
Heuristic Algorithms for Multi–Constrained

Quality of Service Routing

Xin Yuan

Abstract—Multi–constrained Quality of Service (QoS) rout-
ing deals with finding routes that satisfy multiple indepen-
dent QoS constraints. This problem is NP–hard. In this
paper, two heuristics, the limited granularity heuristic and
the limited path heuristic, are investigated. Both heuris-
tics extend the Bellman-Ford shortest path algorithm and
solve general k–constrained QoS routing problems. Analyt-
ical and simulation studies are conducted to compare the
time/space requirements of the heuristics and the effective-
ness of the heuristics in finding paths that satisfy the QoS
constraints. The major results of this paper are the follow-
ings. For an N nodes and E edges network with k (a small
constant) independent QoS constraints, the limited granu-

larity heuristic must maintain a table of size O(|N |k−1) in
each node to be effective, which results in a time complexity
of O(|N |k|E|), while the limited path heuristic can achieve
very high performance by maintaining O(|N |2lg(|N |)) en-
tries in each node. These results indicate that the limited
path heuristic is relatively insensitive to the number of con-
straints and is superior to the limited granularity heuristic
in solving k–constrained QoS routing problems when k > 3.

1 Introduction

The migration to integrated networks for voice, data and
multimedia applications introduces new challenges in sup-
porting predictable communication performance. Multi-
media applications require the communication to meet strin-
gent requirement on delay, delay–jitter, cost and/or other
quality of service (QoS) metrics. QoS routing, which iden-
tifies paths that meet the QoS requirement and selects one
that leads to high overall resource efficiency, is the first step
toward achieving end–to–end QoS guarantees.

The QoS requirement of a point–to–point connection is
specified as a set of constraints, which can be link con-

straints or path constraints [2]. A link constraint, such as
the bandwidth constraint, specifies the restriction on the
use of links. For example, the bandwidth constraint re-
quires that each link along the path must be able to support
certain bandwidth. A path constraint, such as the delay
constraint, specifies the end–to–end QoS requirement for
the entire path. For example, the delay constraint requires
that the aggregate delay of all links along the path must
be less than the delay requirement.

Multi-constrained QoS routing finds a path that satisfies
multiple independent path constraints. One example is the
delay-cost-constrained routing, i.e., finding a route in the
network with bounded end–to–end delay and bounded end–
to–end cost. We will use the notion k–constrained routing

Xin Yuan is with the Department of Computer Science, Florida State
University

to refer to multi–constrained QoS routing problems with
exactly k path constraints. The delay-cost-constrained rout-
ing is an example of a 2–constrained routing problem. Multi–
constrained QoS routing is known to be NP–hard[4, 9].
Previous work [1, 10] has focused on developing heuris-
tic algorithms to solve 2-constrained problems. The algo-
rithm in [10] guarantees to find a path that satisfies the
QoS constraints if such a path exists. In the worst case,
the time complexity of the algorithm may grow exponen-
tially with respect to the network size. Algorithms in [1]
find approximate solutions in polynomial time. The gen-
eral k–constrained routing problem receives little attention.
In practice, however, effective heuristics to solve general
k–constrained QoS routing problems, such as the delay–
jitter–cost–constrained problem, are needed.

This paper considers two polynomial time heuristics, the
limited granularity heuristic and the limited path heuris-

tic, that can be applied to the extended Bellman–Ford
algorithm to solve k–constrained QoS routing problems.
The limited granularity heuristic obtains approximate so-
lutions in polynomial time by using finite domains, such
as bounded ranges of integer numbers, to approximate the
infinite number of values that QoS metrics can take. The
limited path heuristic focuses on the cases that occur most
frequently in general and solves these cases efficiently and
effectively. In this paper, we develop the heuristics to
solve the general k–constrained QoS routing problems, in-
vestigate the performance of the heuristics in solving k–
constrained problems, and identify the conditions for the
heuristics to be effective. We prove analytically that for
an N nodes and E edges network with k independent path
constraints (k is a small constant), the limited granular-
ity heuristic must maintain a table of size O(|N |k−1) in
each node to achieve high probability of finding a path
that satisfies the QoS constraints when such a path exists.
By maintaining a table of size O(|N |k−1), the time com-
plexity of the limited granularity heuristic is O(|N |k|E|).
The analysis also shows that the performance of the limited
path heuristic is rather insensitive to k and that the limited
path heuristic can achieve very high performance by main-
taining O(|N |2lg(|N |)) entries in each node. These results
indicate that the limited granularity heuristic is inefficient
when k > 3 since the time/space requirement of the limited
granularity heuristic increases drastically when k increases
and that the limited path heuristic is more effective than
the limited granularity heuristic in solving k–constrained
QoS routing problems when k > 3. The simulation study

1

further confirms this conclusion.
The rest of the paper is organized as follows. Section 2

discusses the related work. Section 3 describes the multi-
constrained QoS routing problem and introduces the ex-
tended Bellman–Ford algorithm that can solve this prob-
lem. Section 4 studies the limited granularity heuristic for
k–constrained problems. Section 5 analyzes the limited
path heuristic. Section 6 presents the simulation study.
Section 7 concludes the paper.

2 Related Work

Much work has been done in QoS routing recently, an
extensive survey can be found in [2]. Among the pro-
posed QoS routing schemes, the ones that deal with multi-
constrained QoS routing are more related to the work in
this paper. In [8], a distributed algorithm was proposed
to find paths that satisfy the end–to–end delay constraint
while minimizing the cost. Although this algorithm consid-
ers two path constraints, it does not solve the 2–constrained
problem because the cost metric is not bounded. Ma [6]
showed that when the weighted fair queuing algorithm is
used, the metrics of delay, delay–jitter and buffer space
are not independent and all of them become functions of
the bandwidth. Orda [7] proposed the quantization of QoS
metrics for efficient QoS routing in networks with a rate–
based scheduler at each router. Although the idea of quan-
tization of QoS metrics is similar to the limited granularity
heuristic, it was proposed in [7] to improve the performance
of a polynomial time QoS routing algorithm that solves
the bandwidth–delay bound problem. Jaffe [4] proposed a
distributed algorithm that solves 2–constrained problems
with a time complexity of O(|N |5blog(|N |b)), where b is
the largest value of the weights. This algorithm is pseudo-
polynomial in that the execution time depends on the value
of the weights (not just the size of the network). Widy-
ono [10] proposed an algorithm that performs exhaustive
search on the QoS paths in exponential time. Chen [1] and
Korkmaz [5] proposed heuristic algorithms that effectively
solves 2–constrained problems. This research differs from
the previous work in that it studies heuristic algorithms
that efficiently solve the general k–constrained QoS rout-
ing problem. Some of the results for 2–constrained QoS
routing [1] are special cases of the results in this paper.

3 Background

3.1 Assumptions and notations

The network is modeled as a directed graph G(N,E), where
N is the set of nodes representing routers and E is the set
of edges representing links that connect the routers. Each
edge e = u → v is associated with k independent weights,
w1(e), w2(e), ..., wk(e), where wl(e) is a positive real num-
ber (wl(e) ∈ R+ and wl(e) > 0) for all 1 ≤ l ≤ k. The
notation w(e) = w(u → v) = (w1(e), w2(e), ..., wk(e)) is
used to represent the weights of a link. It is assumed that

all the constraints are path constraints and that the weight
functions are additive [9], that is, the weight of a path is
equal to the summation of the weights of all edges on the
path. Thus, for a path p = v0 → v1 → v2 → ... → vn,
wl(p) =

∑n
i=1 wl(vi−1 → vi). Notation w(p) ≤ w(q)

denotes wl(p) ≤ wl(q) for all 1 ≤ l ≤ k. Other rela-
tional operators <, =, >, ≥ and arithmetic operators +,
− on the weight vectors are defined similarly. Let a path
p = v0 → v1 → v2 → ... → vn and a link e = vn → vn+1.
The notation p + e or p + {vn → vn+1} denotes the path
v0 → v1 → v2 → ... → vn → vn+1. This paper considers
centralized algorithms and assumes that the global network
state information is known.

