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Abstract—

Recent advances in multicasting present new opportunities for improv-
ing communication performance for clusters of workstations. Realizing
collective communication over multicast primitives can achieve higher per-
formance than over unicast primitives. However, implementing collective
communication using multicast primitives presents new issues and chal-
lenges. Group management, which may result in large overheads, is one
of the important issues. In this paper, we propose three group manage-
ment schemes that can be used to implement MPI collective communica-
tion routines, static group management, dynamic group management, and
compiler–assisted group management. We implement the three schemes
in a prototype MPI library and evaluate the performance of the schemes.
We further compare our multicast based implementation with an efficient
unicast based MPI implementation, LAM/MPI. The results show that mul-
ticasting can greatly improve the performance of collective communication
in many situations. In particular, combining multicasting with compiler–
assisted group management can deliver very high performance.

I. INTRODUCTION

As microprocessors become more and more powerful, clus-
ters of workstations have become one of the most common high
performance computing environments. Many institutions have
Ethernet–connected clusters that can be used to perform high
performance computing. One of the key building blocks for
such systems is the message passing library. Standard message
passing libraries, including Message Passing Interface (MPI)
[6] and Parallel Virtual Machine (PVM) [7], have been imple-
mented for such systems. Current implementations, such as
MPICH[3] and LAM/MPI[8], focus on providing the function-
ality, that is, moving data across processors, and addressing the
portability issues. To achieve interoperability, these implemen-
tations are built over unicast primitives supported by the TCP/IP
protocol suite. However, studies have shown that the current
implementations of message passing libraries for networks of
workstations are not tailored to achieve high communication
performance over clusters of workstations [1].

Recent advances in multicasting over the Internet present
new opportunities for improving communication performance
for clusters of workstations without sacrificing the portability of
the message passing libraries. Specifically, coupling local area
network (LAN) hardware, which supports broadcast (multicast)
communication, with IP–multicast [2], multicast communica-
tion is now supported by the TCP/IP protocol suite and can be
utilized in commodity LAN environments without any modifica-
tion of the hardware and the operating system. Using multicast
primitives to realize collective communication routines can po-
tentially improve the communication performance significantly
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since multicasting reduces both message traffic over the network
and the CPU processing at the end hosts.

Implementing collective communication routines over multi-
cast primitives, however, introduces new issues and challenges.
Some issues to be addressed include designing reliable multicast
protocols, group management schemes and message scheduling
methods. Our previous work [5] studied efficient reliable mul-
ticast protocols in the LAN environment. This paper focuses
on the group management issue. Basically, a multicast group
must be created before any multicast communication can be per-
formed on that group. A group management scheme determines
when to create/destroy a multicast group. Given a set of N pro-
cesses, the number of potential groups is 2N . Thus, it is imprac-
tical to establish all potential groups for a program and group
management must be performed as the program executes. Since
the group management operations require the coordination of
all members in the group and are expensive, group management
must be carefully handled for multicasting to be effective.

In this paper, we study the MPI collective communication
routines whose performance can potentially be improved by
multicasting and discuss how these routines can be implemented
using multicast primitives. We propose three group management
schemes, the static group management scheme, the dynamic
group management scheme and the compiler–assisted group
management scheme. The static group management scheme as-
sociates a multicast group with each communicator, which is an
MPI entity to identify the group of participating processes. This
scheme is ideal for collective communications, such as broad-
cast, that involve all nodes in a communicator. The static group
management scheme does not support one–to–many communi-
cation effectively. The dynamic group management scheme cre-
ates/destroys multicast groups dynamically and allows multicas-
ting to be performed only on the nodes that are interested in the
communication. This scheme is flexible, but incurs large group
management overheads. The compiler–assisted group manage-
ment scheme takes advantages of the fact that most of the com-
munications in parallel programs are static, that is, can be deter-
mined at the compile time [4]. This is a form of the compiled
communication technique [10]. The communication library pro-
vides routines to allow the compiler to determine when to cre-
ate/destroy groups and to allow the data movement to be per-
formed more efficiently since more restricted assumptions can
be made in the implementation of the data movement routines
under the compiled communication model. Like the static group
management scheme, the compiler–assisted group management
scheme allows the group management overheads to be amor-
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tized over multiple communications.

