
Using a Swap Instruction

to Coalesce Loads and Stores

Apan Qasem, David Whalley, Xin Yuan, and Robert van Engelen

Department of Computer Science, Florida State University
Tallahassee, FL 32306-4530, U.S.A.

e-mail: {qasem,whalley,xyuan,engelen}@cs.fsu.edu, phone: (850) 644-3506

Abstract. A swap instruction, which exchanges a value in memory with
a value of a register, is available on many architectures. The primary ap-
plication of a swap instruction has been for process synchronization. In
this paper we show that a swap instruction can often be used to coalesce
loads and stores in a variety of applications. We describe the analysis
necessary to detect opportunities to exploit a swap and the transforma-
tion required to coalesce a load and a store into a swap instruction. The
results show that both the number of accesses to the memory system
(data cache) and the number of executed instructions are reduced. In
addition, the transformation reduces the register pressure by one regis-
ter at the point the swap instruction is used, which sometimes enables
other code-improving transformations to be performed.

1 INTRODUCTION

An instruction that exchanges a value in memory with a value in a register
has been used on a variety of machines. The primary purpose for these swap

instructions is to provide an atomic operation for reading from and writing
to memory, which has been used to construct mutual-exclusion mechanisms in
software for process synchronization. In fact, there are other forms of hardware
instructions that have been used to support mutual exclusion, which include the
classic test-and-set instruction. In this paper we show that a swap instruction
can also be used by a low-level code-improving transformation to coalesce loads
and stores into a single instruction.

A swap instruction exchanges a value in memory with a value in a register.
This is illustrated in Figure 1, which depicts a load instruction, a store instruc-
tion, and a swap instruction using an RTL (register transfer list) notation. Each
assignment in an RTL represents an effect on the machine. The list of effects
within a single RTL are accomplished in parallel. Thus, the swap instruction is
essentially a load and store accomplished in parallel.

A swap instruction can be efficiently integrated into a conventional RISC
architecture. First, it can be encoded using the same format as a load or a store
since all three instructions reference a register and a memory address. Only
additional opcodes are required to support the encoding of a swap instruction.

(b) Store Instruction (c) Swap Instruction(a) Load Instruction

r[2] = M[x]; M[x] = r[2]; r[2] = M[x]; M[x] = r[2];

Fig. 1. Constrasting the Effects of Load, Store, and Swap Instructions

Second, access to a data cache can be performed efficiently for a swap instruc-
tion on most RISC machines. A direct-mapped data cache can send the value
to be loaded from memory to the processor for a load or a swap instruction in
parallel with the tag check. This value will not be used by the processor if a tag
mismatch is later discovered [1]. A data cache is not updated with the value to be
stored by a store or a swap instruction until after the tag check [1]. Thus, a swap
instruction could be performed as efficiently as a store instruction on a machine
with a direct-mapped data cache. In fact, a swap instruction requires the same
number of cycles in the pipeline as a store instruction on the MicroSPARC I [2].
One should note that a swap instruction will likely perform less efficiently when
it used for process synchronization on a multiprocessor machine since it requires
a signal over the bus to prevent other accesses to memory.

Finally, it is possible that a main memory access could also be performed
efficiently for a swap instruction. Reads to DRAM are destructive, meaning that
the value read must be written back afterwards. A DRAM organization could
be constructed where the value that is written back could differ from the value
that was read and sent to the processor. Thus, a load and a store to a single
word of main memory could occur in one main memory access cycle.

The remainder of this paper has the following organization. First, we intro-
duce related work that allows multiple accesses to memory to occur simultane-
ously. Second, we describe a variety of different opportunities for exploiting a
swap instruction that commonly appear in applications. Third, we present an
algorithm to detect and coalesce a load and store pair into a swap instruction
and discuss issues related to implementing this code-improving transformation.
Fourth, we present the results of applying the code-improving transformation on
a variety of applications. Finally, we present the conclusions of the paper.