Given a set S, the notation |S| denotes the size of the
set S. We will use the following notations: binary loga-
rithm function lg(n) = log2(n), natural logarithm function
ln(n) = loge(n), power of the logarithm function lgk(n) =
(lg(n))k, and factorial function n! = n ∗ (n− 1) ∗ ... ∗ 1. We
define 0! = 1.

3.2 Multi–Constrained QoS Routing

Definition 1: Given a directed graph G(N,E), a source
node src, a destination dst, k ≥ 2 weight functions w1 :
E → R+, w2 : E → R+, ..., wk : E → R+, and k constants
c1, c2, ... ck represented by a vector c = (c1, c2, ..., ck),
multi–constrained QoS routing is to find a path p from src

to dst such that w(p) ≤ c, that is, w1(p) ≤ c1, w2(p) ≤ c2,
..., wk(p) ≤ ck.

We will call a multi–constrained routing problem with k

weight functions a k–constrained problem. Since the num-
ber of weight functions in a network is small, we will assume
that k is a small constant.

0

1

2

3

(1.0, 20.0)(1.0, 20.0)

(20.0, 1.0) (20.0, 1.0)

(50.0, 4.0)

Figure 1: Optimal QoS paths

Definition 2: Given a directed graph G(N,E) with k ≥ 2
weight functions w1 : E → R+, w2 : E → R+, ..., wk :
E → R+, a path p = src → v1 → v2 → ... → dst is said to
be an optimal QoS path from src to dst if there does not
exist another path q from src to dst such that w(q) < w(p).

When k = 1, the optimal QoS path is the same as the
shortest path. When k > 1, however, there can be multi-
ple optimal QoS paths between two nodes. For example, in
Figure 1, both path p1 = 0 → 1 → 3 (w(p1) = (40.0, 2.0))
and path p2 = 0 → 2 → 3 (w(p2) = (2.0, 40.0)) are optimal
QoS paths from node 0 to node 3. Path p3 = 0 → 3 is not
an optimal QoS path since w(p3) = (50.0, 4.0) > w(p1).
Optimal QoS paths are interesting because each optimal
QoS path can potentially satisfy particular QoS constraints
that no other path can satisfy. On the other hand, when
there exists a path that satisfies the QoS requirement, there
always exists an optimal QoS path that satisfies the same

2

0

1

2

3

4

5

6

7

8

9 3K

(0, 1)

(1, 0) (0,0)

(0,0)

(0,0)

(0,0)

(0,0)

(0,0)

(0,0)

(0,0)

(k, 0)

(0, k)

(k , 0)

(0, k)

(k , 0)

(0, k)

2

2

k-1

k-1

Figure 2: The number of optimal QoS paths between two nodes

RELAX(u, v, w)
(1) For each w(p) in PATH(u)
(2) flag = 1
(3) For each w(q) in Path(v)
(4) if (w(p) + w(u, v) ≥ w(q)) then
(5) flag = 0
(6) if (w(p) + w(u, v) < w(q)) then
(7) remove w(q) from PATH(v)
(8) if (flag = 1) then
(9) add w(p) + w(u, v) to PATH(v)

BELLMAN-FORD(G, w, c, src, dst)
(1) For i = 0 to |N(G)| − 1
(2) PATH(i) = φ

(3) PATH(src) = {~0}
(4) For i = 1 to |N(G)| − 1
(5) For each edge (u, v) ∈ E(G)
(6) RELAX(u, v, w)
(7) For each w(p) in PATH(dst)
(8) if (w(p) < c) then return “yes”
(9) return “no”

Figure 3: The extended Bellman–Ford algorithm (EBFA)
for multi–constrained QoS routing problems

QoS requirement. Thus, a QoS routing algorithm can guar-
antee finding a path that satisfies the QoS constraints when
such a path exists if the algorithm considers all optimal
QoS paths. Notice that the number of optimal QoS paths
can be exponential with respect to the network size as
shown in Figure 2. In Figure 2, the number of optimal
QoS paths from node src = 0 to node dst = 3k is equal
to 2k because from each node 3i where 0 ≤ i < k, taking
the link 3i → 3i + 1 or 3i → 3i + 2 will result in different
optimal QoS paths.

3.3 Extended Bellman–Ford Algorithm

Since the heuristics that we consider are variations of the
extended Bellman–Ford algorithm, we will describe a ver-
sion of the extended Bellman–Ford algorithm in this section
for the completeness of the paper. Figure 3 shows the al-
gorithm, which is a variation of the Constrained Bellman–
Ford algorithm in [10]. For simplicity, the algorithm only
checks whether there exists a path that satisfies the QoS
constraints. The algorithm can easily be modified to find
the exact path. We will call the algorithm EBFA.

EBFA extends the original Bellman-Ford shortest path

algorithm [3] by having each node u to maintain a set
PATH(u) that records all optimal QoS paths found so
far from src to u. The first three lines in the main rou-
tine (BELLMAN FORD) initialize the variables. Lines (4)
to (6) perform the relax operations. After the relax op-
erations all optimal QoS paths from node src to node dst

are stored in the set PATH(dst). Lines (7) and (8) check
whether there exists an optimal QoS path that satisfies the
QoS constraints. The RELAX(u, v, w) operation is a little
more complicated since all the elements in PATH(u) and
PATH(v) must be considered. For each element w(p) in
PATH(u), line (4) in the RELAX routine checks whether
there exists an old path q from src to v that is better than
path p + (u → v). If such a path exists, then p + (u → v)
is not an optimal QoS path. Line (6) checks whether path
p + (u → v) is better than any old path from src to v. If
such an old path q exists, then path q is not an optimal
QoS path and is removed from the set PATH(v). Line (8)
adds the newly found optimal QoS path to PATH(v).

EBFA guarantees to find a path that satisfies the QoS
constraints when such a path exists by recording all optimal
QoS paths in each node. Given a network G(N,E), the al-
gorithm executes the RELAX operation O(|N ||E|) times.
The time and space needed to execute RELAX(u, v, w) de-
pends on the sizes of PATH(u) and PATH(v), which are
the number of optimal QoS paths from node src to nodes
u and v respectively. Since the number of optimal QoS
paths from src to u or v can be exponential with respect
to |N | and |E|, the time and space requirement of EBFA

may also grow exponentially. Thus, heuristics must be de-
veloped to reduce the time and space complexity.

The idea of both the limited granularity heuristic and the
limited path heuristic is to limit the number of optimal QoS
paths maintained in each node, that is, the size of PATH,
to reduce the time and space complexity of the RELAX

operation. By limiting the size of PATH, each node is not
able to record all optimal QoS paths from the source and
the heuristics can only find approximate solutions. Thus,
the challenge of the heuristics is how to limit the size of
PATH in each node while maintaining the effectiveness in
finding paths that satisfy QoS constraints. In the next few
sections, we will discuss two different methods to limit the
size of PATH and study their performance when solving
general k–constrained QoS routing problems.