We implement the three group management schemes in our
prototype MPI library where a number of collective communi-
cation routines are built over IP–multicast using the standard
UDP interface. We evaluate the performance of the schemes us-
ing the prototype library. We further compare the performance
of our multicast based implementation with that of an efficient
unicast based MPI implementation, LAM/MPI[8]. We conclude
that multicasting can significantly improve the performance of
collective communication in many cases and that multicasting
combined with compiler–assisted group management can de-
liver very high performance. The rest of the paper is structured
as follows. Section II briefly describes MPI collective commu-
nication routines. Section III presents the three group manage-
ment schemes. Section IV reports the results of our performance
study. Section V concludes the paper.

II. MPI COLLECTIVE COMMUNICATION ROUTINES

MPI is a library specification for message–passing, proposed
as a standard by a broadly based committee of vendors, imple-
mentors and users. A set of standard collective communication
routines is defined in MPI. Each collective communication rou-
tine has a parameter called communicator, which identifies the
group of participating processes. MPI collective communication
routines include the followings.

• Barrier. The routine MPI Barrier blocks the callers until all
members in the communicator call the routine.
• Broadcast. The routine MPI Bcast broadcasts a message from
a process called root to all processes in the communicator.
• Gather. The routines MPI Gather and MPI Gatherv allow
each process in the communicator to send data to one process.
• Scatter. The routine MPI Scatter allows one process to send
a different message to each other process. The message size is
the same for all processes when using this routine. A more gen-
eral form of scatter, where messages can be of different sizes,
is realized by the routine MPI Scatterv. MPI Scatterv can also
perform one–to–many communications within the communica-
tor by carefully selecting the input parameters.
• Gather–to–all. The routine MPI Allgather gathers the infor-
mation from all processes and puts the results to all processes.
Another routine, MPI Allgatherv, allows the data sizes for dif-
ferent processes to be different.
• All–to–all. The routine MPI Alltoall is a generalization of
gather–to–all in that different messages can be sent to different
processes. The most general form of all–to–all communication
is the MPI Alltoallw routine in the MPI 1–2 specification, which
allows the general many–to–many or one–to–many communica-
tions to be performed by carefully selecting the input arguments.
• Global reduction. These functions perform global reduce op-
erations (such as sum, max, logical AND, etc.) across all the
members of a group.
• Reduce–scatter. The routine MPI Reduce scatter performs
the global reduce operation and makes the result appear in all
the processes.
• Scan. Similar to the reduce function, but performs a prefix
reduction on data distributed across the group.

In order to use multicasting to improve performance of a
communication routine, the routine must contain one–to–many
or one–to–all communication patterns. Among the collective
communication routines defined in MPI, the gather, reduce and
scan operations do not have one–to–many or one–to–all com-
munications. We will not consider these routines in this pa-
per. Other routines can potentially benefit from multicast-
ing since multicasting distributes information to multiple des-
tinations more efficiently. Four types of collective commu-
nications, one–to–all communication, one–to–many communi-
cation, all–to–all communication and many–to–many commu-
nication, can benefit from a multicast based implementation.
Here, the word ’all’ means all processes in a communica-
tor. The one–to–all communication routines include MPI Bcast,
MPI Scatter and MPI Reduce Scatter. The one–to–many com-
munication can be realized by MPI Scatterv. The all–to–all
communication routines include MPI Allgather, MPI Alltoall
and MPI Allreduce. The many–to–many communication rou-
tines include MPI Alltoallw.

III. GROUP MANAGEMENT SCHEMES FOR A MULTICAST

BASED IMPLEMENTATION

Group management determines when to create/destroy a mul-
ticast group. Its functionality is similar to the management of
communication end points in unicast communication. Using
unicast communication, for N processes, the number of com-
munication end points per process is O(1) for UDP unicast com-
munication, and O(N) to establish direct TCP connections to all
other processes. Since the number of communication end points
is small, the communication end points can be opened at the
system initialization and closed at the system finalization. Us-
ing multicast communication, however, the number of potential
groups is 2N . It is, thus, impossible to establish all groups si-
multaneously and group management must be performed on the
fly as the program executes.