2 RELATED WORK

There has been some related work that allows multiple accesses to the memory
system to occur in a single cycle. Superscalar and VLIW machines have been
developed where a wider datapath between the data cache and the processor has
been used to allow multiple simultaneous accesses to the data cache. Likewise, a
wider datapath has been implemented between the data cache and main memory
to allow multiple simultaneous accesses to main memory through the use of
memory banks. A significant amount of compiler research has been spent on
trying to schedule instructions so that multiple independent memory accesses to
different banks can be performed simultaneously [3].

2

Memory access coalescing is a code-improving transformation that groups
multiple memory references to consecutive memory locations into a single larger
memory reference. This transformation was accomplished by recognizing a con-
tiguous access pattern for a memory reference across iterations of a loop, un-
rolling the loop, and rescheduling instructions so that multiple loads or stores
could be coalesced [4].

Direct hardware support of multiple simultaneous memory accesses in the
form of superscalar or VLIW architectures requires that these simultaneous
memory accesses be independent in that they access different memory loca-
tions. Likewise, memory access coalescing requires that the coalesced loads or
stores access contiguous (and different) memory locations. In contrast, the use
of a swap instruction allows a store and a load to the same memory location
to be coalesced together and performed simultaneously. In a manner similar to
the memory access coalescing transformation, a load and a store are coalesced
together and explicitly represented in a single instruction.

3 OPPORTUNITIES FOR EXPLOITING THE SWAP

INSTRUCTION

A swap instruction can potentially be exploited when a load is followed by a
store to the same memory address and the value stored is not computed using
the value that was loaded. We investigated how often this situation occurs and
we have found many direct opportunities in a number of applications. Consider
the following code segment in Figure 2 from an application that uses polynomial
approximation from Chebyshev coefficients [5]. There is first a load of the d[k]

array element followed by a store to the same element, where the store does
not use the value that was loaded. We have found comparable code segments
containing such a load followed by a store in other diverse applications, such as
Gauss-Jordan elimination [5] and tree traversals [6].

...

sv = d[k];
d[k] = 2.0*d[k-1] - dd[k];

...

Fig. 2. Code Segment in Polynomial Approximation from Chebyshev

Coefficients

A more common operation where a swap instruction can be exploited is
when the values of two variables are exchanged. Consider Figure 3(a), which
depicts the exchange of the values in x and y at the source code level. Figure
3(b) indicates that the load and store of x can be coalesced together. Likewise,
Figure 3(c) indicates that the load and store of y can also be coalesced together.

3

However, we will discover in the next section that only a single pair of load and
store instructions in an exchange of values between variables can be coalesced
together.

(a) Exchange of Values

Source Code Level
in x and y at the

t = x;
x = y;
y = t;

(b) The Load and Store

Coalesced Together
of x Can Be

t = ;
 = y;
y = t;

(c) The Load and Store

Coalesced Together
of y Can Be

t = x;

 = t;
x = ;y
y

x
x

Fig. 3. Example of Exchanging the Values of Two Variables

There are numerous applications where the values of two variables are ex-
changed. Various sorts of an array or list of values are obvious applications in
which a swap instruction could be exploited. Some other applications requiring
an explicit exchange of values between two variables include transposing a ma-
trix, the traveling salesperson problem, solving linear algebraic equations, fast
fourier transforms, and the integration of differential equations. The above list
is only a small subset of the applications that require this basic operation.

