-
mance for the more complex many–to–many communica-
tions in Ethernet switched clusters. Consider realizing a
many-to-many communication where s1, s2, and s3 each
sends a message of the same size to d1, d2, and d3. This

communication can be realized with three multicast phases:
Phase 1: {s1 → d1, d2, d3}
Phase 2: {s2 → d1, d2, d3}
Phase 3: {s3 → d1, d2, d3}

This communication can also be realized with three uni-
cast phases:

Phase 1: {s1 → d1, s2 → d2, s3 → d3}
Phase 2: {s1 → d2, s2 → d3, s3 → d1}
Phase 3: {s1 → d3, s2 → d1, s3 → d2}

Using an Ethernet switch, the unicast phase and the mul-
ticast phase will take roughly the same amount of time and
multicast-based implementations may not be more effec-
tive than unicast based implementations. Our performance
study further confirms this. Thus, while CC–MPI provides
multicast based implementations for some of the all–to–all
and many–to–many communication routines, we will focus
on the techniques we use to improve the unicast based im-
plementation.

Traditionally, these complex communications are imple-
mented based on point–to–point communications [12, 28]
without any scheduling. Such implementations will yield
acceptable performance when the message sizes are small.
When the message sizes are large, there will be severe net-
work contention in the Ethernet switch and the performance
of these implementations will be poor. CC–MPI optimizes
the cases when the message sizes are large using phased com-
munication [15]. The idea of phased communication is to re-
duce network contention by decomposing a complex commu-
nication pattern into phases such that the contention within
each phase is minimal. To prevent communications in dif-
ferent phases from interfering with each other, a barrier is
placed between phases. Next, we will discuss how phased
communication can be used to realize MPI Alltoall (for all–
to–all communications) and MPI Alltoallv (for many–to–
many communications).

Phase 0: {0 → 1, 1 → 2, 2 → 3, 3 → 4, 4 → 5, 5 → 0}
MPI Barrier
Phase 1: {0 → 2, 1 → 3, 2 → 4, 3 → 5, 4 → 0, 5 → 1}
MPI Barrier
Phase 2: {0 → 3, 1 → 4, 2 → 5, 3 → 0, 4 → 1, 5 → 2}
MPI Barrier
Phase 3: {0 → 4, 1 → 5, 2 → 0, 3 → 1, 4 → 2, 5 → 3}
MPI Barrier
Phase 4: {0 → 5, 1 → 0, 2 → 1, 3 → 2, 4 → 3, 5 → 4}

Figure 2: All–to–all phases for 6 nodes.

CC–MPI assumes that network contention only occurs in
the link between an Ethernet switch and a machine. This
assumption is true for a cluster connected with a single Eth-
ernet switch. When multiple switches are involved, this as-
sumption will hold when a higher link speed is supported
for the links connecting switches. Under this assumption,
the contention that needs to be resolved is in the links be-
tween a node and a switch. To avoid network contention
within a phase, each node receives at most one message in a
phase (receiving two messages potentially results in network
contention). All–to–all communication for N nodes can be
realized with N−1 phases and N−2 barriers. The ith phase
contains communications

{j → (j + i) mod N | j = 0..N − 1}
Figure 2 shows the all–to–all phases for 6 nodes. The com-

munication is composed of 5 communication phases and 4
barriers. As can be seen from the figure, within each phase,

each node only sends and receives one message, and there is
no network contention within each phase. In the following
discussion, we will call the phases that can form all–to–all
communications all–to–all phases. Essentially, scheduling
messages in an all–to–all communication according to the
all–to–all phases results in no network contention within
each phase. Notice that each source-destination pair hap-
pens exactly once in the all–to–all phases.

Using N − 2 barriers potentially can cause a scalability
problem. However, all–to–all communication itself is not
scalable, and the extra barrier is swamped by data trans-
mission as long as the message sizes are reasonably large.
When the message size is large enough, phase communica-
tion reduces the network contention and achieves high com-
munication performance. Note also that barriers can be
very efficient with special hardware support, such as Pur-
due’s PAPERS [9]. In our evaluation, we do not use any
special hardware support, a barrier on 16 nodes takes about
1 millisecond.

Realizing many–to–many communication with phased com-
munication is more difficult. Using MPI Alltoallv, a node
can send different sized messages to different nodes. This
routine realizes many-to-many communication by specify-
ing the size of some messages to be 0. The first difficulty
to realize MPI Alltoallv with phased communication is that
the communication pattern information is not known to all
nodes involved in the communication. In MPI Alltoallv,
each node only has the information about how much data it
sends to and receives from other nodes, but not how other
nodes communicate. To perform phased communication,
however, all nodes involved in the communication must co-
ordinate with each other and agree on what to send and
receive within each phase. This requires that all nodes in-
volved obtain the communication pattern information. CC–
MPI provides two methods to resolve this problem. The first
approach uses an MPI Allgather to distribute the communi-
cation pattern information before the actual many–to–many
communication takes place. The second approach, which
can only be used when the user has additional information
about the communication, assumes that the global commu-
nication pattern is determined statically for each node and
stored in a local data structure. It is clearly more efficient
than the first method.