3

RELAX(u, v, w)
(1) for each dv[i2, i3, ..., ik]
(2) Here, 1 ≤ i2 ≤ X2, ..., 1 ≤ ik ≤ Xk

(3) Let dv[~i] = dv[i2, i3, ..., ik]
(4) Let jl be the largest jl such that

rjl
< ril

− wl(u, v), 2 ≤ l ≤ k

(5) Let dv[~j] = dv[j2, j3, ..., jk]
(6) if (jl ≥ 1, for all 2 ≤ l ≤ k) then

(7) if (dv[~i] > du[~j] + w1(u, v)) then

(8) dv[~i] = du[~j] + w1(u, v)

Limited Granularity Heuristic(G, w, c, src, dst)
(1) For i = 0 to |N(G)| − 1
(2) For each di[i2, i3, ..., ik]
(3) Here, 1 ≤ i2 ≤ X2, ..., 1 ≤ ik ≤ Xk

(4) if (i = src) then dsrc[i2, i3, ..., ik] = 0
(5) else di[i2, i3, ...ik] = ∞
(6) For i = 1 to |N(G)| − 1
(7) For each edge (u, v) ∈ E(G)
(8) RELAX(u, v, w)
(9) if (ddst[X2, X3, ..., Xk] < c1) then return TRUE
(10)return FALSE

Figure 4: The limited granularity heuristic for k–
constrained routing problems

4 The limited granularity heuristic

When all QoS metrics except one take bounded integer val-
ues, the multi-constrained QoS routing problem is solvable
in polynomial time. The idea of the limited granularity
heuristic is to use bounded finite ranges to approximate
QoS metrics, which reduces the original NP–hard prob-
lem to a simpler problem that can be solved in polyno-
mial time. This algorithm is a generalization of the algo-
rithms in [1]. To solve the k–constrained problem defined
in Section 3.2, the limited granularity heuristic approxi-
mates k − 1 metrics with k − 1 bounded finite ranges. Let
w2, ..., wk be the k − 1 metrics to be approximated, that
is, for 2 ≤ i ≤ k, the range (0, ci] is mapped into Xi ele-
ments, ri

1, ri
2, ..., ri

Xi
, where 0 < ri

1 < ri
2 < ... < ri

Xi
= ci.

The wi(e) ∈ (0, ci] is approximated by ri
j if and only if

ri
j−1 < wi(e) ≤ ri

j . In the rest of the section, we will use
the notation awi(p), 2 ≤ i ≤ k, to denote the approximated
wi(p) in the bounded finite domain {ri

1, ri
2, ..., ri

Xi
}.

Figure 4 shows the limited granularity heuristic that
solves k–constrained problems. In this heuristic, each node
u maintains a table du[1 : X2, 1 : X3,, 1 : Xk]. An
entry du[i2, i3, ..., ik] in the table records the path that
has the smallest w1 weight among all paths p from the
source to node u that satisfy w2(p) ≤ r2

i2
, w3(p) ≤ r3

i3
, ...,

wk(p) ≤ rk
ik

. In the RELAX(u, v, w) operation, to com-
pute dv[i2, i3, ..., ik], only du[j2, j3, ..., jk] where jl is the
largest jl such that rl

jl
≤ rl

il
− wl(u, v), for 2 ≤ l ≤ k,

needs to be considered. The RELAX routine has a time
complexity of O(X2X3...Xk). Notice that the approxima-

tion of the weights is carried out implicitly in the RELAX

operation. For example, if, for each path p from src to dst,
there exists an i, 2 ≤ i ≤ k, such that awi(p = src → v0 →
v1 → ... → dst) > ci, then ddst[X2, X3, ..., Xk] = ∞ at the
end of the algorithm after all RELAX operations are done.

Let X = X2X3...Xk be the size of the table maintained
in each node. By limiting the granularity of the QoS met-
rics, the limited granularity heuristic has a time complexity
of O(X|N ||E|). The most important issue of this heuristic
is to determine the relation between the size of the ta-
ble (which, in turn, determines the time complexity of the
heuristic) and the effectiveness of the heuristic in finding
paths that satisfy the k QoS constraints. The following
lemmas attempt to answer this question.
Lemma 1: In order for the limited granularity heuristic to
find any path of length L that satisfies the QoS constraints,
the size of the table in each node must be at least Lk−1.
That is, X = X2X3...Xk ≥ Lk−1.
Proof: Assuming X = X2X3...Xk < Lk−1, there exists
an i, 2 ≤ i ≤ k, such that Xi < L. Let p = v0 → v1 →
v2 → ... → vL be a path that satisfies the QoS constraints
w(p) ≤ c. Let the range (0, ci] be approximated by Xi

discrete elements, ri
1, ri

2, ..., ri
Xi

, where 0 < ri
1 < ri

2 < ... <

ri
Xi

= ci.
Let p(n) denote the path v0 → v1 → v2 → ... → vn.

By induction, it can be shown that awi(p(n)) ≥ ri
n. Base

case, when n = 1, since ri
1 is the smallest value that can

be used to approximate, awi(v0 → v1) ≥ ri
1. Assuming

that awi(p(n − 1)) ≥ ri
n−1, awi(p(n)) = awi(p(n − 1)) +

awi(vn−1 → vn) ≥ ri
n−1 + wi(vn−1 → vn) > ri

n−1 ≥ ri
n.

Thus, awi(p(Xi)) ≥ ri
X = ci. When L > Xi, awi(p(L)) >

ci. That is, the approximation value for the wi(p) weight is
larger than ci. Thus, the heuristic does not recognize the
path as a path that satisfies w(p) ≤ c.

Lemma 1 shows that in order for the limited granularity
heuristic to be effective in finding paths of length L that
satisfy k independent path constraints, the number of en-
tries in each node should be at least Lk−1. For an N–node
network, paths can potentially be of length N . Thus, the
limited granularity heuristic should at least maintain a ta-
ble of size O(|N |k−1) in each node to be effective. This re-
sult indicates that the limited granularity heuristic is quite
sensitive to the number of constraints, k. Notice that this
lemma does not make any assumptions about the values
of X2,, Xk and the values of ri

j , where 2 ≤ i ≤ k and
1 ≤ j ≤ Xi. Thus, it applies to all variations of the limited
granularity heuristic.
Lemma 2: Let n be a constant, X2 = X3 = ... = Xk =
nL so that X = X2X3...Xk = nk−1Lk−1. For all 2 ≤
i ≤ k, let the range (0, ci] be approximated with equally
spaced values {ri

1 = ci

Xi
, ri

2 = ci

Xi
∗ 2, ..., ri

Xi
= ci}. The

limited granularity heuristic guarantees finding a path q

that satisfies w(q) ≤ c if there exists a path p of length L

that satisfies
w1(p) ≤ c1 and wi(p) ≤ ci − ci

n for all 2 ≤ i ≤ k.
Proof: Consider the approximation of any ith weight of
path p, 2 ≤ i ≤ k,

4

awi(p)=
∑

(u→v) on p awi(u → v)

<
∑

(u→v) on p(wi(u → v) + ci

Xi
)

=
∑

(u→v) on p wi(u → v) +
∑

(u→v) on p
ci

Xi

≤ ci − ci

n + L
Xi

∗ ci = ci

Thus, the approximation of all wi weights, 2 ≤ i ≤ k, will
satisfy the condition wi(p) ≤ ci. Since the heuristic does
not approximate the w1 weight, the heuristic can guarantee
finding that path p satisfies w(p) ≤ c.

Lemma 2 shows that when each node maintains a table of
size nk−1|N |k−1 = O(|N |k−1) and when n is a reasonably
large constant, the limited granularity heuristic can find
most of the paths that satisfy the QoS constraints. Fur-
thermore, by maintaining a table of size nk−1Nk−1, the
heuristic guarantees finding a solution when there exists a
path whose QoS metrics are better than (1− 1

n) ∗~c, where
~c is the required QoS metrics of the connection. This guar-
antee will be called finding an (1− 1

n)-approximate solution.
For example, if n = 100, the heuristic guarantees finding a
path p that satisfies w(p) ≤ c when there exists a path q

that satisfies w(q) ≤ 0.99 ∗ c, that is, it guarantees finding
a 0.99-approximate solution.

5 The limited path heuristic

The limited path heuristic ensures the worst case polyno-
mial time complexity by maintaining a limited number of
optimal QoS paths, say X optimal QoS paths, in each node.
Here, X corresponds to the size of the table maintained in
each node in the limited granularity heuristic. The lim-
ited path heuristic is basically the same as the extended
Bellman–Ford algorithm in Figure 3 except that before a
path is inserted into PATH, the size of PATH is checked.
When PATH already contains X elements, the new path
will not be inserted. By limiting the size of PATH to
X, the time complexity of the RELAX operation is re-
duced to O(X2). The time complexity of the heuristic is
O(X2|N ||E|).