There are also opportunities for exploiting a swap instruction after other
code-improving transformations have been performed. Consider the code seg-
ment in Figure 4(a) from an application that uses polynomial approximation
from Chebyshev coefficients [5]. It would appear in this code segment that there
is no opportunity for exploiting a swap instruction. However, consider the body
of the loop executed across two iterations, which is shown in Figure 4(b) after
unrolling the loop by a factor of two. For simplicity, we are assuming in this
example that the original loop iterated an even number of times. Now the value
loaded from d[j-1] in the first assignment statement in the loop is updated
in the second assignment statement and the value computed in the first assign-
ment is not used to compute the value stored in the second assignment. We
have found opportunities for exploiting a swap instruction across loop iterations
by loop unrolling in a number of applications, which includes linear prediction,
interpolation and extrapolation, and solution of linear algebraic equations.

 d[j] = d[j-1]-dd[j];

(a) Original Loop

for (j = n-1; j > 1; j--)
}
 = d[j-2]-dd[j];d[j-1]
 d[j] = -dd[j];d[j-1]
for (j = n-1; j > 1; j -= 2) {

(b) Loop after Unrolling

Fig. 4. Example of Unrolling a Loop to Provide an Opportunity to Exploit a Swap
Instruction

4

Equation 1 indicates the number of memory references saved for each load
and store pair that can be coalesced across loop iterations. In other words,
one memory reference is saved each time the loop is unrolled twice. Of course,
loop unrolling has additional benefits, such as reduced loop overhead and better
opportunities for scheduling instructions.

Memory References Saved = b
loop unroll factor

2
c (1)

Finally, we have also discovered opportunities for speculatively exploiting a
swap instruction across basic blocks. Consider the code segment in Figure 5,
which assigns values to an image according to a specified threshold [7]. p[i][j]
is loaded in one block and a value is assigned to p[i][j] in both of its successor
blocks. The load of p[i][j] and the store from the assignment to p[i][j] in
the then or else portions of the if statement can be coalesced into a swap
instruction since the value loaded is not used to compute the value stored. The
store operation can be speculatively performed as part of a swap instruction
in the block containing the load. We have found that stores can be performed
speculatively in a number of other image processing applications, which include
clipping and arithmetic operations.

 for (i = 0; i < m; i++) {
for (i = 0; i < n; i++)

 else

 }

 if <= t)
 = 1;

 = 0;

p[i][j]
p[i][j]

p[i][j]

Fig. 5. Speculative Use of a Swap Instruction

4 A CODE-IMPROVING TRANSFORMATION TO

EXPLOIT THE SWAP INSTRUCTION

Figure 6(a) illustrates the general form of a load followed by a store that can
be coalesced. The memory reference is to the same variable or location and the
register loaded (r[a]) and register stored (r[b]) differ. Figure 6(b) depicts the
swap instruction that represents the coalesced load and store. Note that the
register loaded has been renamed from r[a] to r[b]. This renaming is required
since the swap instruction has to store from and load into the same register.

Figure 7(a), like Figure 3(a), shows an exchange of the values of two vari-
ables, x and y, at the source code level. Figure 7(b) shows similar code at the
SPARC machine code level, which is represented in RTLs. The variable t has
been allocated to register r[1]. Register r[2] is used to hold the temporary
value loaded from y and stored in x. At this point a swap could be used to

5

(a) Load Followed by a Store (b) Coalesced Load and Store

...
r[a] = M[v];

M[v] = r[b]; r[b] = M[v]; M[v] = r[b];

Fig. 6. Simple Example of Coalescing a Load and Store into a Swap Instruction

coalesce the load and store of x or the load and store of y. Figure 7(c) shows the
RTLs after coalescing the load and store of x. One should note that r[1] is no
longer used since its live range has been renamed to r[2]. Due to the renaming
of the register, the register pressure at this point in the program flow graph has
been reduced by one. Reducing the register pressure can sometimes enable other
code-improving transformations that require an available register to be applied.
Note that the decision to coalesce the load and store of x prevents the coalescing
of the load and store of y.