Scheme 1: greedy scheduling
Phase 1: {(0 → 1, 1MB), (1 → 3, 1MB)}
MPI Barrier
Phase 2: {(0 → 2, 10KB), (2 → 3, 100B), (1 → 5, 100B)}
MPI Barrier
Phase 3: {(2 → 1, 100B)}

Scheme 2: all–to–all based scheduling
Phase 1: {(0 → 1, 1MB), (2 → 3, 100B), (1 → 5, 100B)}
MPI Barrier
Phase 2: {(1 → 3, 1MB), (0 → 2, 10KB), (2 → 1, 100B)}

Figure 3: Scheduling messages: (0 → 1, 1MB), (1 →
3, 1MB), (0 → 2, 10KB), (2 → 3, 100B), (1 → 5, 100B),
(2 → 1, 100B).

Once the global communication pattern information is
known to all nodes, a message scheduling algorithm is used
to minimize the total communication time for the many–to–
many communication. Figure 3 shows an example that dif-
ferent message scheduling schemes can result in differences

in the number of phases (and hence communication perfor-
mance). In the example, we use notion (src → dst, size) to
denote a message of size bytes from node src and node dst.
Because there is no network contention within each phase,
the time a phase takes depends only on the largest message
sent in the phase; we will refer to a phase with the largest
message of X bytes as an X bytes phase. Figure 3 shows
two scheduling schemes. Scheme 1 contains one 1MB phase,
one 10KB phase, one 100B phase, and two barriers, and
Scheme 2 contains two 1MB phases and one barrier. As can
be seen from this example, to minimize the total communi-
cation time for a phased communication, we must minimize
both the number of phases needed to realize the communi-
cation and the amount of time spent within the phases. The
latter can be achieved by having a balanced load within each
phase.

CC–MPI supports two message scheduling schemes for
many to many communications: greedy scheduling and all–
to–all based scheduling. The greedy scheduling algorithm
focuses on the load balancing issue. It works in two steps.
In the first step, the algorithm sorts the messages in decreas-
ing order in terms of the message size. In the second step,
the algorithm creates a phase, considers each unscheduled
message (from large size to small size) and puts the message
in the phase if possible, that is, if adding the message into
the phase does not create contention. Under our assump-
tion, network contention is created when a node sends to
two nodes and when a node receives from two nodes. If the
sizes of the remaining messages are less than a threshold
value, all messages are put in one phase. The greedy al-
gorithm repeats the second step if there exists unscheduled
messages. The operation to put all small messages in one
phase is a minor optimization to reduce the number of bar-
riers for realizing a communication pattern. This is useful
because when the message sizes are small, the network con-
tention is light and a barrier operation can be more costly
than the contention. The load in the phases created by the
greedy algorithm is likely to be balanced because messages
of similar sizes are considered next to each other.

All-to-all based scheduling algorithm:

Input: Communication pattern
Output: Communication phases
(1)Sort messages based on their sizes
(2)while (there exist unscheduled messages) do
(3) if (the largest message size < the threshold) then
(4) Put all messages in one phase
(5) endif
(6) Let all–to–all Phase i (see Figure 2) be the phase

that contains the largest unscheduled message
(7) Create a new empty phase P
(8) Schedule all unscheduled messages that appear in

all–to–all Phase i in P
(9) For each unscheduled message in the sorted list

if no conflict, put the message in P

Figure 4: All–to–all based scheduling.

The all–to–all based scheduling algorithm is shown in Fig-
ure 4. The main difference between this algorithm and the
greedy algorithm is that messages are scheduled based on
all–to–all phases first before being considered based on their
sizes. This algorithm attempts to minimize the number of

phases while putting messages of similar sizes in the same
phase. It can easily be shown that this algorithm guarantees
that the number of phases is no more than N −1. The algo-
rithm produces the most effective scheduling for all–to–all
communication and will likely yield good results for commu-
nication patterns that are close to all–to–all communication.