We must choose the value X carefully for the heuristic
to be both efficient and effective. If X is sufficiently large
such that each node actually records all optimal QoS paths,
the heuristic is as effective as EBFA. However, large X

results in an inefficient heuristic in terms of the time/space
complexity. In this section, we will show that for any small
constant k and a randomly generated network, the limited
path heuristic can solve general k–constrained problems
with very high probability when X = O(|N |2lg(|N |)). This
result indicates that unlike the limited granularity heuris-
tic, the limited path heuristic is insensitive to the number
of QoS constraints in the network.

Let us assume that the weights of the links in a graph are
randomly generated and are independent of one another.
For a set S of |S| paths of the same length, we derive the
probability probi that set S contains i optimal QoS paths.
We then show that when X = O(|N |2lg(|N |)), ∑X

i=1 probi

is very large (or
∑|S|

i=X+1 probi is very small), which indi-
cates that when each node maintains O(|N |2lg(|N |)) en-
tries, the limited path heuristic will have very high prob-

P P P P

P
P

P

|S|, |S|-1
k k

|S|-1, |S|-2 |S|-2, |S|-3
k

1, 0
k

|S|, |S|-2
k

k

|S|, 0
k

|S|-1, 0

|S|-2 0|S|-1|S|

Figure 5: The Markov Chain

ability to record all optimal QoS paths in each node and
thus, will have very high probability to find the QoS paths
when such paths exist.

We use the following process to derive the probability
probi that the set S contains i optimal QoS paths. First,
the path, p, that has the smallest w1 weight is chosen from
S. The path p is an optimal QoS path because w1(p) is the
smallest among all the paths. All paths whose wj weights,
2 ≤ j ≤ k, are larger than wj(p) are not optimal QoS paths.
Let the set T include all such non–optimal QoS paths. The
set S − T contains all paths q where there exists at least
one j, 2 ≤ j ≤ k, such that wj(q) < wj(p). Thus, a path in
the set S−T may potentially be an optimal QoS path. The
process is then repeated on the set S − T . If S contains m

optimal QoS paths, the process can be repeated m times.
Let us use the notion P

i,j
k to represent the probability

of the remaining set size equal to j when the process is
applied to a set of i paths and the number of QoS metrics
is k. We will always assume 0 ≤ j ≤ i−1, when the notion
P

i,j
k is used. The process can be modeled as a Markov

process as shown in Figure 5. The Markov chain contains
|S|+1 states, each state i in the Markov chain represents a
set of i paths. The transition matrix for the Markov chain
is

Ak =













0

P 1,0

k

P 2,0

k

.

.

.

P
|S|−1,0

k

P
|S|,0

k

0
0

P 2,1

k

.

.

.

P
|S|−1,1

k

P
|S|,1

k

. . .

. . .

. . .

. . .

. . .

. . .

0
0
0

.

.

.
0

P
|S|,|S|−1

k

0
0
0

.

.

.
0
0













.

Let us define A1
k = Ak and Am

k = Am−1
k Ak for m > 1.

Am
k (i, j) represents the probability of the state transfer-

ring from node i to node j in exactly m steps. For ex-
ample, A1

k(|S|, 0) represents the probability of a set of size
|S| became empty after one optimal QoS path is chosen.
Am

k (|S|, 0) is the probability that the set of size |S| becomes
empty after selecting exactly m optimal QoS paths, that is,
Am

k (|S|, 0) is the probability that the set S contains exactly
m optimal QoS paths. Our goal is to determine the value

X such that
∑|S|

m=X Am
k (|S|, 0) is very small.

The summation form for Am
k (i, j), where i > j, are given

next. Note that Am
k (i, j) = 0, when i ≤ j. By definition,

we have

A1
k
(i, j) = P

i,j

k

5

A2
k
(i, j) =

∑|S|

n=0
Ak(i, n) ∗ Ak(n, j)

=
∑i−1

n=j+1
P

i,n

k
∗ P

n,j

k

A3
k
(i, j) =

∑|S|

n1=0
Ak(i, n1) ∗ A2

k
(n1, j)

=
∑i−1

n1=j+2
P

i,n1

k

∑n1−1

n2=j+1
P

n1,n2

k
∗ P

n2,j

k

......

Am
k

(i, j) =
∑i−1

n1=j+m−1
P

i,n1

k

∑

...
∑nm−2−1

nm−1=j+1
P

nm−2,nm−1

k
∗ P

nm−1,j

k

We will derive the numerical bounds for Am
k (i, j) in the

rest of the section. Let us first consider the 2–constrained
QoS routing problem. When k = 2, each link has two
weights w1 and w2. In the path selection process, we choose
from the set of i paths a path whose w1 weight is the small-
est. Since w2 and w1 weights are independent and the
length of the paths are the same, the probability of the
size of the remaining set may be 0, 1, ..., i − 1, each with
probability 1

i , since w2(p) can be ranked 1,, i among

the i paths in the set with equal probability 1
i , P

i,j
2 = 1

i .
Hence,

A2 =











0
1

1
1

2

..

.
1

|S|

0
0
1

2

.

.

.
1

|S|

0
0
0
.
.
.
1

|S|

. . .

. . .

. . .

. . .

. . .

0
0
0
.
.
.
1

|S|

0
0
0
.
.
.
0











By manipulating the matrix A2, we have: A1
2(|S|, 0) =

1
|S| , A2

2(|S|, 0) = 1
|S| (

1
|S|−1 + 1

|S|−2 ... + 1
1) = 1

|S|

∑|S|−1
i=1

1
i

and for m ≥ 2,

Am
2 (|S|, 0) =

1

|S|

|S|−1
∑

i1=m−1

1

i1

i1−1
∑

i2=m−2

1

i2

i2−1
∑

i3=m−3

...

im−2−1
∑

im−1=1

1

im−1

.

Lemma 3: For m ≥ 2, Am
2 (|S|, 0) ≤ (2ln(|S|))m−1

|S|∗(m−1)! .

Proof: See the Appendix.
Theorem 1: Given an N node graph with 2 indepen-
dent constraints, the limited path heuristic has very high
probability to record all optimal QoS paths and thus, has
very high probability to find a path that satisfies the QoS
constraints when one exists, when each node maintains
O(|N |2lg(|N |)) paths.

Proof: From Lemma 3, Am
2 (|S|, 0) ≤ (2ln(|S|))m−1

|S|(m−1)! . Using

the formula n! ≥
√

2πn(n
e)n from [3], when m > 2e2ln(|S|)+

1,

Am
2 (|S|, 0)≤ (2ln(|S|))m−1

|S|(m−1)!

≤ 1
|S| (

2eln(|S|)
m−1)m−1

≤ 1
|S| (

1
e)2e2ln(|S|)

≤ 1
|S|2e2+1

The number of paths of length L between any two nodes
in the graph is at most R = |N |L. The probability that
there exists no more than i optimal QoS paths among the
R = |N |L paths is p = 1 −

∑R
m=i+1 Am

k (R, 0). When i >

2e2ln(R)+1, p = 1−
∑R

m=i+1 Am
k (R, 0) ≥ 1−

∑R
k=i+1

1
R2e2+1

≥ 1− 1
R2e2 . Thus, when each node maintains 2e2ln(|N |L)+

1 = 2e2Llg(|N |) + 1 paths, the probability that the node

can record all optimal QoS paths of length L is very high,
1 − 1

R2e2 . For example, if R = 30, the probability is more

than 1 − 1
R2e2 > 99.99999%. In an N node graph, the

length of any QoS path is between 1 and N . Thus, main-

taining
∑|N |

L=1 2ce2Lln(|N |) + 1 = O(|N |2lg(|N |)) paths in
each node will give very high probability to record all op-
timal QoS paths in a node. Thus, the limited granularity
heuristic has very high probability to find a path that sat-
isfies the QoS constraints when such a path exists, when
each node maintains O(|N |2lg(|N |)) paths.