M[x] = r[2]; r[2] = M[x];

(c) After Coalescing the
Load and Store of x

r[2] = M[y];

M[y] = r[2];

(a) Exchange of Values (b) Exchange of Values

Machine Code LevelSource Code Level
in x and y at the in x and y at the

t = x;
x = y;
y = t;

r[1] = M[x];
r[2] = M[y];
M[x] = r[2];
M[y] = r[1];

Fig. 7. Example of Exchanging the Values of Two Variables

The code-improving transformation to coalesce a load and a store into a
swap instruction was accomplished using the algorithm in Figure 8. The algo-
rithm finds a load followed by a store to the same address and coalesces the
two memory references together into a single swap instruction if a variety of
conditions are met. These conditions include: (1) the load and store must be
within the same block or consecutively executed blocks, (2) the addresses of the
memory references in the load and store instructions have to be the same, (3)
the value in r[b] that will be stored cannot depend on the value loaded into
r[a], (4) the value in r[b] cannot be used after the store instruction, and (5)
r[a] has to be able to be renamed to r[b]. The following subsections describe
issues relating to this code-improving transformation.

6

FOR B = each block in function DO
FOR LD = each instruction in B DO

IF LD is a load AND Find Matching Store(LD, B, LD− >next, ST, P)
AND Meet Swap Conds(LD, ST) THEN
SW = Create(”%s=M[%s];M[%s]=%s;”,ST− >r[b], LD− >load addr,

LD− >load addr, ST− >r[b]);
Insert SW before P;
Replace uses of L− >r[a] with S− >r[b] until L− >r[a] dies;
Delete LD and ST;

BOOL Find Matching Store(LD, B, FIRST, ST, P) {
FOR ST = FIRST to B− >last DO

IF ST is a store THEN
IF ST− >store addr == LD− >load addr THEN

If FIRST == B− >first THEN
RETURN TRUE;

ELSE
RETURN Find Place To Insert Swap(LD, ST, P);

IF ST− >store addr != LD− >load addr THEN
CONTINUE;

IF cannot determine if the two addresses are same or different THEN
RETURN FALSE;

IF FIRST == B− >first THEN
RETURN FALSE;

FOR S = each successor of B DO
IF !Find Matching Store(LD, S, S− >first, ST, P) THEN

RETURN FALSE;
FOR S = each successor of B DO

IF Find Place To Insert Swap(LD, ST, P) THEN
RETURN TRUE;

RETURN FALSE;
}

BOOL Meet Swap Conds(LD, ST){
RETURN (value in ST− >r[b] is guaranteed to not depend on the value in LD− >r[a])

AND (ST− >r[b] dies at the store)
AND ((ST− >r[b] is not reset before LD− >r[a] dies)
OR (other live range of S− >r[b] can be renamed to use another register));

}

BOOL Find Place To Insert Swap(LD, ST, P){
IF LD− >r[a] is not used between LD and ST THEN

P = ST;
RETURN TRUE;

IF ST− >r[b] is not referenced between LD and ST THEN
P = LD− >next;
RETURN TRUE;

IF first use of LD− >r[a] after LD comes after the last reference to ST− >r[b]
before the store THEN
P = instruction containing first use of LD− >r[a] after LD;
RETURN TRUE;

IF first use of LD− >r[a] after LD can be moved after the last reference
to ST− >r[b] before the store THEN
Move instructions as needed;
P = instruction containing first use of LD− >r[a] after LD;
RETURN TRUE;

ELSE
RETURN FALSE;

}

Fig. 8. Algorithm for Coalescing a Load and a Store into a Swap Instruction

7

4.1 Performing the Code-Improving Transformation Late in the

Compilation Process

Sometimes apparent opportunities at the source code level for exploiting a
swap instruction are not available after other code-improving transformations
have been applied. Many code-improving transformations either eliminate mem-
ory references (e.g. register allocation) or move memory references (e.g. loop-
invariant code motion). Coalescing loads and stores into swap instructions should
only be performed after all other code-improving transformations that can af-
fect the memory references have been applied. Figure 9(a) shows an exchange of
values after the two values are compared in an if statement. Figure 9(b) shows
a possible translation of this code segment to machine instructions. Due to com-
mon subexpression elimination, the loads of x and y in the block following the
branch have been deleted in Figure 9(c). Thus, the swap instruction cannot be
exploited within that block. This example illustrates why the swap instruction
should be performed late in the compilation process when the actual loads and
stores that will remain in the generated code are known.