Consider scheduling the following messages on 6 nodes:
(0 → 1, 1MB), (1 → 3, 1MB), (0 → 2, 10KB), (2 →
3, 100B), (1 → 5, 100B), (2 → 1, 100B). To illustrate the
idea, let us assume that the threshold value for the small
message size is 0 and that the messages are sorted in the
order as specified. The greedy scheduling works as follows:
messages (0 → 1, 1MB), (1 → 3, 1MB) will be placed in
phase 1 because they do not cause contention. After that,
none of the remaining messages can be placed in this phase.
For example, message (2 → 3, 100B) cannot be placed in
this phase because node 3 receives a message from node 1 in
message (1 → 3, 1MB). The greedy algorithm then creates
phase 2 and places messages (0 → 2, 10KB), (2 → 3, 100B),
and (1 → 5, 100B) in the phase. Message (2 → 1, 100B)
cannot be placed in this phase because it conflicts with
message (2 → 3, 100B), so a third phase is created for
message (2 → 1, 100B). The all–to–all based scheduling
scheme schedules the messages as follows. First, the algo-
rithm searches for the all–to–all phase that contains mes-
sage (0 → 1), which turns out to be all–to–all phase 0 in
Figure 2. The algorithm then creates a phase and puts mes-
sages (0 → 1, 1MB) and (2 → 3, 100B) in the phase because
these two messages are in all–to–all phase 0. After that,
each unscheduled message is considered. In this case, mes-
sage (1 → 3, 1MB) cannot be placed in this phase because
it conflicts with message (2 → 3, 100B). However, message
(1 → 5, 100B) will be placed in this phase. After this, a
second phase will be created for messages (1 → 3, 1MB),
(0 → 2, 10KB), (2 → 1, 100B); none of these messages con-
flict. The results of greedy scheduling and all–to–all based
scheduling are shown in Figure 3.

Depending on the availability of information about the
communication, CC–MPI provides four different methods
for many–to–many communications.

1. Simple communication that realizes many–to–many com-
munication with point–to–point communication rou-
tines. This provides good performance when the mes-
sage size is small and network contention is not severe.

2. Phased communication with the global communica-
tion pattern information calculated at runtime. In
this case, the global communication information is dis-
tributed with an MPI Allgather routine. After that, a
message scheduling algorithm is executed at each node
to determine how each communication is to be carried
out. Finally, the message is transmitted according to
the schedule. This routine is efficient when the user de-
termines that large amounts of messages are exchanged
with the communication; however, the details about
the communication are unknown until runtime. We
refer to this scheme as the Level 1 compiled communi-
cation for MPI Alltoallv.

3. Phased communication with the global communication
pattern information stored in a data structure local to
each node. The difference between this method and
(2) above is that the MPI Allgather is unnecessary.

This scheme can be used by the compiler when the
global communication information can be determined
at runtime. We refer to this scheme as the Level 2
compiled communication for MPI Alltoallv.

4. Phased communication with the message scheduling
information (phases) stored in a data structure local
to each node. Phased communication is carried out
directly using the phase information. This scheme can
be used by the compiler when global communication
information can be determined statically and schedul-
ing is precomputed. This results in the most efficient
phased communication for many–to–many patterns.
We refer to this scheme as the Level 3 compiled com-
munication for MPI Alltoallv.

These different schemes are supported in CC–MPI with
two network control routines and two data transmission rou-
tines. The first data transmission routine supports point–
to–point communication based implementation. The sec-
ond data transmission routine, MPI Alltoallv data trans2,
performs the phased communication with the assumption
that the phases have been computed and the related data
structures are established. The first network control routine,
MPI Alltoallv control1, performs the MPI Allgather opera-
tion to obtain the communication pattern and invokes the
message scheduling routine to compute the phases. The
second network control routine, MPI Alltoallv control2, as-
sumes that the communication pattern information is stored
in local variables and only invokes the message scheduling
routine to compute the phases. Depending on the availabil-
ity of the information about the communication, different
combinations of the network control and data transmission
routines can be used to realize the function with different
performance. For example, Level 1 compiled communication
can be realized with a combination of MPI Alltoallv control1
and MPI Alltoallv data trans2, level 2 communication can
be realized with a combination of MPI Alltoallv control2 and
MPI Alltoallv data trans2, and level 3 communication can
be realized with a single MPI Alltoallv data trans2.

It must be noted that the system assumptions in CC–MPI
simplifies the message scheduling algorithms. The method
to deal with complex all–to–all and many–to–many commu-
nications can be extended for general network topologies,
provided that more sophisticated message scheduling algo-
rithms are developed for the general network topologies.

5. PERFORMANCE STUDY

We have implemented CC–MPI on the Linux operating
system. In this section, we evaluate the routines imple-
mented in CC–MPI and compare the performance of CC–
MPI with that of two MPI implementations in the public
domain, LAM/MPI and MPICH. The experimental envi-
ronment is an Ethernet switched cluster with 29 Pentium
III–650MHz based PCs. Each machine has 128MB memory
and 100Mbps Ethernet connection via a 3Com 3C905 PCI
EtherLink Card. All machines run RedHat Linux version
6.2, with 2.4.7 kernel. The machines are connected by two
3Com SuperStack II baseline 10/100 Ethernet switches as
shown in Figure 5. We use LAM version 6.5.4 with direct
client to client mode communication and MPICH version
1.2.4 with device ch p4 for the comparison.

