
An Empirical Study of Reliable Multicast Protocols
over Ethernet–Connected Networks ∗

Ryan G. Lane Scott Daniels Xin Yuan
Department of Computer Science, Florida State University, Tallahassee, FL 32306

{ryanlane,sdaniels,xyuan}@cs.fsu.edu

Abstract

Recent advances in multicasting over the Internet
present new opportunities for improving communication
performance in clusters of workstations. The standard
IP multicast, however, only supports unreliable multicast,
which is difficult to use for building high level message pass-
ing routines. Thus, reliable multicast primitives must be im-
plemented over the standard IP multicast to facilitate the
use of multicast for high performance communication on
clusters of workstations. Although many reliable multicast
protocols have been proposed for the wide area Internet en-
vironment, the impact of architectural features of local area
networks (LANs) on the reliable multicast protocols has not
been thoroughly studied. Efficient reliable multicast proto-
cols for LANs must exploit these features to achieve the best
performance. In this paper, we study four types of reliable
multicast protocols: the ACK–based protocols, the NAK–
based protocols with polling, the ring–based protocols, and
the tree–based protocols. We evaluate the performance of
the protocols over Ethernet–connected networks, study the
impact of architectural features of the Ethernet on the per-
formance of the protocols, and investigate the methods to
exploit these features to achieve the best performance.

1 Introduction

As microprocessors become more and more powerful,
clusters of workstations have become one of the most com-
mon high performance computing environments. Many
institutions have Ethernet–connected clusters of worksta-
tions that can be used to perform high performance com-
puting. One of the key building blocks for such systems
is the message passing library. Standard message passing
libraries, including MPI [14] and PVM [16], have been
implemented for such systems. Current implementations,

∗This project was supported in part by NSF grants: CCR-9904943 and
CCR-0073482.

such as MPICH[8] and LAM/MPI[19], focus on provid-
ing the functionality, that is, moving data across processors,
and addressing the portability issues. To achieve interoper-
ability, these implementations are built over point-to-point
communication primitives supported by the TCP/IP proto-
col suite. However, studies have shown that current imple-
mentations of message passing libraries are not tailored to
achieve high communication performance over clusters of
workstations[2].

Recent advances in multicasting over the Internet present
new opportunities for improving communication perfor-
mance for clusters of workstations without sacrificing the
functionality and the portability of the message passing li-
braries. The standard IP multicast [6] performs unreliable
multicast over most local area networks (LANs), such as
Ethernets, without extra hardware/software support. In such
systems, efficient reliable multicast primitives can be built
over the unreliable IP multicast. Using reliable multicast
primitives to realize collective communication routines can
greatly improve the communication performance since mul-
ticast reduces both the message traffic over the network and
the CPU processing at the end hosts.

Although many reliable multicast protocols have been
proposed [1, 3, 4, 7, 9, 10, 13, 15, 20, 21, 22], mostly for the
wide area Internet environment, the impacts of architectural
features of LANs on the performance of the protocols have
not been thoroughly studied. To develop efficient reliable
multicast protocols for clusters of workstations, the impli-
cation of running parallel applications over clusters must be
examined and special features of LANs must be considered.

This paper studies the impacts of LAN features on the
reliable multicast protocols. All the major existing re-
liable multicast protocols, including the ACK–based pro-
tocols [20, 15], the NAK–based protocols with polling
[17], the ring–based protocols [3, 21], and the tree–based
protocols[15, 22], are considered. We present our imple-
mentation of the four types of reliable multicast protocols,
evaluate the performance of the protocols over Ethernet–
connected networks, study the impact of architectural fea-
tures of the Ethernet on these protocols, and investigate the

methods to achieve the best multicast performance on Eth-
ernet using these protocols. The protocols are implemented
using the standard UDP interface over IP multicast. The
main contributions of this paper are the following. First, we
study the impacts of Ethernet features on each of the four
types of protocols and identify the conditions to achieve the
best performance for each of the protocols in the Ethernet-
connected network environment. Second, we compare the
four types of protocols and determine the most efficient
multicast schemes for different situations.

The rest of the paper is structured as follows. Section 2
describes the related work. Section 3 presents the protocols
we studied. Section 4 discusses the implementation issues.
Section 5 reports the performance study and Section 6 con-
cludes the paper.