(c) Loads Are Deleted in
the Exchange of Values Due to

Common Subexpression Elimination

r[1] = M[x];
r[2] = M[y];
IC = r[1] ? r[2];
PC = IC <= 0, L5;
M[x] = r[2];
M[y] = r[1];

(a) Exchange of Values (b) Loads are Initially

M[y] = r[1];
M[x] = r[2];

PC = IC <= 0, L5;
IC = r[1] ? r[2];
r[2] = M[y];
r[1] = M[x];

Source Code Level
Performed in the Exchange

 y = t;
}

in x and y at the
of Values of x and y

if (x > y) {
 t = x;
 x = y;

Br[1] = M[x];
Br[2] = M[y];

Fig. 9. Example Depicting Why the Swap Instruction Should Be Exploited as a Low-
Level Code-Improving Transformation

4.2 Ensuring Memory Addresses Are Equivalent Or Are Different

One of the requirements for a load and store to be coalesced is that the load and
store must refer to the same address. Figure 10(a) shows a load using the ad-

8

dress in register r[2] and a store using the address in r[4]. The compiler must
ensure that the value in r[2] is the same as that in r[4]. This process of check-
ing that two addresses are equivalent is complicated due to the code-improving
transformation being performed late in the compilation process. Common subex-
pression elimination and loop-invariant code motion may move the assignments
of addresses to registers far from where they are actually dereferenced.

(b) Load and Store to the Same(a) Same Addresses after
Expanding the Expressions Variable with an Intervening Store

r[2] = r[3] << 2;
r[2] = r[2] + _a;
r[5] = M[r[2]];
...
r[4] = r[3] << 2;
r[4] = r[4] + _a;
M[r[4]] = r[6]; M[v] = r[b];

...
M[r[c]] = r[d];
...
r[a] = M[v];

Fig. 10. Examples of Detecting If Memory Addresses Are the Same or Differ

We implemented some techniques to determine if the addresses of two mem-
ory references were the same or if they differ. Addresses to memory were ex-
panded by searching backwards for assignments to registers in the address until
all registers are replaced or the beginning of a block with multiple predecessors
is encountered. For instance, the address in the memory reference being loaded
in Figure 10(a) is expanded as follows:

r[2] => r[2] + a => (r[3] << 2) + a

The address in the memory reference being stored would be expanded in a similar
manner. Once the addresses of two memory references have been expanded, then
they are compared to determine if they differ. If the expanded addresses are
syntatically equalivalent, then the compiler has ensured that they refer to the
same address in memory.

We also associated the expanded addresses with memory references before
code-improving transformations involving code motion were applied. The com-
piler tracked these expanded addresses with the memory references through a
variety of code-improving transformations that would move the location of the
memory references. Determining the expanded addresses early simplified the
process of calculating addresses associated with memory references.

Another requirement for a load and a store to be coalesced is that there are
no other possible intervening stores to the same address. Figure 10(b) shows a
load of a variable v followed by a store to the same variable with an intervening
store. The compiler must ensure that the value in r[c] is not the address of
the variable v. However, simply checking that two expanded addresses are not
identical does not suffice to determine if they refer to differ locations in memory.

9

Various rules were used to determine if two addresses differed. Table 1 depicts
some of these rules that were used.

Num Rule Example
First Address Second Address

The addresses are to differ-
1 ent classes (local variables,

arguments, static variables,
and global variables.

M[a] M[r[30]+x]

Both addresses are to the
2 same class and their name

differs.
M[a] M[b]

One address is to a variable
3 that has never had its ad-

dress taken and the second
address is not to the same
variable.