Ethernet
Switch

Ethernet
Switch

P1 P17

P18P2

P0

P14

P15

P28

Figure 5: Performance evaluation environment.

This section first measures performance of MPI collec-
tive communication routines. Next, we present the results
of two programs from the NAS benchmark suite. Finally,
we present results from an initial prototype of a software
distributed shared memory system that uses CC-MPI for
efficient communication.

5.1 Individual MPI Routines

MPI Barrier(MPI COMM WORLD);
start = MPI Wtime();
for (count = 0; count < ITER NUM; count ++) {

MPI Bcast(buf, s, MPI CHAR, 0, MPI COMM WORLD);
}
elapsed time = MPI Wtime() - start;

Figure 6: Code segment for measuring the perfor-
mance of an individual MPI routine.

We use code similar to that shown in Figure 6 to measure
the performance of individual MPI routines. For each ex-
periment, we run the test three times and report the average
of all results. For collective communication routines, we use
the average time among all nodes as the performance metric.
Because we are averaging the time over many invocations of
an MPI routine, the average time is almost identical to the
worst case time.

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55

0 5 10 15 20 25 30

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Number of Nodes

CC-MPI(size = 1B)
LAM/MPI(size = 1B)

MPICH(size = 1B)

Figure 7: Performance of MPI Bcast (size = 1B).

Figures 7 and 8 show the performance of MPI Bcast. As
can be seen from Figure 7, multicasting does not guarantee
an improvement in communication performance, even for
broadcast communication. The reason that the LAM/MPI
and MPICH broadcast implementations are more efficient
than our multicast-based implementation when the message
size is 1 byte is that LAM/MPI and MPICH use an efficient

0

2

4

6

8

10

12

0 5 10 15 20 25 30

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Number of Nodes

CC-MPI(size = 10KB)
LAM/MPI(size = 10KB)

MPICH(size = 10KB)

Figure 8: Performance of MPI Bcast (size=10KB).

logical tree-based implementation when the group is larger
than 4 processes. This distributes the broadcast workload
to multiple nodes in the system. In our implementation, the
root sends only one multicast packet, but must process all
acknowledgement packets from all receivers. As a result, for
small sized messages, our multicast based implementation
performs worse. However, when the message size is large
(see Figure 8), the acknowledgement processing overhead is
insignificant, and sending one multicast data packet instead
of multiple unicast packets provides a significant improve-
ment.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250 300 350 400

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Message size

CC-MPI
LAM/MPI

MPICH

Figure 9: Performance of MPI Scatter on 29 nodes.

Figures 9 shows the performance of MPI Scatter on 29
nodes. In the scatter operation, the root sends different data
to different receivers. This has two implications. For unicast
implementation, the root must iterate to send a message to
each of the receivers, and the sender is the bottleneck. The
tree–based implementation used in broadcast cannot be uti-
lized. For multicast implementation, the messages must be
aggregated so that each receiver receives more than what
it needs, which decreases performance. Thus, the multi-
cast based implementation can offer better performance only
when the message size is small (50B in Figure 9).

MPI Bcast and MPI Scatter only use the static group
management scheme. Next, we will evaluate the perfor-
mance of one–to–many communication for which dynamic
group management and compiler–assisted group manage-
ment were designed. Figure 10 shows the performance of
MPI Scatterv with different implementations and group man-
agement schemes. In this experiment, the root scatters mes-
sages of a given size to 5 receivers among the 29 mem-
bers in the communicator. As can be seen in the figure,
the compiler–assisted scheme performs the best among all

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Message size

Dynamic
MPICH

Static
LAM/MPI

Compiler-Assist

Figure 10: Performance of one–to–five communica-
tion using MPI Scatterv.

the schemes. The dynamic group management scheme in-
curs very large overheads and offers the worst performance
among all the schemes. The static group management is in
between the two. In this case, LAM/MPI outperforms both
the dynamic and static schemes. We have conducted several
experiments, and all results demonstrate a similar trend.

Data CC-MPI LAM/ MPICH
size multicast unicast phased MPI
1B 1.8 1.1 17.7 0.7 1.9

1KB 8.7 9.4 18.1 7.6 5.0
8KB 61.4 82.5 28.7 108.4 15.3
64KB 494.2 705.2 112.2 937.7 335.0
256KB 1987.0 2739.6 378.8 3706.8 905.1

Table 1: Communication time of MPI Allgather on
16 nodes (times in milliseconds).

0
10
20
30
40
50
60
70
80
90

100

1K 2K 4K 8K 16K 64K

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Message size

CC-MPI
MPICH

LAM/MPI

Figure 11: Performance of MPI Alltoall on 4 nodes.