2 Related work

Extensive research has been conducted in the area of re-
liable multicast over the Internet [1, 3, 4, 7, 9, 10, 13, 15, 20,
21, 22]. A summary of recent development of reliable mul-
ticast protocols can be found in [12]. The protocols can be
broadly classified into four types, the ACK–based protocols
[20, 15] where all receivers send positive acknowledgments
for each packet that they receive, the NAK–based protocols
[4, 7, 9, 10, 22] where the receivers monitor the sequence
of packets they receive and send negative acknowledgments
on detection of a gap in the sequence number, the ring-based
protocols [3, 21] where the receivers are organized as a logi-
cal ring and take turns to acknowledge the packets received
to ensure reliability, and the tree–based protocols [15, 22]
where the receivers are organized as subgroups to release
the sender from processing all control messages from all re-
ceivers. This research does not invent new protocols. In-
stead, we investigate the impact of architectural features
of the Ethernet on the performance of the reliable multi-
cast protocols, study how these features affect flow control,
buffer management and retransmission mechanisms in the
reliable multicast protocols, and attempt to determine the
most efficient methods to perform reliable multicast over
the Ethernet.

3 Reliable multicast over the Ethernet

In the general Internet environment, reliable multicast
is difficult for three main reasons. First, providing relia-
bility requires feedback from each of the receivers, which
may overwhelm the sender [5]. Second, maintaining the
membership and enforcing the semantics of reliable mul-
ticast over dynamic multicast groups, where members can
join and leave a group dynamically, is difficult. Third, im-
plementing flow control that is acceptable to all receivers is
complicated by the presence of heterogeneous receivers.

In a homogeneous cluster, some of the issues are no
longer problems. In such a system, all workstations have
the same CPU power and network connection, the receivers
are homogeneous. In addition, communication patterns in
parallel programs change very slowly [18], which indicates
that for most communication patterns in parallel programs,
multicast groups are static and that the group membership
maintenance is not a problem. We will assume in this pa-
per that a multicast group does not change and focus on the
performance issue. Some LAN features that may affect the
reliable multicast protocols are the followings.

• LAN hardware typically supports broadcast, which
means that sending a packet to one receiver costs almost
the same bandwidth as sending a packet to the whole group.
This might affect the retransmission and acknowledgment
strategy in multicast protocols.

• The sender and the receivers are close to each other in
LANs and the propagation delay is small. This might affect
the choice of flow control and buffer management schemes.
For example, since the sender can receive the acknowledg-
ments quickly, large buffers may not be necessary to achieve
good performance.

• In a wired LAN, the transmission error rate is very low.
The retransmission mechanism may not be as critical as that
in the general Internet environment.

This paper studies the impacts of these features. Next,
we will describe the four types of protocols used in the
study, the ACK–based protocols, the NAK–based protocols
with polling, the ring–based protocols, and the tree–based
protocols. Since some of the protocols were designed for
the wide area Internet, we modify the protocols slightly for
the LAN environment.

ACK–based protocols

The ACK–based protocols [7, 15, 20] are extensions of re-
liable unicast protocols. The sender uses multicast to trans-
mit data to the receivers and the receivers unicast acknowl-
edgments (ACKs) or non–acknowledgments (NAKs) to the
sender. Note that like reliable unicast protocols, NAK pack-
ets may speedup the packet retransmission when transmis-
sion errors occur, but are not necessary for the correctness
of the ACK–based protocols. The sender releases the buffer
for a data packet only after positive acknowledgments from
all receivers for that packet are received. Variations in trans-
mission pacing and retransmission exist. For example, re-
transmission can be either sender-driven, where the retrans-
mission timer is managed at the sender, or receiver-driven,
where the retransmission timer is managed at the receivers
[7]. The flow control can either be rate–based or window–
based. The main limitation of the ACK–based protocols is
that the sender must process all acknowledgment packets
from all receivers. This ACK implosion problem limits the

2

scalability of the ACK–based protocols.

