
COP5621 Project Phase 3
Semantic Analyzer

Purpose:

This project is intended to give you experience in symbol table manipulation and semantic error detec-
tion as well as bring together various issues of semantic analysis discussed in class.

Project Summary:

Your task is to write a static semantic analyzer that creates a symbol table for the source program,
augments the abstract syntax tree (produced by the parser) with appropriate semantic information,
checks that the source program abides by some of the semantic rules of the PASC language, and reports
any violations.

Scoping rules:

The scope of a name is the region of the program in which the name can be used. For objects de-
clared within a procedure and formal parameter names of a procedure, the scope is from the point of
declaration to the end of the procedure in which the name is declared, and objects of the same name
in other procedures or declared in the main program’s declarations are unrelated. Variables, symbolic
constants and procedures declared in the main program are said to be global, accessible from the point
of declaration to the end of the program, including the main program body as well as the bodies of
procedure that do not redeclare the same name. The scope of the field identifiers of a record is the
record type itself and as such they need not be distinct from identifiers declared outside the record type.
Procedures can call procedures declared earlier in the program, and a procedure can be either directly
or indirectly recursive, by using the forward declaration. The lifetime of object declarations within a
procedure is limited to the execution of the procedure (i.e. the values are discarded upon exit), while
objects declared as global last until the end of program execution.

Static Semantics:

The following static semantics must be performed.

• All names declared within the same block (i.e., main program, procedure, or record) must be
unique.

• All names used within the program must be declared such that using the scoping rules, there
exists a corresponding declaration visible from each use of a name (i.e., there should be no uses
of undeclared names).

• The number of array indices in an indexed component should match the number of dimensions
declared for that array.

• A name declared as a symbolic constant must not be assigned a new value.

• Identifier(s) in a subrange (used as array bounds or subrange type definition) must be previously
defined as integer constants.

1

Symbol Table Creation:

Both static semantic checking and code generation require semantic information about names defined
by the user. The symbol table is a data structure that stores the semantic information for each name
declaration. A new entry is added to the symbol table as each declaration is encountered during semantic
processing. Since code will be generated in a separate phase (in this project) using the information
stored in the symbol table (and possibly adding more information to the table), symbol table entries
are never removed after being created. If a given name X is defined in two different places in a program
(say, as a global constant and then as a local variable within a procedure), then the final symbol table
will contain 2 separate entries for X with the appropriate semantic information.

Semantic attributes are added to the entry for a particular name at various times. Every entry has
NameAttr and TypeAttr attributes which are entered in response to the name’s declaration and contain
the unique index into the string table and (a pointer to) the appropriate type tree, respectively. Each
entry also has a boolean attribute PreDefinedAttr which is true iff the name represents one of the
predefined identifiers of the PASC language. Since PASC has no input/output defined as part of
the language itself, the input/output routines are accessible to all PASC programs as a library. The
identifiers are predefined by the PASC language as described by the following table. The symbol table
should be initialized with an entry for each of these identifiers, where each entry for a routine contains
TypeAttr set to point to a procedure (ProceOp) or function (FuncOp) declaration tree with appropriate
formal arguments and result type and PreDefineAttr set equal to true. All other entries in the symbol
table will have PreDefineAttr set to false.

Identifier Description
integer The predefined integer type.
char The predefined character type.
string The predefined string type. Implemented as

an array of 256 (0..255) chars. TypeAttr must
point to the corresponding ArrayType tree.

write May have 1 to n arguments. Print arguments
of integer, char or string type and a <return>.

read May have 1 to n arguments. Read integers
and characters for the given actual arguments
and then skip all the characters in the current
line, until a <return> is read.

chr(i:integer) : char Return the character of ASCII code i.
ord(ch: char) : integer Return the ASCII code of character ch.