Table 1 shows the performance of MPI Allgather on 16
nodes. CC–MPI contains three different implementations
for MPI Allgather: a multicast based scheme that reduces
MPI Allgather to a series of calls to MPI Bcast, a unicast
based scheme that realizes the communication with point-
to-point primitives, and phased communication that is the
unicast based scheme with message scheduling and synchro-
nization. Columns 2 to 4 shows the performance of the three
implementations in CC–MPI. As shown in the table, when
the message size is very small (1B), the simple unicast based
scheme performs best. When the message size is medium
(1KB), the multicast based scheme is the best. For large
message sizes (≥ 8KB), phased communication is the best.

Phased communication performs poorly when the message
size is small due to synchronization overheads. However, it
improves performance significantly (by up to a factor of 9)
for large messages.

0

100

200

300

400

500

600

700

800

1K 2K 4K 8K 16K 64K

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Message size

CC-MPI
MPICH

LAM/MPI

Figure 12: Performance of MPI Alltoall on 16 nodes.

Figures 11 and 12 show the performance of MPI Alltoall.
CC–MPI uses phased communication to optimize the case
when the message size is large. As can be seen from the ta-
ble, even with 4 nodes, the network contention can still de-
grade communication performance, and our phased commu-
nication outperforms LAM/MPI and MPICH when the mes-
sage size is larger than 16KB. For all–to–all communication
over a larger number of nodes, the network contention prob-
lem is more severe, and the advantage of phased communi-
cation is more significant. With 16 nodes and a message size
of 64KB, our phased communication completes an all–to–all
communication about 1.5 times faster than LAM/MPI and
5 times faster than MPICH.

message MPI Alltoallv implementation
size Level 1 Level 2 Level 3 point-to-point
2KB 23.6ms 21.2ms 20.0ms 3.5ms
4KB 26.4ms 24.1ms 22.8ms 8.5ms
8KB 32.5ms 30.1ms 28.8ms 30.2ms
16KB 44.5ms 42.2ms 40.9ms 88.0ms
32KB 67.4ms 65.1ms 63.7ms 142.4ms
64KB 112.0ms 109.7ms 108.4ms 214.1ms

Table 2: Performance of different implementation of
MPI Alltoallv.

As described in Section 4, CC–MPI provides a variety
of schemes for MPI Alltoallv. Two scheduling algorithms,
greedy and all–to–all, are supported. For each scheduling
scheme, three levels of compiled communication schemes are
implemented; Table 2 shows their performance. In this ex-
periment, we use MPI Alltoallv to perform all–to–all com-
munication on 16 nodes. For this particular communication
pattern, greedy and all–to–all based scheduling yield similar
results, so only the results for all–to–all based scheduling
are presented. As can be seen from the table, with more
static information about the communication, more efficient
communication can be achieved. The Level 3 implementa-
tion is about 15.7% more efficient than the Level 1 scheme
when the message size is 4KB. As the message size becomes
larger, the nearly constant cost of the MPI Allgather and the
scheduling operations become less significant. The Level 3
implementation is about 3% more efficient when the mes-
sage size is 64KB. Notice that the message scheduling does

not take a significant amount of time on 16 nodes. For a
larger system, the scheduling overhead can be significant.

Libraries Time
LAM/MPI 165.5ms
MPICH 358.3ms

CC-MPI Level 1 108.3ms
all-to-all based Level 2 106.0ms

scheduling Level 3 105.9ms
CC-MPI Level 1 125.5ms

greedy Level 2 123.3ms
scheduling Level 3 123.2ms

Table 3: Performance of MPI Alltoallv for a random
pattern on 16 nodes.

Table 3 shows the performance of different MPI Alltoallv
implementations for a randomly generated communication
pattern on 16 nodes, which consists of 160 64KB messages,
20 16KB messages and 60 messages of size 100B. For this
pattern, all-to-all based scheduling results in better perfor-
mance than greedy scheduling. The reason is that the greedy
algorithm realizes the pattern with 17 phases while the all–
to–all based scheduling only needs 15 phases for the commu-
nication. It must be noted that both scheduling algorithms
are heuristics; each performs better in some cases. When the
scheduling can be done statically (Level 3 compiled commu-
nication), the better of the two scheduling schemes can be
used to achieve the best results.

5.2 Benchmark Programs
In this subsection, we compare the performance of CC-

MPI with that of LAM/MPI and MPICH using two bench-
mark programs, IS and FT from the NAS suite [25]. The
Integer Sort (IS) benchmark sorts N keys in parallel and
the Fast Fourier Transform (FT) benchmark solves a par-
tial differential equation (PDE) using forward and inverse
FFTs. These two benchmarks are presented in the NAS
benchmarks to evaluate collective communication routines.
Communications in other NAS benchmarks are either in-
significant or dominated by point–to–point communications.
Both IS and FT are communication intensive programs
with most communications performed by MPI Alltoall and
MPI Alltoallv routines.