Next, we will derive the formula for computing the gen-
eral P

i,j
k and prove that maintaining O(|N |2lg(|N |)) paths

enables the heuristic to solve the general k–constrained
problem with very high probability. Lemma 4 shows how
to compute P

i,j
k .

Lemma 4: P
i,j
k = 1

i

∑j
l=0 P

i−l,j−l
k−1 .

Proof: Let S be the set of i paths. Let p be the path
with the smallest w1(p). Consider w2(p), since the weights
are randomly generated and are independent, w2(p) can be
ranked 1, 2, ..., i among all the paths with equal probability
1
i . In other words, the probability that there are l, 0 ≤ l ≤
i− 1, paths whose w2 weights are smaller than w2(p) is 1

i .
When l = 0, all the i− 1 paths are potential candidates to
be considered for the rest k − 2 weights in the remaining
set. In this case, the probability that the remaining set size
equal to j is equivalent to the case to choose from i paths
the path with the smallest w1 weight and the remaining set
size is equal to j with k − 1 weights. Thus, the probability
is P

i,j
k−1. When l = 1, there exists one path q where w2(q) <

w2(p), thus, path q belongs to the remaining set. In this
case, the probability that the remaining set size equal to j

is equivalent to the case to choose from i−1 paths (all paths
but path q) the path with the smallest w1 weight and the
remaining set size is equal to j−1 with k−1 weights (since
path q is already in the remaining set by considering w2).
Thus, the probability is P

i−1,j−1
k−1 . Similar arguments apply

for all cases from l = 0 to l = j. When l > j, there will be
at least l paths in the remaining set, thus, the probability
that the remaining set size equal to j is 0. Combining all
these cases, we obtain

P
i,j
k = 1

i P
i,j
k−1 + 1

i P
i−1,j−1
k−1 + ... + 1

i P
i−j,0
k−1

= 1
i

∑j
l=0 P

i−l,j−l
k−1 .

Lemmas 5, 6, and 7 summarize some property of P
i,j
k

and Ak. See the appendix for the proofs of these lemmas.
Lemma 5: P

i,j
k > P

i+1,j
k .

Lemma 6: For k ≥ 3 and 0 ≤ j ≤ |S|,
∑|S|

i=0 Ak(i, j) =
∑|S|

i=j+1 P
i,j
k < 2.

Lemma 7: P
i,j
k ≤ 1

i (
1
i + 1

i−1 + ... + 1
i−j)k−2.

Lemmas Lemmas 8, 9 and 10 are mathematic formulae
to be used later. See the appendix for the proofs of these
lemmas.
Lemma 8: For a constant k, there exists a constant c such
that

∑∞
i=1

1
2i i

k ≤ c.
Lemma 9: For a constant k and 1 ≤ j ≤ i−1, there exists
a constant c such that

∑i−1
n=j+1(

1
i + 1

i−1 + ... 1
i−n)k(1

n + ... + 1
n−j)k ≤ c ∗ i.

6

Lemma 10: Let 0 ≤ j < i
2 , there exists a constant c such

that
∑i−1

n=j+1 P
n,j
k (1

i + ... + 1
i−n)m ≤ c.

The next lemma describes the relation between A2(i, j)
and A2

k(i, j).
Lemma 11: There exists a constant c such that A2

k(i, j) ≤
c ∗ A2(i, j).
Proof: Consider the following three cases:
• Case 1: j ≥ i − 1. In this case, A2

k(i, j) = 0 ≤ A2(i, j).
• Case 2: i

2 ≤ j ≤ i − 2. In this case,

A2
k(i, j)=

∑i−1
n=j+1 P

i,n
k ∗ P

n,j
k

≤ ∑i−1
n=j+1

1
i (

1
i + 1

i−1 + ... + 1
i−n)k ∗ 1

n (1
n + ... + 1

n−j)k

≤ 2
i2

∑i−1
n=j+1(

1
i + 1

i−1 + ... + 1
i−n)k(1

n + 1
n−1 + ... + 1

n−j)k

≤ 2c1

i = 2c1A2(i, j) /* applying Lemma 9 */

• Case 3: 0 ≤ j ≤ i
2 − 1.

A2
k(i, j)=

∑i−1
n=j+1 P

i,n
k ∗ P

n,j
k

≤ ∑i−1
n=j+1 P

n,j
k

1
i (

1
i + 1

i−1 + ... + 1
i−n)k

≤ 1
i

∑i−1
n=j+1 P

n,j
k (1

i + 1
i−1 + ... + 1

i−n)k

≤ c2

i = c2A2(i, j) /* applying Lemma 10 */

Thus, there exists a constant c = max(2c1, c2, 1) such
that A2

k(i, j) ≤ c ∗ A2(i, j).
Theorem 2: Given an N node graph with k indepen-
dent constraints, the limited path heuristic has very high
probability to record all optimal QoS paths and thus, has
very high probability to find a path that satisfies the QoS
constraints when one exists, when each node maintains
O(|N |2lg(|N |)) paths.

Proof: From Lemma 3, we have Am
2 (|S|, 0) ≤ (2ln(|S|))m−1

|S|(m−1)! .

From Lemma 11, we have A2
k(i, j) ≤ cA2(i, j), where c is a

constant. Hence Am
k (|S|, 0) ≤ c

m
2 A

m
2

2 (|S|, 0) ≤ c(2cln(|S|))
m
2

−1

|S|(m
2
−1)! .

Following the similar arguments as the proof of Theorem
1, it can be shown that the limited granularity heuristic
has very high probability to find a path that satisfies the
QoS constraints when such a path exists, when each node
maintains O(|N |2lg(|N |)) paths.

Theorem 2 establishes that the performance of the lim-
ited path heuristic is not as sensitive to the number of QoS
constraints as the limited granularity heuristic. Thus, the
limited path heuristic provides better performance when
k > 3. Given that the global network state information is
inherently imprecise, in practice, using an algorithm that
can precisely solve the k–constrained routing problem may
not have much advantage over the limited path heuristic
that can solve the k–constrained routing problem with very
high probability.

The proof of Theorem 2 assumes that paths of different
lengths are of the same probability to be the optimal QoS
paths. However, when the weights in a graph are randomly
generated with uniform distribution, the paths of shorter
length are more likely to be the optimal QoS paths. In
addition, the probability used in the proof of the theo-
rem is extremely high. In practice, we do not need such
high probability for the heuristic to be effective. A tighter
upper bound for the number of optimal QoS paths to be

src

dst

(a) A 4 × 4 mesh

(b) MCI backbone

Figure 6: The network topologies

maintained in each node for the limited path heuristic to
be effective may be obtained by considering these factors.
However, the formal derivation of a tighter upper bound
can be complicated. In the next section, we examine the
two heuristics through simulation study.

6 Simulation Study

The goal of the simulation experiments is to compare the
performance of the heuristics for real world network topolo-
gies and to study the impact of constants in the asymptotic
bounds we derived. Two topologies, the mesh topology
shown in Figure 6 (a) and the MCI backbone topology
shown in Figure 6 (b), are used in the studies. In the sim-
ulation, the wi weight of each link is randomly generated in
the range of (0.0, 10.0 ∗ i), for 1 ≤ i ≤ k. Since the perfor-
mance of the two heuristics is closely related to the length
of the paths, when the mesh topology is used, we choose to
establish connections between the source and the destina-
tion that are the farthest apart as shown in Figure 6 (a).
When the MCI backbone topology is used, connections are
between randomly generated sources and destinations.

We compare the two heuristics with the exhaustive algo-
rithm, EBFA, that guarantees finding a path that satisfies
the QoS constraints if such a path exists. Two concepts,
the existence percentage and the competitive ratio, are used

7

to describe the simulation results. The existence percent-
age, which indicates how difficult the paths that satisfy the
QoS constraints can be found, is defined as the ratio of the
total number of requests satisfied using the exhaustive al-
gorithm and the total number of requests generated. The
competitive ratio, which indicates how well a heuristic al-
gorithm performs, is defined as the ratio of the number of
requests satisfied using a heuristic algorithm and the num-
ber of requests satisfied using the exhaustive algorithm. By
definition, both the existence percentage and the competi-
tive ratio are in the range of [0.0, 1.0].