NAK–based protocols

The NAK–based protocols [4, 7, 9, 10, 22] avoid the
ACK implosion problem as receivers only send non-
acknowledgments (NAKs) to the sender when a retransmis-
sion is necessary. A retransmission is required when there is
a transmission error, a skip in the sequence numbers of the
packets received, or a timeout. No acknowledgments are
used. Since the sender only receives feedback when pack-
ets are lost, and not when they are delivered, the sender is
unable to ascertain when data can safely be released from
memory. In order to ensure reliability, an infinite buffer
space would be required. Thus, in practice when the buffer
space is limited, an additional mechanism, such as polling
[17], must be incorporated. Since transmission errors rarely
occur, the number of NAKs the sender must process is sig-
nificantly less than the number of ACKs. Thus, the NAK–
based protocols provide better scalability. The limitation,
however, is that other mechanisms must be incorporated
into a NAK–based protocol to offer reliable multicast ser-
vice. Our implementation also incorporates a NAK suppres-
sion scheme to avoid retransmit packets too eagerly. The
sender retransmits a packet only after a designated period
of time has passed since the previous transmission and at
least one NAK is received. Thus, the receivers may send
multiple NAKs to the sender while the sender performs re-
transmission only once.

Ring-based protocols

receivers

sender

1

2

3 4

5

ACK 1, 6, 11, ...

ACK 2, 7, 12, ...

ACK 3, 8, 13, ...

ACK 4, 9, 14, ...

ACK 5, 10, 15, ...

Figure 1. The ring–based protocol

In ring–based protocols [3, 21] , for each packet, only
one designated receiver, called the token site, is responsi-
ble for sending an ACK packet. The ACK packet is also
multicasted to all other receivers. Receivers send NAKs to
the token site to request the retransmissions if they detect
transmission errors. Each receiver will take turns to be the
token site. This rotating token passing scheme enables the
source to know the status of each of the receivers once all
receivers send ACKs. For example, assuming that there are
N receivers organized by node numbers 0, 1, ..., N − 1,
using the ring–based scheme, receiver 0 will ACK packet

0, receiver 1 will ACK packet 1 which implies it has re-
ceived packets 0 and 1 successfully, and so on. After the
sender sends packet N −1 and receives the ACK for packet
N − 1 from receiver N − 1 (and all previous ACKs from
other receivers), it can safely release packet 0 from memory.
Figure 1 depicts a ring–based protocol.

Three modifications were made in our implementation.
First, receivers unicast ACKs to the sender, but not multi-
cast ACKs to other receivers. Each receiver ACKs packets
based on its node number. This modification may delay the
detection of transmission errors. However, it reduces the
computational load at the receivers since receivers do not
have to process all ACKs. More importantly, this modifica-
tion decreases the possibility of out-of-order ACK packets,
which makes the protocol more robust. Second, we mod-
ify the protocol so that all receivers always acknowledge
the last packet of a message. Third, NAKs are sent directly
to the source (not the token site) and the source will per-
form the retransmission. This modification has minor ef-
fects on the source since retransmissions are rare due to the
low transmission error rate.

Tree-based protocols

The tree–based protocols [15, 22] are characterized by di-
viding the receiver set into groups with each group having a
group leader. The sender only interacts with the group lead-
ers while the group leaders interact with their group mem-
bers. In these protocols, the group leaders aggregate the ac-
knowledgments in the group and are responsible for packet
retransmissions within their groups. Tree–based protocols
overcome the ACK implosion problem and reduce the CPU
processing at the sender in comparison to the ACK–based
protocols.

receivers

sender

r2 r4

r7 r8 r10

r13
r16

r1 r1 r3 r5 r6

r9 r11 r12

r16r15r14

(a) A linear tree with H = N (16) (b) A linear tree with H = 3

Figure 2. The linear tree structure

We made two modifications in our implementation.
First, the group leaders only aggregate ACKs, but do not
perform retransmission. The sender is responsible for all
data packet transmissions and retransmissions. This modi-
fication does not significantly affect the computational load
at the sender since the transmission error rate is very low.

3

This modification greatly reduces the implementation com-
plexity. Second, we use a logical structure called a linear
tree to organize the receivers. The logical structure of a lin-
ear tree is determined by two parameters, the number of re-
ceivers, N , and tree height, H . Logically, the receivers are
organized as H rows and N

H
columns as shown in Figure 2.

Notice that the ACK–based protocol is a special case of the
tree–based protocols, a linear tree with H = 1. A receiver
will wait for the acknowledgment for a packet from its suc-
cessor in the same column before it sends the acknowledg-
ment to its predecessor in the same column. Thus, This log-
ical structure limits the maximum number of simultaneous
transmissions to be N

H
.

Each type of protocols has its own advantages and limi-
tations. Table 1 summarizes the protocols.