Problem MPI Number of Nodes
Size Library 4 8 16

LAM/MPI 0.11s 0.09s 0.07s
CLASS=S MPICH 0.10s 0.08s 0.07s

CC–MPI 0.13s 0.16s 0.28s

LAM/MPI 1.32s 1.02s 1.60s
CLASS=W MPICH 2.69s 2.16s 1.57s

CC–MPI 1.08s 0.69s 0.64s

LAM/MPI 9.62s 5.88s 4.62s
CLASS=A MPICH 21.92s 15.40s 11.60s

CC–MPI 8.45s 4.90s 3.00s

Table 4: Execution time for IS with different MPI
libraries, different numbers of nodes and different
problem sizes.

Table 4 shows the results for IS, and Table 5 shows the re-
sults for FT. We run both benchmarks on 4, 8, and 16 nodes

with the three problem sizes supplied with the benchmark—
the small problem size (CLASS = S), the medium problem
size (CLASS = W) and the large problem size (CLASS =
A). LAM/MPI and MPICH do not have any special opti-
mizations for Ethernet switched clusters. As a result, when
the communications in an application result in network con-
tention, the performance degrades and is somewhat unpre-
dictable. Different ways to carry out communications may
result in (very) different performance under different net-
work situations. As can be seen from the table, LAM/MPI
performs much better than MPICH in some cases, e.g. the
’A’ class IS on 16 nodes, while it performs worse in other
cases (e.g., the ’A’ class FT on 4 nodes). With CC–MPI
we assume that the user determines that the communica-
tions will result in severe network contention with the tra-
ditional communication scheme and decides to use phased
communication to perform MPI Alltoall and MPI Alltoallv.
For MPI Alltoallv, we assume that the Level 1 compiled
communication scheme is used. As can be seen from the
table, CC–MPI results in significant improvement (up to
300% speed up) in terms of execution time for all cases ex-
cept for the small problem sizes. This further demonstrates
that compiled communication can significantly improve the
communication performance. For IS with a small problem
size, CC–MPI performs much worse than LAM/MPI and
MPICH. This is because we use phased communication for
all cases. In practice, when compiled communication is ap-
plied, a communication model selection scheme should be
incorporated in the compiler to determine the most effective
method for the communications. In this case, for the small
problem size, the compiler may decide that the message size
is not large enough for the phased communication schemes
to be beneficial and resort to point–to–point based dynamic
communication scheme to carry out communications. No-
tice that for IS with a small problem size, the execution time
with CC–MPI increases as the number of nodes increases.
The reason is that both communication and computation
take little time in this problem, so the execution time is
dominated by the barriers in the phased communications.
As the number of nodes increases, the number of barriers
for each phased communication increases, and each barrier
also takes more time.

Problem MPI Number of Nodes
Size Library 4 8 16

LAM/MPI 1.00s 0.70s 0.75s
CLASS=S MPICH 2.04s 1.63s 1.01s

CC–MPI 1.10s 0.63s 0.42s

LAM/MPI 2.15s 1.55s 1.42s
CLASS=W MPICH 4.17s 2.77s 1.46s

CC–MPI 2.20s 1.28s 0.77s

LAM/MPI 146.50s 27.37s 12.75s
CLASS=A MPICH 111.91s 46.71s 28.01s

CC–MPI 40.19s 21.34s 11.23s

Table 5: Execution time for FT with different MPI
libraries, different numbers of nodes and different
problem sizes.

5.3 Applying CC-MPI to Software DSMs
A software distributed shared memory (SDSM) provides

the illusion of shared memory on a distributed-memory ma-
chine [22]. While using a shared-memory programming model
simplifies programming in many cases compared to using
message passing, one obstacle to widespread acceptance of
SDSMs is performance. In particular, the communication
traffic at synchronization points to maintain memory con-
sistency is usually complex many–to–many communication
with large message sizes. The techniques developed in CC–
MPI perform such communications effectively. In this sec-
tion, we report our early work aimed at using CC–MPI to
improve SDSM performance. Our initial CC–MPI-enabled
SDSM is built within the Filaments package [23] and uses
an eager version of home-based release consistency [34].

We tested the potential of using Level 1 compiled commu-
nication for MPI Alltoallv to implement exchange of page
information through a synthetic application that first mod-
ifies a set number of pages on each node and then invokes a
barrier. The barrier causes all pages to be made consistent
through collective communication. This process is repeated
for 100 iterations.

Table 6 presents the results of this benchmark. We ob-
serve that with a small number of nodes, the advantage of
Level 1 compiled communication versus dynamic commu-
nication (the point–to–point based implementation without
message scheduling) is relatively small. In fact, on 4 nodes,
Level 1 compiled communication sometimes results in worse
performance than dynamic communication. However, as the
number of nodes increases, the advantage of Level 1 com-
piled communication is significant (almost a factor of two
when four pages per node are modified). As the message
size becomes much larger (starting at eight pages per node),
the advantage decreases somewhat, but is still significant.