In this section, we will describe three group management
schemes that can be used to implement MPI collective commu-
nications, the static group management scheme, the dynamic
group management scheme, and the compiler–assisted group
management scheme. We will also discuss how the collective
communication routines can be implemented using multicast-
ing. Since all–to–all communication and many–to–many com-
munication are typically built on top of one–to–all and one–to–
many communications, we will focus on one–to–all and one–
to–many communications in this paper. We will use MPI Bcast
and MPI Scatter as representative routines for one–to–all com-
munication, and MPI Scatterv as the representative routine for
one–to–many communication.

The static group management scheme associates a multicast
group with each communicator. The multicast group is cre-
ated/destroyed when the communicator is created/destroyed.
Since a communicator in a program is usually long–lived (used
by multiple communications), the static group management
scheme can amortize the group management overheads and the
group management overhead is usually negligible. This scheme
is ideal for one–to–all communications.
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Using the static group management scheme, MPI Bcast can
be implemented by having the root send a reliable broadcast
message to the group. This implementation does not introduce
any extra overheads.

A multicast based MPI Scatter is a little more complicated. In
the scatter operation, different messages are sent to different re-
ceivers. To utilize the multicast mechanism, the messages to dif-
ferent receivers must be aggregated to send to all receivers. For
example, if messages m1, m2 and m3 are to be sent to processes
p1, p2 and p3, the aggregate message containing m1, m2 and
m3 will be sent to all three processes as one multicast message.
Once a process receives the aggregated multicast message, it can
identify its portion of the message (since the message sizes to all
receivers are the same) and copy the portion to the user space.
In comparison to the unicast based MPI Scatter in LAM/MPI,
where the sender loops through the receivers sending a unicast
message to each of the receivers, the multicast based implemen-
tation increases the CPU processing in each receiver since each
receiver must now process a larger aggregated message, but de-
creases the CPU processing in the sender (root) as fewer system
calls are needed. Since the bottleneck of the unicast implemen-
tation of MPI Scatter is at the sender side, it can be expected
that the multicast based implementation can offer a better per-
formance when the aggregated message size is not very large.
When the size of the aggregated message is too large, the mul-
ticast based implementation will have negative impacts on the
performance since it slows down the receivers.

Realizing MPI Scatterv is similar to realizing MPI Scatter.
But there are some complications. In MPI Scatterv, different
receivers can receive different sized messages and each receiver
only knows its own message size. The receivers do not know
the size and the layout of the aggregated message. We resolve
this problem by using two broadcasts in this function. The first
broadcast tells all processes in the communicator the amount of
data that each process will receive. Based on this information,
each process can compute the memory layout and the size of
the aggregated message. The second broadcast sends the aggre-
gate message. MPI Scatterv can realize one–to–many commu-
nication by having some receivers not receive any data. Using
the static group management scheme, the one–to–many commu-
nication is converted into an one–to–all communication since
all processes in the communicator must receive the aggregated
message. This is undesired since it keeps the processes that are
not interested in the communication busy. In addition, this im-
plementation sends a (reliable) multicast message to a group that
is larger than needed, which decreases the communication per-
formance. The dynamic group management scheme and the
compiler–assisted group management scheme overcomes this
problem.

The dynamic group management scheme creates a multicast
group when it is needed. This group management scheme is
built on top of the static group management scheme in an at-
tempt to improve the performance for one–to–many commu-
nications. To effectively realize one–to–many communication,
the dynamic group management scheme dynamically creates a
multicast group, performs the communication, and destroys the
group. In MPI Scatterv, only the sender (root) knows the group

of receivers. To dynamically create the group, a broadcast is
performed using the static group associated with the commu-
nicator to inform all members in the communicator the nodes
that should be in the new group. After this broadcast, a new
group can be formed and the uninterested processes can move
on. After the communication is performed, the group is de-
stroyed. Using the dynamic group management scheme, the
uninterested processes will only involve in group creation, but
not data movement. Dynamically group management introduces
group management overheads for each communication and may
not be efficient for sending small messages.

(1) DOi = 1, 1000
(2) MPI Scatterv(....)