Table 1: Predefined Identifiers in PASC

Read(Write) is represented by a ProceOp subtree for its forward declaration. The specs subtree is
null for these two procedures since the number and the types of their arguments are not fixed. Chr
and ord should be represented by normal forward function declaration trees. Each entry in the symbol
table should have a LevelAttr which is entered in response to the name’s declaration and is an integer
indicating the level that the symbol was defined (nesting level). Predefined entries should have the
smallest nesting level. In order to distinguish between symbolic constants and variables (since they
cannot be distinguished by TypeAttr, a boolean IsConstAttr attribute could be attached to all entries.
Similarly, you may want a boolean IsFormalAttr attribute to distinguish between formal arguments and
local variables.

From the description of some of the attributes, it is clear that an attribute could have a value of integer,

2

boolean, or ILTree. In addition to the standard attributes, your semantic analyzer may add other
attributes to entries as necessary for semantic processing and code generation such that the number of
attributes of a given entry may vary as you want to store different additional information for different
entries. An acceptable way to design a symbol table entry is as a linked list of attribute values that
can be of any type above. The order that attributes are added to the list for a given entry will be
insignificant if you store an additional integer field with each attribute value. This field can indicate
what attribute is stored there. For example, if the integer is 1, then the attribute value represents
TypeAttr; if the integer is 2, then the attribute value represents LevelAttr, A symbol table entry
could also be implemented as a row in a table.

There will be two flavors of lookup into the symbol table. When processing a new declaration, you
will want to perform a lookup operation restricted to the current block of declarations (i.e. the name
declared locally within this block thus far) to determine whether the symbol is multideclared. When
processing the use of a name, you will want to perform a lookup over all currently accessible names
starting with the local declarations, and if not found, continuing to the nonlocals. Thus, two lookup
procedures are needed, and the symbol table must be organized to include block information such that
the local declarations are found first.

One way to approach this is to maintain the symbol table as a stack that always contains the set of
accessible declarations with respect to the current block being processed during symbol table creation
and syntax tree augmentation. The stack will grow and shrink by the number of local declarations as
processing enters and leaves a block, respectively, and the latest instance of a variable declaration in
the currently accessible blocks will always be the one closest to the top of the stack. However, since
the complete symbol table is needed for the code generation phase, the symbol table entries cannot
be deleted during this phase. In order to retain symbol table entries that are no longer active (i.e.
accessible) with respect to the current block being processed, the symbol table stack can be maintained
as a separate data structure with references into the permanent symbol table structure.

For example, a stack of records can be maintained where each record contains a boolean marker, and
id and a pointer to the entry for what id in the symbol table. When the semantic analyzer begins to
process the declarations of a new procedure definition, an OpenBlock routine pushes a record (true,
undefined, undefined) onto the stack to indicate the beginning of a new block. Processing of subsequent
declarations within that procedure includes pushing records of (false, id, pointer) onto the stack. Note
that the procedure name should be entered into the symbol table before calling Openblock to signal
the start of a new block because the procedure name is actually defined where it is declared. When the
limited form of lookup is called, it scans the stack from the top until it finds the desired id or the last
true marker that was pushed onto the stack (indicating that the identifier is not yet declared in the
current block). After processing all statements within a procedure definition, the Closeblock routine
pops all records since the last true marker, and then pops the true marker.

The following symbol table utility routines have been written for you and are available from the file
proj3.c.

STInit()

/*

* Called before any other symbol table routine to initialize the symbol

* table. You also need to modify this routine to entry the predefined

* symbols

*/

InsertEntry(ID : integer) return STIndex

/*

* Add an entry to current symbol table for identifier ID (unique index into

* string table), returning index of entry in symbol table. This entry has

* no attributes initially. ID should not have been defined since last

3

* OpenBlock.

*/

LookUp(ID:integer) return STIndex

/*

* Return most recently added instance of ID in symbol table, or NullST(i.e. 0)

* if none.