Pages Modified Communication Number of Nodes
Per Node Method 4 8 16

1 Level 1 0.93s 2.02s 4.57s
Dynamic 0.90s 4.29s 6.75s

4 Level 1 3.07s 6.76s 15.8s
Dynamic 4.13s 12.1s 27.5s

8 Level 1 9.46s 15.7s 35.5s
Dynamic 8.35s 18.6s 48.4s

Table 6: Experiments with our prototype SDSM
that uses CC–MPI for communication.

6. CONCLUSION
In this paper, we present CC–MPI, an experimental MPI

prototype that supports compiled communication. CC–MPI
employs a number of techniques to achieve efficient com-
munication over Ethernet switched clusters, including us-
ing multicast for broadcast type communications, support-
ing the compiler–assisted group management scheme that
allows reliable multicast to be performed effectively, sepa-
rating network control from data transmission, and using
phased communication for complex many–to–many and all–
to–all communications. We demonstrate that using com-
piled communication, the communication performance of
Ethernet switched clusters can be significantly improved.

Compiled communication will likely be more beneficial for
large systems, especially for massively parallel systems. In
such systems, traditional dynamic communication is likely

to generate significant network contention, which will result
in poor communication performance. Compiled communi-
cation performs communications in a managed fashion and
reduces the burden in the network subsystem. One difficulty
with compiled communication is that it requires the user
to consider network details, which is beyond of capability
of a typical programmer. For the compiled communication
model to be successful, it is crucial to develop an automatic
restructuring compiler that can perform optimizations with
compiled communication automatically. This way, program-
mers can write typical MPI programs and obtain high com-
munication performance achieved through compiled commu-
nication.

7. REFERENCES
[1] S. P. Amarasinghe and M. S. Lam. Communication

Optimization and Code Generation for Distributed
Memory Machine. In the ACM SIGPLAN’93
Conference on Programming Languages Design and
Implementation, June 1993.

[2] P. Banerjee, J. A. Chandy, M. Gupta, E. W. Hodges
IV, J. G. Holm, A. Lain, D. J. Palermo,
S. Ramaswamy, and E. Su. The PARADIGM
Compiler for Distributed-Memory Multicomputers.
IEEE Computer, 28(10):37–47, October 1995.

[3] M. Blumrich, C. Dubnicki, E. W. Felten, and K. Li.
Virtual Memory–mapped Network Interfaces. IEEE
Micro, pages 21–28, Feburary 1995.

[4] M. Bromley, S. Heller, T. McNerney, and G.L. Steele
Jr. Fortran at Ten Gigaflops: the Connection Machine
Convolution Compiler. In Proceedings of SIGPLAN’91
Conference on Programming Language Design and
Implementation, June 1991.

[5] F. Cappello and G. Germain. Toward High
Communication Performance Through Compiled
Communications on a Circuit Switched
Interconnection Network. In Proceedings of the First
Int. Symp. on High–Performance Computer
Architecture, pages 44–53, 1995.

[6] P.H. Carns, W.B. Ligon III, S.P. McMillan, and R.B.
Ross. An Evaluation of Message Passing
Implementations on Beowulf Workstations. In
Proceedings of the 1999 IEEE Aerospace Conference,
March 1999.

[7] S. Chakrabarti, M. Gupta, and J. Choi. Global
Communication Analysis and Optimization. In ACM
SIGPLAN Programming Language Design and
Implementation(PLDI), pages 68–78, 1996.

[8] David Culler and et. al. The Generic Active Message
Interface Specification. Available at
http://now.cs.berkeley.edu/Papers/Papers/gam spec.ps.

[9] H. G. Dietz, T. M. Chung, T. I. Mattox, and T.
Muhammad, “Purdue’s Adapter for Parallel Execution
and Rapid Synchronization: The TTL PAPERS
Design”, Technical Report, Purdue University School
of Electrical Engineering, January 1995.

[10] Ahmad Faraj and Xin Yuan. Communication
Characteristics in the NAS Parallel Benchmarks. In
Fourteenth IASTED International Conference on
Parallel and Distributed Computing and Systems
(PDCS 2002), November 4-6 2002.

[11] The MPI Forum. The MPI-2: Extensions to the

Message Passing Interface, July 1997. Available at
http://www.mpi-forum.org/docs/mpi-20-html/
mpi2-report.html.

[12] William Gropp, E. Lusk, N. Doss, and A. Skjellum. A
High-Performance, Portable Implementation of the
MPI Message Passing Interface Standard. In MPI
Developers Conference, 1995.

[13] M. Gupta, E. Schonberg, and H. Srinivasan. A Unified
Framework for Optimizing Communication in
Data-Parallel Programs. IEEE trans. on Parallel and
Distributed Systems, 7(7):689–704, July 1996.

[14] S. Hinrichs. Compiler Directed
Architecture–Dependent Communication
Optimizations, Ph.D. Thesis, Computer Science
Department, Carnegie Mellon University, 1995.