Table 1. Comparison of the protocols

network memory CPU protocol
protocol traffic req. req. complexity

ACK high low high low
NAK low high low low
Ring low high low high
Tree high low low high

4 Implementation issues

We implement the four protocols over IP multicast using
the UDP interface in the Linux operating system. The pro-
tocols are executed as user processes. All protocols use a
window based flow control scheme and maintain a timer at
the sender side to implement the sender–driven error con-
trol mechanism. Due to the space limitation, we will omit
the discussion of the implementation issues. More details
about the implementations can be found in [11].

5 Performance

Ethernet
Switch

Ethernet
Switch

P1

P15

P16

P17

P18

P30

P2

P0

Figure 3. Network configuration

The performance of the protocols is evaluated in a clus-
ter with 31 Pentium III–650MHz processors. Each machine

has 128MB memory and 100Mbps Ethernet connection via
a 3Com 3C905 PCI EtherLink Card. All machines run Red-
Hat Linux version 6.2, with 2.2.16 kernel. The machines
are connected by two 3Com SuperStack II baseline 10/100
Ethernet switches as shown in Figure 3. In the figure, P0

is the sender and all others are receivers. To obtain accu-
rate experimental results, we measure the communication
time three times for each experiment and report the aver-
age of the three measurements. Since transmission errors
rarely occur in the experiments (among around 150 to 200
experiments, retransmissions only occur 1 to 2 times), all
the results reported are the cases without retransmission.

ACK–based protocols

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
d)

Window size

packet size = 500B
packet size = 1300B
packet size = 3125B
packet size = 6250B

packet size = 50000B

Figure 4. ACK–based protocols with different
packet sizes and window sizes

Figure 4 shows the performance of the ACK–based pro-
tocols with different packet sizes and different window
sizes. This experiment is done with 30 receivers receiving
500KB data. Notice that the total amount of buffer memory
is equal to packet size times window size. The performance
of the ACK–based protocol is very sensitive to the packet
size, the larger the packet size, the better the performance.
A large packet size reduces the number of acknowledg-
ments that the receivers send, which reduces both the net-
work traffic and the CPU processing in the sender. Another
interesting observation is that for any given packet size, the
best performance can be achieved with a window size of 2.
The ACK–based protocols cannot exploit the pipeline com-
munication and make use of large buffers since data packets
are competing with acknowledgment packets for the same
network resources and since the round trip delay is small in
the Ethernet.

Figure 5 shows the scalability of the protocol. The ex-
periment is done with a maximum packet size of 50KB

and thus, when the message size is less than 50KB, only
one (UDP) data packet is sent. When the message size is
small (< 4KB), the protocol is not scalable as the commu-
nication time increases almost linearly with the number of

4

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

0 5 10 15 20 25 30

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
d)

Number of receivers

size = 1
size = 256

size = 4096

(a) Small message sizes

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
d)

Number of receivers

size = 8K
size = 64K

size = 500K

(b) Large message sizes

Figure 5. Scalability of ACK–based protocols

receivers as shown in Figure 5 (a). This is because the to-
tal number of messages increases linearly as the number of
receivers increases. Figure 5 (b) shows this case when the
message size is large (> 8KB). In this case, the acknowl-
edgment overhead is negligible and the protocol is scalable.
Similar results are obtained for the other three protocols.

NAK–based protocols

The performance of NAK–based protocols with polling is
greatly affected by the timing of the polling. Due to the
space limitation, we omit the results for the study of the tim-
ing of polling. The results can be found in [11]. Our main
conclusion from the study is that when the polling interval
is about 80% to 90% of the window size, the NAK–based
protocols perform the best. In the rest of the experiments,
we will assume that the polling interval is set in this range.

Figure 6 shows the performance of the NAK–based pro-
tocols with different packet sizes and different buffer sizes.
This experiment is done with 30 receivers receiving 500KB
data. The window size can be determined by dividing the
buffer size by the packet size. The results show that both
a small packet size (500B) and a large packet size (50KB)

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

50000 200000 400000 500000

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
d)

Buffer size

packet size = 500B
packet size = 8000B

packet size = 50000B

Figure 6. NAK–based protocols with polling
for different buffer sizes

result in poor performance. A medium packet size (8KB)
achieves the best performance. In the NAK–based protocol,
the sender does not need to wait for and process the ACK
packets. Thus, a balance between the data packet transmis-
sion time and the data packet processing time (copying data
from the user domain into the buffer and other processing)
in the sender is the key to maintain efficient pipeline com-
munication and to fully utilize the system resources. Such
balance is achieved with a packet size of around 8KB in our
experiment. This figure also shows that for a given buffer
size, the NAK–based protocols require a large window size
to achieve good performance. For example, when buffer
size = 50K, a packet size of 500B (window size = 100)
performs better than a packet size of 50KB (window size
= 1). A final observation is that the performance of the
protocol is not strictly increasing or decreasing relative to
the packet size, which indicates that the performance of the
NAK–based protocols depends on a number of factors, in-
cluding the buffer size, the packet size, and the poll interval.