M[r[14]+v] M[r[7]]

The addresses are the same,
4 except for different constant

offsets.
M[(r[3] << 2) + a] M[(r[3] << 2) + a+4]

Table 1. A Subset of the Rules Used for Memory Disambiguation

4.3 Finding a Location to Place the Swap Instruction

Another condition that has to be met for a load and a store to be coalesced
into a swap instruction is that the instruction containing the first use of register
assigned by the load has to occur after the last reference to the register to be
stored. For example, consider the example in Figure 11(a). A use of r[a] appears
after the last reference to r[b] before the store instruction, which prevents the
load and store from being coalesced. Figure 11(b) shows that the compiler is
sometimes able to reschedule the instructions between the load and the store to
meet this condition. Now the load and the store can be moved where the load
appears immediately before the store, as shown in Figure 11(c). Once the load
and store are contiguous, the two instructions can be coalesced. Figure 11(d)
shows the code sequence after the load and store has been deleted, the swap
instruction inserted, and r[a] has been renamed to r[b].

4.4 Renaming Registers to Allow the Swap Instruction to Be

Exploited

We encountered another complication due to coalescing loads and stores into
swap instructions late in the compilation process. Pseudo registers, which con-
tain temporary values, have already been assigned to hardware registers when
the coalescing transformation is attempted. The compiler reuses hardware reg-
isters when assigning pseudo registers to hardware registers in an attempt to
minimize the number of hardware registers used. Our implementation of the
code-improving transformation sometimes renamed live ranges of registers to

10

(d) After Coalescing the Load
and Store and Renaming

r[a] to Be r[b]

(c) Load and Store
Can Now Be

Made Contiguous

...

...

...

r[a] = M[v];
M[v] = r[b];
... = ... r[a] ...;
...

... = ... r[b] ...;
... = ... r[b] ...;
r[b] = M[v]; M[v] = r[b];
... = ... r[b] ...;

(a) Use of r[a]
Appears before a
Reference to r[b]

(b) First Use of r[a]

Reference to r[b]
Appears after the Last

r[a] = M[v];
...
... = ... r[a] ...;
... = ... r[b] ...;
...
M[v] = r[b];

r[a] = M[v];
...
... = ... r[b] ...;
... = ... r[a] ...;
...
M[v] = r[b];

Fig. 11. Examples of Finding a Location to Place the Swap Instruction

permit the use of a swap instruction. Consider the example in Figure 12(a),
which contains a set of r[b] after the store and before the last use of the value
assigned to r[a]. In this situation, we attempt to rename the second live range
of r[b] to a different available register. Figure 12(b) shows this live range be-
ing renamed to r[c]. Figure 12(c) depicts that the load and store can now be
coalesced since r[a] can be renamed to r[b].

Sometimes we had to move sequences of instructions past other instructions
in order for the load and store to be coalesced. Consider the unrolled loop in
Figure 4. Figure 13(a) shows the same loop, but in a load/store fashion, where
the temporaries are registers. The load and store cannot be made contiguous due
to reuse of the same registers. Figure 13(b) shows the same code after renaming
the registers on which the value to be stored depends. Now the instructions can
be scheduled so that the load and store can be made contiguous as shown in
Figure 13(c). Figure 13(d) shows the load and store coalesced and the loaded
register renamed.

5 RESULTS

Table 2 describes the numerous benchmarks and applications that we used to
evaluate the impact of applying the code-improving transformation to coalesce
loads and stores into a swap instruction. The programs depicted in boldface were
directly obtained from the Numerical Recipes in C text [5]. The code in many of
these benchmarks are used as utilities in a variety of programs. Thus, coalescing
loads and stores into swaps can be performed on a diverse set of applications.