[15] S. Hinrichs, C. Kosak, D.R. O’Hallaron, T. Stricker,
and R. Take. An Architecture for Optimal All–to–All
Personalized Communication. In 6th Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 310–319, June 1994.

[16] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling
Fortran D for MIMD Distributed–Memory Machines.
Communications of the ACM, 35(8):66–80, August
1992.

[17] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat,
and R.A. F. Bhoedjang. Magpie: MPI’s Collective
Communication Operations for Clustered Wide Area
Systems. In 1999 SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 131–140,
May 1999.

[18] M. Kumar. Unique Design Concepts in GF11 and
Their Impact on Performance. IBM Journal of
Research and Development, 36(6), November 1992.

[19] D. Lahaut and C. Germain. Static Communications in
Parallel Scientific Programs. In PARLE’94, Parallel
Architecture & Languages, LNCS 817, pages 262-276,
Athen, Greece, July, 1994.

[20] Ryan G. Lane, Daniels Scott, and Xin Yuan. An
Empirical Study of Reliable Multicast Protocols Over
Ethernet-Connected Networks. In International
Conference on Parallel Processing (ICPP’01), pages
553–560, September 3-7 2001.

[21] M. Lauria and A. Chien. MPI-FM: High Performance
MPI on Workstation Clusters. Journal of Parallel and
Distributed Computing, 40(1), January 1997.

[22] Kai Li and Paul Hudak. Memory Coherence in Shared
Virtual Memory Systems. ACM Transactions on
Computer Systems, 7(4), November 1989.

[23] David K. Lowenthal, Vincent W. Freeh, and
Gregory R. Andrews. Using Fine-Grain Threads and
Run-time Decision Making in Parallel Computing.
Journal of Parallel and Distributed Computing,
37:41–54, November 1996.

[24] R. Manchek. Design and Implementation of PVM
Version 3.0. Technical report, University of Tennessee,
1994.

[25] NASA. NAS Parallel Benchmarks. available at
http://www.nas.nasa.gov/NAS/NPB.

[26] H. Ogawa and S. Matsuoka. OMPI: Optimizing MPI
Programs Using Partial Evaluation. In
Supercomputing’96, November 1996.

[27] S. Pakin, V. Karamcheti, and A. A. Chien. Fast
Messages (FM): Efficient, Portable Communication for
Workstation Clusters and Massively-Parallel
Processors. IEEE Concurrency, 5(2):60–73, April-June
1997.

[28] J.M. Squyres, A. Lumsdaine, W.L. George, J.G.
Hagedorn, and J.E. Devaney. The Interoperable
Message Passing Interface (impi) Extensions to
LAM/MPI. In MPI Developer’s Conference, 2000.

[29] J.M Stichnoth and T. Gross. A Communication
Backend for Parallel Language Compilers. In 8th
International Workshop on Languages and Compilers
for Parallel Computing, pages 15–1–15–13, August
1995.

[30] H. Tang, K. Shen, and T. Yang. Program
Transformation and Runtime Support for Threaded
MPI Execution on Shared-Memory Machines. ACM
Transactions on Programming Languages and
Systems, 22(4):673–700, July 2000.

[31] T. von Eicken, A. Basu, V. Buch, and W. Vogels.
U–net: A User–Level Network Interface for Parallel
and Distributed Computing. In the 15th ACM
Symposium on Operating Systems Principles,
December 1995.

[32] X. Yuan, R. Melhem, and R. Gupta. Compiled
Communication for All–Optical TDM Networks. In
Supercomputing’96, November 17-22 1996.

[33] X. Yuan, R. Melhem, and R. Gupta. Algorithms for
Supporting Compiled Communication. IEEE
Transactions on Parallel and Distributed Systems, Vol.
14, No. 2, pages 107-118, Feb. 2003.

[34] Y. Zhou, L. Iftode, and K. Li. Performance Evaluation
of Two Home-based Lazy Release Consistency
Protocols for Shared Memory Virtual Memory
Systems. In Proc. of the 2nd Symp. on Operating
Systems Design and Implementation (OSDI’96), pages
75–88, 1996.

Appendix
The CC-MPI package is available at
http://www.cs.fsu.edu/∼xyuan/CCMPI. The MPI functions
supported by CC-MPI include:

MPI_Abort MPI_Allgather MPI_Allreduce

MPI_Alltoall MPI_Alltoallv MPI_Barrier

MPI_Bcast MPI_Comm_dup MPI_Comm_rank

MPI_Comm_size MPI_Comm_split MPI_Datatype

MPI_Finalize MPI_Gather MPI_Init

MPI_Irecv MPI_Isend MPI_Request

MPI_Recv MPI_Reduce MPI_Scatter

MPI_Scatterv MPI_Send MPI_Status

MPI_Wait MPI_Waitall MPI_Wtime