Ring–based protocols

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10000 20000 50000

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
d)

Packet size

Message size = 2MB

Figure 7. Ring–based protocols with different
packet sizes

5

Figure 7 shows the performance of the ring–based pro-
tocols with different packet sizes. The experiment was con-
ducted by sending a 2MB message to 30 receivers. The
window size was 35. As can be seen from the figure, simi-
lar to the NAK–based protocols, both a large packet size and
a small packet size result in poor performance. The best re-
sults were obtained when the packet size was between 5KB

and 10KB. The ring–based protocols are similar to the
NAK–based protocols and similar arguments for the NAK–
based protocols can also apply to this experiment.

Figure 8 shows the performance of the protocol with dif-
ferent window sizes. The experiment was performed by
sending 2MB of data to 30 receivers. As can be seen
in the figure, the window size that achieves the best per-
formance is related to the size of the packets. The ring–
based protocols require the window size to be at least one
more than the number of receivers. For a reasonable packet
size, such as 8KB, when the number of receivers is suf-
ficiently large, this minimum window size requirement is
typically sufficient to give good performance. Notice that
like in the NAK–based protocols, the sender in the ring–
based protocols only processes a small number of acknowl-
edge packets, which allows the pipeline communication to
be exploited with a large window size.

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

40 50 60 70 80 90 100

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
d)

Window size

packet size = 1000B
packet size = 8000B

packet size = 20000B

Figure 8. Ring–based protocols with different
window sizes

Tree–based protocols

Figure 9 shows the performance of different trees when
transferring 500KB data to 30 receivers with packet sizes
of 50KB and 8KB and with sufficiently large window size
(20). As can be seen from the figure, the two extreme cases
(H = 1 and H = 30) do not produce the best communi-
cation performance for either packet size. The performance
of the tree–based protocols depends on both the tree struc-
ture and the packet size. For example, when packet size
= 8KB, the tree structure with H = 15 results in the best
performance. When packet size = 50KB, the tree struc-
ture with H = 6 performs the best. In all cases except

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0 5 10 15 20 25 30

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
d)

Height of the tree

packet size = 50KB
packet size = 8KB

Figure 9. Tree–based protocols for different
logical structures

H = 1, using an 8KB packet size performs better than us-
ing a 50KB packet size. Small packets help in creating the
pipeline communication, which results in better communi-
cation performance. Although using small packets requires
more acknowledgments, the sender only processes the ag-
gregated acknowledgments. The accumulated effect is that
using 8KB packets performs better than using 50KB pack-
ets for most cases.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14 16 18 20

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
d)

Window size

Height = 1
Height = 2
Height = 6
Height =30

Figure 10. Tree–based protocols for different
window sizes

Figure 10 shows the relation between the logical tree
structure and the memory requirement. This experiment
transfers 500KB data to 30 receivers with a packet size of
8KB. Essentially, when the tree grows higher, more buffers
are necessary for the protocols to achieve the best perfor-
mance. For example, when the tree height is 30, we need
buffers for about 10 packets in the window for the protocol
to achieve close to the best performance in comparison to
buffers for just 2 packets in the ACK–based protocols. An-
other conclusion from this experiment is that the tree–based
protocol can offer better communication performance than
the simple ACK–based protocol when the message is large.
As shown in the figure, the ACK–based protocol (H = 1)
performs worse than other tree protocols with a sufficiently

6

large window size. Two factors contribute to the perfor-
mance gains. First, the tree–based protocol reduces the
load on the sender which is the bottleneck in the multicast
communication. Second, tree–based protocols allow more
pipeline communication as the round-trip delay becomes
larger. While the second factor may allow the tree–based
protocol to out–perform the ACK–based protocol for large
messages, it might hurt the performance when the message
size is small. This is demonstrated in the next experiment.