Measurements were collected using the ease system that is available with
the vpo compiler. In some cases, we emulated a swap instruction when it did
not exist. For instance, the SPARC does not have swap instructions that swaps

11

and Renaming the Live Range of r[a] to r[b]
(c) After Coalescing the Load and Store

...
r[b] = M[v]; M[v] = r[b];
...
r[c] = ...;
...
... = ... r[b] ...;
...
... = ... r[c] ...;

(a) r[b] Is Set in the
Live Range of r[a]

(b) Live Range of r[b] after Store
Has Been Renamed to r[c]

r[a] = M[v];
...
M[v] = r[b];
...
r[b] = ...;
...
... = ... r[a] ...;
...
... = ... r[b] ...;

r[a] = M[v];
...
M[v] = r[b];
...
r[c] = ...;
...
... = ... r[a] ...;
...
... = ... r[c] ...;

Fig. 12. Example of Applying Register Renaming to Permit the Use of a Swap In-
struction

for (j = n-1; j > 1; j -= 2) {

 r[3] = r[3]-r[4];
 r[4] = dd[j-1];
 r[3] = d[j-2];

 r[2] = dd[j];
 r[1] = r[3]-r[2];
 d[j] = r[1];
}

for (j = n-1; j > 1; j -= 2) {

 d[j] = r[1];
 r[1] = r[1]-r[2];
 r[2] = dd[j];

 r[3] = r[3]-r[4];
 r[4] = dd[j-1];
 r[3] = d[j-2];

}

(a) After Loop Unrolling

for (j = n-1; j > 1; j -= 2) {

}

(b) After Register Renaming

(c) After Scheduling the Instructions

for (j = n-1; j > 1; j -= 2) {

}

(d) After Coalescing the Load and Store

 r[1] = ;
 = r[3];

 r[3] = ; = r[3];
d[j-1]

 r[2] = dd[j];
 r[1] = r[1]-r[2];
 d[j] = r[1];
 r[1] = d[j-2];
 r[2] = dd[j-1];
 r[1] = r[1]-r[2];

d[j-1] = r[1];

 r[1] = d[j-1];
 r[2] = dd[j];
 r[1] = r[1]-r[2];
 d[j] = r[1];

 r[3] = r[3]-r[4];
 d[j-1] = r[3];

 = dd[j-1];
 = d[j-2];

r[3]
r[4]

d[j-1] d[j-1] d[j-1]

 r[1] = ;d[j-1]

Fig. 13. Another Example of Applying Register Renaming to Permit the Use of a Swap
Instruction

12

Program Description
bandec constructs an LU decomposition of a sparse representation of a band diagonal matrix
bubblesort sorts an integer array in ascending order using a bubble sort
chebpc polynomial approximation from Chebyshev coefficients
elmhes reduces an N × N matrix to Hessenberg form
fft fast fourier transform
gaussj solves linear equations using Gauss-Jordan elimination
indexx cal. indices for the array such that the indices are in ascending order
ludcmp performs LU decomposition of an N × N matrix
mmid modified midpoint method
predic performs linear prediction of a set of data points
rtflsp finds the root of a function using the false position method
select returns the k smallest value in an array
thresh adjusts an image according to a threshold value
transpose transposes a matrix
traverse binary tree traversal without a stack
tsp traveling salesman problem

Table 2. Test Programs

bytes, halfwords, floats, or doublewords. The ease system provides the ability
to gather measurements on proposed architectural features that do not exist
on a host machine [8, 9]. Note that it is sometimes possible to use the SPARC
swap instruction, which exchanges a word in an integer register with a word in
memory, for exchanging a floating-point value with a value in memory. When the
floating-point values that are loaded and stored are not used in any operations,
then these values could be loaded and stored using integer registers instead of
floating-point registers and the swap instruction could be exploited.