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

C
om

pe
tit

iv
e

R
at

io

Existence Percentage

X=800
X=400
X=200
X=100
X=50

(a) Limited granularity heuristic

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
om

pe
tit

iv
e

R
at

io

Existence Percentage

X=8
X=4
X=2
X=1

(b) Limited path heuristic

Figure 7: 2–constrained problems on 8 × 8 meshes

Figure 7 shows the performance of the two heuristics
for 8 × 8 meshes with 2 QoS constraints. In both figures,
the x-axis represents the existence percentage and the y–
axis represents the competitive ratio. Different curves are
for different values of X in the two heuristics. The data
for each point in the figure are obtained by running the
two heuristics and the exhaustive algorithm using requests

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
om

pe
tit

iv
e

R
at

io

Existence Percentage

X=800
X=400
X=200
X=100

(a) Limited granularity heuristic

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
om

pe
tit

iv
e

R
at

io

Existence Percentage

X=16
X=8
X=4
X=2
X=1

(b) Limited path heuristic

Figure 8: 2–constrained problems on 16 × 16 meshes

with the same QoS constraints on 500 randomly gener-
ated 8 × 8 meshes. In this experiment, finding paths with
constraints (47.5, 95.0) results in an existence percentage
of 0.170. Constraints (50.0, 100.0) result in an existence
percentage of 0.334, constraints (52.5, 105.0) result in an
existence percentage of 0.534, constraints (55.0, 110.0) re-
sult in an existence percentage of 0.742, and constraints
(57.5, 115.0) result in an existence percentage of 0.866. No-
tice that for experiments with meshes, the paths to be
found are between the diagonal nodes in the network as
shown in Figure 6 (a). The general trend is that both the
limited granularity heuristics and the limited granularity
heuristics can have close to 1 competitive ratio when a
sufficiently large number of entries are maintained in each
node. However, to achieve high competitive ratio, the lim-
ited granularity heuristic requires to maintain a very large
number of entries, e.g. 800 in this experiment, while the
limited path heuristic only requires a small number of en-

8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
om

pe
tit

iv
e

R
at

io

Existence Percentage

X=40000(200x200)
X=10000(100x100)

X=2500(50x50)

(a) Limited Granularity Heuristic

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

C
om

pe
tit

iv
e

R
at

io

Existence Percentage

X=16
X=8
X=4
X=2
X=1

(b) Limited Path Heuristic

Figure 9: 3–constrained problems on 8 × 8 meshes

tries in each node, e.g. 8 in the experiment. Due to the
large difference in the number of entries maintained in each
node, the limited path heuristic is also much more efficient
in terms of execution time than the limited granularity
heuristic.

Figure 8 shows the performance of the heuristics for 16×
16 meshes with 2 QoS constraints. The data are obtained
by running the two heuristics and the exhaustive algorithm
using requests with the same QoS constraints on 500 ran-
domly generated 16× 16 meshes. In this experiment, find-
ing paths with constraints (95.0, 190.0) results in an exis-
tence percentage of 0.086. Constraints (100.0, 200.0) result
in an existence percentage of 0.294, constraints (105.0, 210.0)
result in an existence percentage of 0.632, and constraints
(110.0, 220.0) result in an existence percentage of 0.872.
The general trend in the 16 × 16 mesh is similar to that
in the 8 × 8 mesh except that maintaining same amount
entries in the larger mesh results in lower performance. For
example, in the 8× 8 mesh, the limited granularity heuris-

0.4

0.6

0.8

1

0.4 0.6 0.8

C
om

pe
tit

iv
e

R
at

io

Existence Percentage

X=1600(40x40)
X= 400(20x20)
X= 100(10x10)

X= 25(5x5)

(a) Limited Granularity Heuristic

0.97

0.98

0.99

1

0 0.2 0.4 0.6 0.8 1

C
om

pe
tit

iv
e

R
at

io

Existence Percentage

X=4
X=2
X=1

(b) Limited Path Heuristic

Figure 10: 3–constrained problems on the MCI backbone

tics has about 95% competitive ratio when maintaining 800
entries in each node while in the 16× 16 mesh, it can only
achieve 81.6% competitive ratio when finding paths with
constraint (95.0, 190.0) (existence percentage: 0.086). The
degradation in performance for the limited path heuristic
is not so severe as that for the limited granularity heuris-
tic. Maintaining 16 entries in each node can still achieve a
close to 100% competitive ratio in the 16 × 16 mesh.

Figure 9 shows the performance of the two heuristics
when they solve 3–constrained problems in 8 × 8 meshes.
The existence percentage and the competitive ratio for
each point in the figure are obtained by solving 500 QoS
routing problems with the same QoS requirement. Con-
straints (52.5, 105.0, 157.5) result in an existence percent-
age of 0.122, constraints (55.0, 110.0, 165.0) result in an ex-
istence percentage of 0.300, constraints (57.5, 115.0, 172.5)
result in an existence percentage of 0.522, constraints
(60.0, 120.0, 180.0) result in an existence percentage of 0.728.

9

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

C
om

pe
tit

iv
e

R
at

io

Number of Constraints

LPH, low/high e. p. paths, X=4
LGH, high e. p. paths, X=4000
LGH, low e. p. paths, X=4000

Figure 11: Impacts of the numbers of QoS constraints
on the MCI backbone topology (LGH: limited granularity
heuristic, LPH: limited path heuristic)

Comparing the results in Figure 9 and the results in Fig-
ure 7, we can see that the number of entries to be main-
tained in each node for the limited granularity heuristic to
be effective increases dramatically for 3–constrained prob-
lems comparing to 2–constrained problems. Maintaining a
table of size 40000 (200x200) for 3-constrained problems
yields worse competitive ratio than maintaining a table of
size 200 for 2-constrained problems. The competitive ratio
of the limited path heuristic, on the other hand, only de-
creases slightly. Maintaining 16 entries result in more than
95% competitive ratio for all the cases in the experiments.
This indicates that the limited path heuristic is much less
sensitive to the number of QoS constraints than the limited
granularity heuristic.

Figure 10 shows the results when the two heuristics solve
3–constrained QoS routing problems in the MCI backbone
topology. The existence percentage and the competitive
ratio are obtained by solving 1000 QoS routing problems.
Each of the 1000 routing problems tries to find a connection
between the randomly generated source and destination
with the same QoS requirement. In this experiment, con-
straints (10.0, 20.0, 30.0) result in an existence percentage
of 0.259, constraints (12.5, 25.0, 37.5) result in an existence
percentage of 0.376, constraints (15.0, 30.0, 45.0) result in
an existence percentage of 0.547, constraints (17.5, 35.0, 52.5)
result in an existence percentage of 0.693, constraints
(20.0, 40.0, 60.0) result in an existence percentage of 0.855.
The general trend in this figure is similar to that in the
previous experiment. In comparison to the limited path
heuristic, the limited granularity heuristic requires signif-
icantly more resources to achieve good performance. The
limited granularity heuristic must maintain 1600 entries (a
40 × 40 table) in each node to consistently achieve 95%
competitive ratio, while the limited path heuristic achieves
close to 100% competitive ratio with 4 entries in each node.