0

0.002

0.004

0.006

0.008

0.01

0.012

0 5 10 15 20 25 30

C
om

m
un

ic
at

io
n

tim
e

(s
ec

on
d)

Tree Height

size = 1B
size = 256B
size = 8KB

Figure 11. Tree–based protocols for small
messages

Figure 11 shows the performance of different trees when
the message size is small. As shown in the figure, when the
tree height is small (< 6), all the protocols have similar per-
formance, however, when the tree height is larger (≥ 15)
the delay for transferring the small message increases dra-
matically. This is mainly due to the relay of the messages
at the user level. These results indicate that the tree-based
protocols are not efficient for small messages compared to
the ACK–based protocol.

Comparison of the protocols

For small messages that can be transferred in one packet,
the ACK–based protocols, the NAK–based protocols with
polling, and the ring–based protocols are the same. All
these protocols perform better than the tree–based proto-
cols as shown in Figure 11. This is because the tree–based
protocols relay ACK packets while the other protocols do
not.

Table 2 summarizes the results for large messages. This
experiment compares the “best” protocol in each type for
transferring 2MB data to 30 receivers. The “best” protocol
is obtained by probing the parameter space for each type of
protocols and selecting the ones that can provide the best
performance. Specifically, the ACK–based protocol used a
packet size of 50KB with a window size of 5; the NAK–
based protocol with polling had a packet size of 8KB, a
window size of 50 (a buffer size of 400KB), and a poll
interval of 43; the ring–based protocol also had an 8KB

Table 2. Throughput for large messages

Protocol Throughput
ACK-based 68.0Mbps
NAK-based 89.7Mbps
Ring-based 84.6Mbps

Tree-based (H = 6) 77.3Mbps
Tree-based (H = 15) 81.2Mbps

packet size and a window size of 50; the tree–based proto-
cols of different heights (H = 6 and H = 15) used a packet
size of 8KB and a window size of 20. For large messages,
the performance of the protocols is ordered as follows:

NAK–based ≥ ring–based ≥ tree–based ≥ ACK–based
The NAK–based protocol with polling is able to achieve the
best performance since it requires the least CPU processing
at the sender. The ring–based protocol also achieves high
performance due to the fact that it only processes one ACK
for each packet. The tree–based protocol out–performs the
ACK–based protocol since it reduces the CPU load at the
sender and allows more pipeline communication. However,
The overhead of relaying messages prevents the protocol
from achieving the throughput of the NAK–based protocols.
The ACK–based protocol exhibits extremely poor perfor-
mance due to the ACK implosion problem.

6 Conclusion

In this paper, we evaluated the performance of four
types of reliable multicast protocols, the ACK–based proto-
cols, the NAK–based protocols with polling, the ring–based
protocols, and the tree–based protocols, over Ethernet–
connected networks and studied the impact of some features
of the Ethernet on the protocols. The main conclusions we
obtained for reliable multicast over Ethernet–connected net-
works are the following.

• ACK–based protocols. First, the window–based flow
control mechanism is not effective. In the studies, the
ACK–based protocols only require buffers for two packets
to achieve the best performance for any given packet size.
Second, the performance of ACK–based protocols is quite
sensitive to the packet size. The larger the packet size, the
better the performance.

• NAK–based protocols with polling. First, the pack-
ets size must be carefully selected to achieve good perfor-
mance. Second, a large window size is necessary to achieve
good performance. Third, the polling interval plays an im-
portant role in the performance of the NAK–based proto-
cols.

• Ring–based protocols. The ring–based protocols are
somewhat similar to the NAK–based protocols: they require

7

a large window size and a carefully selected packet size to
perform well.

• Tree–based protocols. First, a large window size is
necessary for the tree–based protocols to achieve good per-
formance. The window size depends on a number of factors
including the packet size and the tree structure. Second, the
optimum packet size for tree–based protocols depends on
many factors including the logical tree structure.

• Comparison of the protocols. For small messages,
the ACK–based, NAK–based with polling, and ring–based
protocols have the same behavior. All of these protocols
perform better than the tree–based protocols. For large mes-
sages, the performance of the protocols is ordered as fol-
lows:

NAK–based ≥ ring–based ≥ tree–based ≥ ACK–based
Based on the study in the paper, we conclude that the NAK–
based protocol is the most efficient reliable multicast proto-
col for Ethernet-connected clusters.

References

[1] M. P. Barcellos and P.D. Ezhilchelvan, “An End-to-End Re-
liable Multicast Protocol Using Polling for Scalability”, Pro-
ceedings of IEEE INFOCOM’98, pages 1180–1187, March
1998.