*/

LookUpHere(ID: integer) return STIndex

/*

* Return most recently added instance of ID in symbol table since last

* OpenBlock. Return NullST if none.

*/

LookUpField(ID:integer; ST: STIndex) return STIndex

/*

* Return the symbol table entry of record field TD. ST indicates where the

* search starts in the symbol table. Return NullST if none.

*/

OpenBlock() /* Start a new block of symbols in the symbol table */

CloseBlock()

/*

* Restore the symbol table to the set of STIndices prevailing

* before the last OpenBlock

*/

IsAttr(ST: STIndex; AttrNum: integer) return boolean

/*

* Return true iff ST has an attribute numbered AttrNum.

* For a newly-defined symbol, ST, !(IsAttr(ST, n)) is true for all n

*/

GetAttr(St: STIndex; AttrNum: integer) return integer, boolean or ILTree

/*

* return value of attribute attrnum of ST; value may be

* integer, boolean or ILTree

*/

SetAttr(ST: STIndex; AttrNum: integer; V: integer, boolean, or ILTree)

STPrint() /* Print all symbols and attributes in the symbol table */

Syntax Tree Augmentation:

The semantic information to be added to the tree consists of (1) converting all leaves of type IDNode
to leaves of type STNode, (2) replacing the integer value stored in each IDNode by a unique pointer
into the symbol table, and converting certain subtrees into other subtrees. Each occurrence of an id is
replaced with a reference to the symbol table entry containing the necessary semantic information for

4

that id. This may also require minor modifications to your tree manipulation routines of the second
phase of this project to handle STNodes. Function calls which were handled as variable accesses (or
variable accesses which were handled as function calls) must be converted from variable-access tree to
function call tree (or vice verse). These tree structure modifications can be done as the types of the
id’s become apparent when replacing IDNode’s by STNodes.

Static Semantic Checking

Uniqueness of id declarations can be checked when adding new entries to the symbol table for
each constant, variable, or procedure declaration. Undeclared id’s can be found when modifying
the IDNodes in statement subtrees (and subrange type subtrees) to point to the symbol table. When
an undeclared id is encountered, it should be entered into the symbol table to prevent repeat error
messages. Procedure calls with the incorrect number or type of arguments and nonvariable
arguments passed as call by reference parameters can be checked when augmenting the procedure
name’s IDNode leaf in the call with a pointer to the symbol table. Similarly, and incorrect number
of indices in an indexed component can be detected when processing the array name’s IDNode in
the indexed component. Assigned symbolic constants can be detected by keeping an AssignAttr
in each symbol table entry for a symbolic constant, initially set to false and subsequently set to true

upon replacing the left operand’s IDNode in an assignment subtree. Immediately after processing
the statement subtree for that block, the current block’s symbol table entries are scanned, emitting a
warning for each AssignAttr equal to true.

Type checking is not required in this assignment.

Testing the semantic Analyzer:

Your semantic analyzer should output the complete symbol table and the augmented syntax tree.

For grading ease, your syntax tree print routine should adhere to the same specifications as the sec-
ond project with the following modification. Since each IDNode has been replaced by an STNode,
[ID:tokenvalue, lexeme] should be replaced by [STID: symbol table index, lexeme]. You
will need to change the tree print routine to handle this.

You might also have to change the symbol table printer that is provided. The changed format should
be a clear, concise format including all attributes of every entry. All the attributes should be clearly
defined.

Error Handling:

Your semantic analyzer should print descriptive error messages and recover from all detected static
semantic errors to find any additional semantic errors. Error messages should be as descriptive as
possible, given the available information at the time of error detection.

Assignment Submission and Deadline:

The due date for this project is March 28 when you must hand-in your programs and do a demo.

Grading policy:

• Recognize correct programs (20)

• Correctly perfrom the six required semantic checks (5x6).

• Generate correct enhanced abstract syntax tree (20)

5

• Generate correct symbol tables (20)

• Error reporting (10).

6