Table 3 depicts the results that were obtained on the test programs for co-
alescing loads and stores into swap instructions. We unrolled several loops in
these programs by an unroll factor of two to provide opportunities for coalescing
a load and a store across the original iterations of the loop. In these cases, the
Not Coalesced column includes the unrolling of these loops to provide a fair com-
parison. The results show decreases in the number of instructions executed and
memory references performed for a wide variety of applications. The amount of
the decrease varied depending on the execution frequency of the load and store
instructions that were coalesced.

6 CONCLUSIONS

In this paper we have shown how to exploit a swap instruction, which exchanges
the values between a register and a location in memory. We have discussed how
a swap instruction could be efficiently integrated into a conventional load/store
architecture. A number of different types of opportunities for exploiting the swap
instruction were shown to be available. An algorithm for coalescing a load and
a store into a swap instruction was given and a number of issues related to
implementing the coalescing transformations were described. The results show
that this code-improving transformation could be applied on a variety of appli-
cations and benchmarks and reductions in the number of instructions executed
and memory references performed were observed.

13

Program Instructions Executed Memory References Performed
Not Coalesced Coalesced Decrease Not Coalesced Coalesced Decrease

bandec 69,189 68,459 1.06% 18,054 17,324 4.04%
bubblesort 2,439,005 2,376,705 2.55% 498,734 436,434 12.49%
chebpc 7,531,984 7,029,990 6.66% 3,008,052 2,507,056 16.66%
elmhes 18,527 18,044 2.61% 3,010 2,891 3.95%
fft 4,176,112 4,148,112 0.67% 672,132 660,932 1.67%
gaussj 27,143 26,756 1.43% 7,884 7,587 3.77%
indexx 70,322 68,676 2.34% 17,132 15,981 6.72%
ludcmp 10,521,952 10,439,152 0.79% 854,915 845,715 1.08%
mmid 267,563 258,554 3.37% 88,622 79,613 10.17%
predic 40,827 38,927 4.65% 13,894 11,994 13.67%
rtflsp 81,117 80,116 1.23% 66,184 65,183 1.51%
select 19,939 19,434 2.53% 3,618 3,121 13.74%
thresh 7,958,909 7,661,796 3.73% 1,523,554 1,226,594 19.49%
transpose 42,883 37,933 11.54% 19,832 14,882 24.96%
traverse 94,159 91,090 3.26% 98,311 96,265 2.08%
tsp 64,294,814 63,950,122 0.54% 52,144,375 51,969,529 0.34%

average 6,103,402 6,019,616 3.06% 3,689,893 3,622,568 8.52%

Table 3. Results

References

1. M. D. Hill, “A Case for Direct–Mapped Caches,” IEEE Computer, 21(11), pages
25–40, December 1988.

2. Texas Instruments, Inc., Product Preview of the TMS390S10 Integrated SPARC

Processor, 1993.
3. J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach,

Second Edition, Morgan Kaufmann, San Francisco, CA, 1996.
4. J.W. Davidson and S. Jinturkar, “Memory Access Coalescing: A Technique for

Eliminating Redundant Memory Accesses,” Proceedings of the SIGPLAN’94 Sym-

posium on Programming Language Design and Implementation, pages 186–195,
June 1994.

5. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical

Recipes in C: The Art of Scientific Computing, Second Edition, Cambridge Uni-
versity Press, New York, NY, 1996.

6. B. Dwyer, “Simple Algorithms for Traversing a Tree without a Stack,” Information

Processing Letters, 2(5), pages 143–145, 1973.
7. I. Pitas, Digital Image Processing Algorithms and Applications, John Wiley & Sons,

Inc., New York, NY, 2000.
8. J.W. Davidson and D.B. Whalley, “Ease: An Environment for Architecture Study

and Experimentation,” Proceedings SIGMETRICS’90 Conference on Measurement

and Modeling of Computer Systems, Pages 259–260, May 1990.
9. J.W. Davidson and D.B. Whalley, “A Design Environment for Addressing Ar-

chitecture and Compiler Interactions,” Microprocessors and Microsystems, 15(9),
pages 459–472, November 1991.

14