Figure 11 shows the impact of the number of constraints
on the performance of the heuristics using the MCI back-
bone topology. In this experiment, we fix the number of

entries maintained at each node for both heuristics and
study the performance of the two heuristics when they solve
QoS routing problems with different numbers of QoS con-
straints. For the limited granularity heuristics, we fix the
table size to be around 4,000. More specifically, we main-
tain in each node a linear array of 4,000 for 2-constrained
problems, a 64 × 64 table for 3-constrained problems, a
17×17×17 table for 4-constrained problems, a 8×8×8×8
table for 5-constrained problems and a 6 × 6 × 6 × 6 × 6
table for 6-constrained problems. For the limited path
heuristic, we fix the table size to be 4. We consider two
types of paths: high existence percentage paths and low
existence percentage paths. The high existence percent-
age paths are paths that satisfy constraints (20.0, 40.0) for
2–constrained problems, (20.0, 40.0, 60.0) for 3–constrained
problems, (20.0, 40.0, 60.0, 80.0) for 4–constrained problems,
(20.0, 40.0, 60.0, 80.0, 100.0) for 5–constrained problems, and
(20.0, 40.0, 60.0, 80.0, 100.0, 120.0) for 6–constrained prob-
lems. The existence percentage for these paths are between
0.75 and 0.95. The low existence percentage paths are
paths that satisfy constraints (10.0, 20.0) for 2–constrained
problems, (10.0, 20.0, 30.0) for 3–constrained problems,
(10.0, 20.0, 30.0, 40.0) for 4–constrained problems,
(10.0, 20.0, 30.0, 40.0, 50.0) for 5–constrained problems, and
(10.0, 20.0, 30.0, 40.0, 50.0, 60.0) for 6–constrained problems.
The existence percentage for these paths are between 0.22
and 0.33. The results are obtained by solving 1000 QoS
routing problems for each setting. As can be seen from
the figure, the performance of the limited path heuris-
tic is somewhat insensitive to the number of QoS con-
straints. With X = 4, the limited path heuristic achieves
close to 100% competitive ratio for all different number of
constraints. The performance of the limited granularity
heuristic drastically degrades as the number of QoS con-
straints increases. The competitive ratio falls from 100%
to 32% for low existence percentage paths and from 100%
to 58% for high existence percentage paths when the num-
ber of constraints increases from 2 to 6. This experiment
confirms that the limited path heuristic is more efficient
than the limited granularity heuristic in solving general k–
constrained problems when k > 3.

7 Conclusion

In this paper, we study two heuristics, the limited granu-
larity heuristic and the limited path heuristic, that can be
applied to the extended Bellman–Ford algorithm to solve
k–constrained QoS path routing problems. We show that
although both heuristics can solve k–constrained QoS rout-
ing problems with high probability in polynomial time, to
achieve high performance, the limited granularity heuris-
tic requires much more resources than the limited path
heuristic does. Specifically, the limited granularity heuris-
tics must maintain a table of size O(|N |k−1) in each node
to achieve good performance, which results in a time com-
plexity of O(|N |k|E|), while the limited path heuristic only
needs to maintain O(|N |2lg(|N |)) entries in each node.

10

Both our analytical and simulation results indicate that
the limited path heuristic is more efficient than the limited
granularity heuristic in solving general k–constrained QoS
routing problems when k > 3, although previous research
results show that both the limited granularity heuristic
and the limited path heuristic can solve 2–constrained QoS
routing problems efficiently. The advantage of the lim-
ited granularity heuristic, however, is that by maintaining
a table of size nk−1Nk−1 it guarantees finding (1 − 1

n)-
approximate solutions while the limited path heuristic can-
not provide such guarantee.

Acknowledgment

This work was supported in part by NSF CCR-9904943,
CCR-0073482 and ANI-0106706. The author would like to
thank Xingming Liu for his help in generating some simu-
lation results and the anonymous referees for their valuable
comments.

References

[1] S. Chen and K. Nahrstedt “On Finding Multi-Constrained
Paths.” IEEE International Conference on Communications
(ICC’98), pp 874-879, June 1998.

[2] Shigang Chen and Klara Nahrstedt “ An Overview of Quality-
of-Service Routing for the Next Generation High-Speed Net-
works: Problems and Solutions,” IEEE Network Magazine,
Special Issue on Transmission and Distribution of Digital
Video, Vol. 12, No. 6, pages 64-79, November-December 1998.

[3] T. H. Cormen, C. E. Leiserson and R. L. Rivest, “Introduction
to Algorithms.”, The MIT Press, 1990.

[4] J.M. Jaffe “Algorithms for Finding Paths with Multiple Con-
straints.” Networks, Vol. 14, pp 95-116, 1984.

[5] Turgay Korkmaz, Marwan Krunz, and Spyros Tragoudas, “An
efficient algorithm for finding a path subject to two additive
constraints,” ACM SIGMETRICS 2000 Conference, vol. 1, pp.
318-327, Santa Clara, CA, June 2000.

[6] Q. Ma and P. Steenkiste “Quality–of–Service Routing with Per-
formance Guarantees”, IFIP International Workshop on Qual-
ity of Service (IwQoS), pp 115-126, May 1997.

[7] Ariel Orda, “Routing with End-to-End QoS Guarantees in
Broadband Networks”, IEEE/ACM Transactions on Network-
ing, Vol. 7, No. 3, pp 365-374, June 1999.

[8] H. F. Salama, D. S. Reeves and Y. Viniotis, “A Distributed
Algorithm for Delay–Constrained Unicast Routing.” IEEE IN-
FOCOM, pp 84-91, April 1997.

[9] Z. Wang and J. Crowcroft “QoS Routing for Supporting Re-
source Reservation.” IEEE Journal on Selected Areas in Com-
munications, Vol. 14, No. 7, pp 1228-1234, Sept. 1996.

[10] R. Widyono, “The Design and Evaluation of Routing Algo-
rithms for Real–time Channels.” technical report TR–94–024,
International Computer Science Institute, University of Califor-
nia at Berkeley, 1994.

Appendix

Lemma 3: For m ≥ 2, Am
2 (|S|, 0) ≤ (2ln(|S|))m−1

|S|∗(m−1)! .

Proof: We will first prove the following formula that will
be used in the proof of the lemma. For any n > 2,

n−1
∑

i=2

lnm(i)

i
≤ 2lnm+1(n)

m + 1

For i ≥ 2 and i + 1 > x ≥ i, lnm(i)
i <

2lnm(x)
x . Hence,

∑n−1
i=2

lnm(i)
i ≤

∫ n

2
2lnm(x)

x dx = 2
m+1 lnm+1(x)|n2 ≤ 2lnm+1(n)

m+1
Armed with this formula, we will now prove the theorem:

Am
2 (|S|, 0)

= 1
|S|

∑|S|−1
l1=m−1

1
l1

∑l1−1
l2=m−2

1
l2

∑

...
∑lm−2−1

lm−1=1
1

lm−1

≤ 1
|S|

∑|S|−1
l1=m−1

1
l1

∑l1−1
l2=m−2

1
l2

∑

...
∑lm−3−1

lm−2=2
ln(lm−2)+1

lm−2

≤ 1
|S|

∑|S|−1
l1=m−1

1
l1

∑l1−1
l2=m−2

1
l2

∑

...
∑lm−3−1

lm−2=2
2ln(lm−2)

lm−2

≤ 1
|S| × 2

1!

∑|S|−1
l1=m−1

1
l1

∑l1−1
l2=m−2

1
l2

∑

...
∑lm−3−1

lm−2=2
ln(lm−2)

lm−2

≤ 1
|S| × 22

2!

∑|S|−1
l1=m−1

1
l1

∑l1−1
l2=m−2

1
l2

∑

...
∑lm−4−1

lm−3=3
ln2(lm−3)

lm−3

≤ ...

≤ 1
|S| × 2m−1

(m−1)! × (ln(|S|))m−1 = (2lg(|S|))m−1

|S|∗(m−1)! 2

Lemma 5: P
i,j
k > P

i+1,j
k .

Proof: Base case, k = 2, P
i,j
2 = 1

i > 1
i+1 = P

i+1,j
2 .