[2] P.H. Carns, W.B. Ligon III, S. P. McMillan and R.B. Ross,
“An Evaluation of Message Passing Implementations on
Beowulf Workstations”, Proceedings of the 1999 IEEE
Aerospace Conference, March, 1999.

[3] J-M, Chang and N.F. Maxemchuk, “Reliable Broadcast
Protocols”, ACM Transactions on Computing Systems,
2(3):251-273, 1984.

[4] J. Crowcroft and K. Paliwoda, “A Multicast Transport Pro-
tocol”, in Proceedings of ACM SIGCOMM’88, 1988.

[5] P. Danzig, “Flow Control for Limited Buffer Multicast,”
IEEE Transactions on Software Engineering, 20(1-12), Jan-
uary 1994.

[6] S. Deering, “Multicast Routing in Internetworks and Ex-
tended LANs”, ACM SIGCOMM Computer Communication
Review, 1995

[7] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne and L. Zhang,
“A Reliable Multicast Framework for Light-weight Sessions
and Application Level Framing” IEEE/ACM Transactions
on Networking, Dec., 1997.

[8] William Gropp, E. Lusk, N. Doss and A. Skjellum, “A High-
Performance, Portable Implementation of the MPI Message
Passing Interface Standard”, MPI Developers Conference,
1995.

[9] H.W. Holbrook, S. K. Singhal, and D. R. Cheriton, “Log–
based receiver-reliable multicast for distributed interactive

simulation,” proceedings of SIGCOMM’95, Cambridge,
MA, 1995.

[10] A. Koifman and s. Zabele, “RAMP: A Reliable Adap-
tive Multicast Protocol,” Proceedings of IEEE INFOCOM,
pp1442–1451, March 1996.

[11] R. Lane, S. Daniels and X. Yuan, “An Empirical Study of
Reliable Multicast Protocols over Ethernet–Connected Net-
works.” TR-010503, Technical Report, CSD, Florida State
University, May 2001.

[12] B. N. Levine and J.J. Garcia-Luna-Aceves “A Compari-
son of Reliable Multicast Protocols.” Multimedia Systems,
6:334–348, 1998.

[13] P.K. Mckinley, R. T. Rao and R. F. Wright, “H-RMC: A
Hybrid Reliable Multicast Protocol for the Linux Kernel”,
Proceedings of IEEE SC99: High Performance Networking
and Computing, Nov. 1999.

[14] The MPI Forum, The MPI-2: Extensions to the Mes-
sage Passing Interface. http://www.mpi-forum.org/docs/mpi-
20-html/mpi2-report.html, July, 1997.

[15] S. Paul, K. K. Sabnani, J.C. Lin and S. Bhattacharyya, “Reli-
able Multicast Transport Protocol RMTP”, IEEE Journal on
Selected Areas in Communications, vol. 15, pages 407–421,
April 1997.

[16] R. Manchek, “Design and Implementation of PVM version
3.0”, Technique report, University of Tennessee, Knoxville,
1994.

[17] S. Ramakrishnan, B. N. Jain “A Negative Acknowledgement
with Periodic Polling Protocol for Multicast over LAN”,
IEEE INFOCOM, April 1997.

[18] C. Salisbury, Z. Chen and R. Melhem, “Modeling Commu-
nication Locality in Multiprocessors”, The Journal of Par-
allel and Distributed Computing, vol 56, no 2, pp. 71-98,
1999.

[19] J.M. Squyres, A. Lumsdaine, W.L. George, J.G. Hagedorn
and J.E. Devaney “The Interoperable Message Passing In-
terface (IMPI) Extensions to LAM/MPI” MPI Developer’s
Conference, Ithica, NY, 2000.

[20] R. Talpade and M.H. Ammar, “Single Connection Emula-
tion (SCE): An Architecture for Providing a Reliable Mul-
ticast Transport Service,” Proceedings of the IEEE Interna-
tional Conference on Distributed Computing Systems, Van-
couver, Canada, June 1995.

[21] B. Whetten, S. Kaplan, T. Montgomery, “A High Perfor-
mance Totally Ordered Multicast Protocol,” Proceedings of
INFOCOM’95, 1995.

[22] R. Yavatkar, J. Griffioen and M. Sudan, “A Reliable Dissem-
ination Protocol for Interactive Collaborative Applications,”
Proceedings of the ACM Multimedia’95, November 1995.

8