(a) An example program

(1) MPI Scatterv open group(...)
(2) DOi = 1, 1000
(3) MPI Scatterv data movement(....)
(4) MPI Scatterv close group(...)

(b) The compiler–assisted group management scheme

Fig. 1. An example for the compiler–assisted group management

The compiler–assisted group management scheme allows the
compiler to perform group management. As shown in [4], most
communication in parallel programs can be determined by the
compiler. Thus, in most situations, the compiler knows the ap-
propriate points to create and destroy a group. This scheme is
not implemented in the library. Instead, we extend the MPI
interface to provide routines to allow the compiler to man-
age the groups. For MPI Scatterv, we provide three functions,
MPI Scatterv open group, MPI Scatterv data movement, and
MPI Scatterv close group. MPI Scatterv open group takes
exactly the same parameters as MPI Scatterv, creates a
new group for the participating processes in the one–to–
many communication, and initializes related data struc-
tures. MPI Scatterv close group destroys the group created by
MPI Scatterv open group. MPI Scatterv data movement per-
forms the data movement assuming that the group is created
and that the related information is known to all participated par-
ties. Notice that MPI Scatterv data movement is simpler than
MPI Scatterv. Since more information related to the communi-
cation, including the message size for each process, is known
to all processes, only one broadcast is needed to implement
MPI Scatterv data movement instead of two in MPI Scatterv.

Fig. 1 shows an example of the compiler–assisted group man-
agement scheme. Fig. 1 (a) is an example program that performs
MPI Scatterv in a loop. If the compiler can determine the group
information used by the MPI Scatterv routine, it can perform
group management as shown in Fig. 1 (b). Two factors can con-
tribute to the performance improvement over the dynamic group
management scheme. First, the group management overhead is
amortized among all the communications in the loop. Second,
the data movement is efficient.
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IV. PERFORMANCE STUDY

We implement a prototype MPI library where most collective
communication routines are realized using multicasting. The
three proposed group management schemes are implemented in
the prototype. In this section, we compare the performance
of our prototype library with that of LAM/MPI, an efficient
unicast–based MPI implementation, and evaluate the perfor-
mance of the three group management schemes.

Ethernet
Switch

Ethernet
Switch

P1 P17

P18P2

P0

P14

P15

P28

Fig. 2. Performance evaluation environment

The performance is evaluated in a cluster with 29 Pentium
III–650MHz processors. Each machine has 128MB memory
and 100Mbps Ethernet connection via a 3Com 3C905 PCI
EtherLink Card. All machines run RedHat Linux version 6.2,
with 2.4.7 kernel. The machines are connected by two 3Com
SuperStack II baseline 10/100 Ethernet switches as shown in
Fig. 2. To obtain accurate experimental results, we measure the
communication time three times for each experiment and report
the average of the three measurements. We use LAM version
6.5.4 with the direct client to client mode communication for
the comparison. Since collective communication involves mul-
tiple nodes, if not specified otherwise, we will use the average
time among all nodes for a given collective communication as
the performance metric.

TABLE I

MESSAGE ROUND-TRIP TIME (PING-PONG)

Msg size LAM/MPI Our MPI
(bytes)

1 0.13ms 0.23ms
10 0.13ms 0.22ms

100 0.17ms 0.24ms
1000 0.53ms 0.60ms

10000 2.17ms 2.38ms
100000 18.92ms 22.43ms

1000000 205.10ms 224.38ms

Table I shows the baseline comparison of our implementation
and the LAM/MPI implementation. This table compares the
performance of the point–to–point communication by measur-
ing the ping-pong style communication, that is, two processes
sending messages of a given size to each other. LAM/MPI is
based on TCP and the communication reliability is provided by
the operating system. Our implementation is based on UDP and
the communication reliability is enforced in the user domain,
that is, acknowledgement packets are sent by the user. Hence,
our implementation incurs more switchings between the user
mode and the system mode. This impact is significant when the
message size is small. When the message size is large, the UDP

based implementation may have advantage since TCP must go
through the slow start to reach the maximum throughput of the
network [9], while the UDP based implementation can directly
send large packets to fully utilize the network bandwidth. The
maximum UDP packet size is 16KB in our implementation.
Table I shows the overall effect. For point–to–point commu-
nication with small sized messages (< 1KB), LAM/MPI is
about 75% more efficient. For large sized messages (> 1KB),
LAM/MPI is about 10% more efficient.
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Fig. 3. Performance of MPI Bcast (message size = 1B)
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Fig. 4. Performance of MPI Bcast (large message sizes)