Induction case, assuming that for any i, j and k,
P

i,j
k > P

i+1,j
k ,

P
i,j
k+1=

1
i

∑j
l=0 P

i−l,j−l
k

> 1
i+1

∑j
l=0 P

i+1−l,j−l
k

= P
i+1,j
k+1

Lemma 6: For k ≥ 3 and 0 ≤ j ≤ |S|,
∑|S|

i=0 Ak(i, j) =
∑|S|

i=j+1 P
i,j
k < 2.

Proof: Base case, k = 3. From Lemma 4, we obtain
P

i,j
3 = 1

i (
∑j

l=0 P
i−l,j−l
2) = 1

i (
1
i + 1

i−1 + ... + 1
i−j).

For any j,
∑|S|

i=0 A3(i, j) −
∑|S|

i=0 A3(i, j + 1)

=
∑|S|

i=j+1 P
i,j
3 − ∑|S|

i=j+2 P
i,j+1
3

= 1
j (1

j + 1
j−1 + ... + 1

1)−(1
j+1

1
1 + 1

j+2
1
2 + ... + 1

i
1

i−j−1)

> 0

Thus,

2>
∑|S|

i=1
1
i2

=
∑|S|

i=0 A3(i, 0)

>
∑|S|

i=0 A3(i, 1)
> ...

>
∑|S|

i=0 A3(i, |S|).
Induction case, for any j and k, assume

∑|S|
i=0 Ak(i, j) =

∑|S|
i=j+1 P

i,j
k < 2.

∑|S|
i=0 Ak+1(i, j)=

∑|S|
i=j+1 P

i,j
k+1

=
∑|S|

i=j+1
1
i

∑j
l=0 P

i−l,j−l
k

< 1
j+1

∑j
l=0

∑|S|
i=l+1 P

i,l
k

≤ 1
j+1 ∗ (2 ∗ (j + 1))= 2

Lemma 7: P
i,j
k ≤ 1

i (
1
i + 1

i−1 + ... + 1
i−j)k−2.

Proof: Base case, k = 2,
P

i,j
2 = 1

i ≤ 1
i (

1
i + 1

i−1 + ... + 1
i−j)2−2.

Induction case, assume that for any i, j and k,
P

i,j
k ≤ 1

i (
1
i + 1

i−1 + ... + 1
i−j)k−2.

P
i,j
k+1

= 1
i (P

i,j
k + P

i−1,j−1
k + ... + P

i−j,0
k)

≤ 1
i (

1
i (

1
i + 1

i−1 + ... + 1
i−j)k−2

+ 1
i−1 (1

i−1 + 1
i−2 ... + 1

i−j)k−2+... + 1
i−j (1

i−j)k−2)

11

≤ 1
i (

1
i (

1
i + 1

i−1 + ... + 1
i−j)k−2

+ 1
i−1 (1

i + 1
i−1 + ... + 1

i−j)k−2+...

+ 1
i−j (1

i + 1
i−1 + ... + 1

i−j)k−2)

= 1
i ((

1
i + ... + 1

i−j)(1
i + ... + 1

i−j)k−2)

= 1
i (

1
i + 1

i−1 + ... + 1
i−j)k−1

Lemma 8: For a constant k, there exists a constant c such
that

∑∞
i=1

1
2i i

k ≤ c.
Proof: When k = 0,

∑∞
i=1

1
2i i

k =
∑∞

i=1
1
2i = 1.

Let Y (k) =
∑∞

i=1
1
2i i

k, Y (k)
2 =

∑∞
i=2

x
2i (i − 1)k

Y (k)
2 = Y (k) − Y (k)

2
= 1

2 +
∑∞

i=2
1
2i (i

k − (i − 1)k)
≤ 1

2 +
∑∞

i=2
1
2i (k ∗ ik−1)

≤ k ∗ Y (k − 1)

Thus, Y (k) ≤ 2kY (k − 1) ≤ 22k(k − 1) ∗ Y (k − 2) ≤ ... ≤
2kk!Y (0) = 2kk!. When k is a constant, there exists a
constant c = 2kk! such that

∑∞
i=1

1
2i i

k ≤ c.
Lemma 9: For a constant k and 1 ≤ j ≤ i−1, there exists
a constant c such that

∑i−1
n=j+1(

1
i + 1

i−1 + ... 1
i−n)k(1

n + ... + 1
n−j)k ≤ c ∗ i.

Proof: Let W (m) = (1
i + 1

i−1 + ... + 1
i−m)k. We will first

derive some bounds for W (m).
For 1 ≤ m ≤ i

2 ,

W (m)= (1
i + 1

i−1 + ... + 1
i−m)k

≤ (1
i/2 + 1

i/2 + ... + 1
i/2)k

≤ (m ∗ 1
i/2)k ≤ 1k.

For i
2 + 1 ≤ m ≤ 3i

4 ,

W (m)≤ (1
i/2 + 1

i/2 + ... + 1
i/2 + (m − i

2) ∗ 1
i/4)k ≤ 2k.

In general, for (2j−1)
2j ∗ i + 1 ≤ m ≤ (2j+1)−1

2j+1 ∗ i,
W (m) ≤ (j + 1)k.

For n ≤ i, we also have
(1

n + ... + 1
n−j)k ≤ (1

i + ... + 1
n−j)k = W (i − n + j).

Thus,
∑i−1

n=j+1(
1
i + 1

i−1 + ... 1
i−n)k(1

n + ... + 1
n−j)k

≤
∑i−1

n=j+1 W (n)W (i − n + j)

= W (i − 1)W (j + 1) + ... + W (j + 1)W (i − 1)
≤ W (j + 1)2 + ... + W (i − 1)2 /* a2 + b2 ≥ 2ab */

=
∑i−1

n=j+1(W (n))2 ≤ ∑i−1
n=1(W (n))2

=
∑

i
2

n=1(W (n))2 +
∑

3i
4

n= i
2
+1

(W (n))2 +

= i
212k + i

422k + i
832k + ...

≤ c ∗ i, where c is a constant. /* Applying Lemma 8 */

Lemma 10: Let 0 ≤ j < i
2 , there exists a constant c such

that
∑i−1

n=j+1 P
n,j
k (1

i + ... + 1
i−n)m ≤ c.

Proof: From Lemma 7, we have
∑i−1

n=j+1 P
n,j
k < 2. From

Lemma 6, we have P
i,j
k > P

i+1,j
k . Hence,

∑
i
2

n=j+1 P
n,j
k < 2

∑
3i
4

n= i
2
+1

P
n,j
k < 2

∑
7i
8

n= 3i
4

+1
P

n,j
k < 1

2

∑
3i
4

n= i
2
+1

P
n,j
k < 2 ∗ 1

2
∑

15i
16

n= 7i
8

+1
P

n,j
k < 1

4

∑
3i
4

n= i
2
+1

P
n,j
k < 2 ∗ 1

4

...

Thus,
∑i−1

n=j+1 P
n,j
k (1

i + ... + 1
i−n)m

=
∑

i
2

n=j+1 P
n,j
k (1

i + ... + 1
i−n)m

+
∑

3i
4

n= i
2
+1

P
n,j
k (1

i + ... + 1
i−n)m

+
∑

7i
8

n= 3i
4

+1
P

n,j
k (1

i + ... + 1
i−n)m + ...

≤ 1m
∑

3i
4

n= i
2
+1

P
n,j
k + 2m

∑
3i
4

n= i
2
+1

P
n,j
k

+3m
∑

7i
8

n= 3i
4

+1
P

n,j
k + ...

≤ 1m ∗ 2 + 2(2m ∗ 1
20 + 3m ∗ 1

21 + 4m ∗ 1
22 + ...)

≤ c, where c is a constant. /* applying Lemma 8 */

Xin Yuan Xin Yuan (M ’98 / ACM ’ 98) re-
ceived his PH.D degree in Computer Science
from the University of Pittsburgh. He is an
assistant professor at the department of Com-
puter Science, Florida State University. His re-
search interests include quality of service rout-
ing, optical WDM networks and high perfor-
mance communication for clusters of worksta-
tions. His email address is: xyuan@cs.fsu.edu.

12