Figures 3 and 4 show the performance of MPI Bcast. As can
be seen from Fig. 3, multicasting does not guarantee to improve
communication performance even for the broadcast communi-
cation. The reason that LAM/MPI broadcast implementation is
more efficient than our multicast based implementation when
message size is 1 byte is that LAM/MPI has an efficient logical
tree based broadcast implementation when the group is larger
than 4 processes. This distributes the broadcast workload to
multiple nodes in the system. While in our implementation, the
root, although sends only one multicast packet, must process all
acknowledgement packets from all receivers. As a result, for
small sized messages, our multicast based implementation per-
forms worse. However, when the message size is larger, the
acknowledgement processing overhead is insignificant and the
saving of sending one multicast data packet instead of sending
multiple unicast packets dominates. In this case, our multicast
based implementation is much more efficient as shown in Fig. 4.

Figures 5 shows the performance of MPI Scatter on a 29 node
system. In the scatter operation, the root sends different data to
different receivers. This has two implications. For unicast im-
plementation, the root must iterate to send a message to each of
the receivers and the sender is the bottleneck. The tree–based
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Fig. 5. Performance of MPI Scatter on a 29-node system

implementation used in broadcast cannot be utilized. For mul-
ticast implementation, the messages must be aggregated so that
each receiver must receive more than what it needs, which de-
creases the performance. Thus, the multicast based implementa-
tion can offer better performance only when the message size is
small. As shown in Fig. 5 when message size is less than 100B,
our implementation performs better than LAM/MPI. When the
message size is larger than 100B, LAM/MPI is better.
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Fig. 6. Performance of one–to–five communication using MPI Scatter

We have evaluated the performance of one–to–all communi-
cations, where the static group management scheme is sufficient.
The results show that multicasting improves the performance
of collective communication in many situations. Next, we will
evaluate the performance of one–to–many communication for
which dynamic group management and compiler–assisted group
management were designed. Fig. 6 shows the performance of
MPI Scatterv with different implementations and group man-
agement schemes. In this experiment, the root scatters mes-
sages of a given size to 5 receivers among the 29 members in
the communicator. As can be seen in the figure, the dynamic
group management scheme incurs very large overheads and of-
fers the worst performance among all the schemes. The static
group management offers better performance. However, since
all nodes in the communicator are involved in the collective
communication, the average communication time for all nodes
is still larger than that provided by LAM/MPI. The compiler–
assisted scheme performs the best among all the schemes. We
have conducted experiments with different settings, the results
demonstrate a similar trend.

It is sometimes more appropriate to compare the maximum
communication completion time than the average communica-
tion time. Fig. 7 shows the maximum communication comple-
tion time. This experiment has the same settings as those in
Fig. 6. Using multicast to implement collective communica-
tions, processes complete the communication almost simultane-
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Fig. 7. Maximum communication time for one–to–five communication

ously. The average communication time is close to the maxi-
mum communication time. Using unicast to implement collec-
tive communications, the communication completion time on
different nodes varies significantly since the communication is
done sequentially at the end hosts. Comparing Fig. 7 and Fig. 6,
we can see that the multicast based implementation performs
better in terms of maximum communication completion time.

We have used the scatter operation in the evaluation of one–
to–many communications. For broadcast type one–to–many
communications, the multicast–based implementation should
give better improvements in comparison to LAM/MPI.

V. CONCLUSION

In this paper, we present our prototype MPI library where
the collective communication routines are implemented based
on IP–multicast. Three group management schemes that can
be used to implement the collective communication routines are
proposed and evaluated. The performance of our prototype MPI
library is compared with LAM/MPI, an efficient unicast–based
MPI implementation. We conclude that using multicasting can
improve the performance of collective communication in many
situations. In particular, multicasting combined with compiler–
assisted group management offers very high performance.
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