
COP4020 Programming languages
Programming assignment 1: Lexical Analyzer

Due Feb. 6, 11:59pm

Lexical Analyzer

In this assignment, you will write a lexical analyzer for a pascal liked language called PASC. The analyzer
will be written in Lex.

Token Specification

The table in Page 3 defines the tokens that must be recognized, with their associated symbolic names. All
multi-symbol tokens are separated by blanks, tabs, newlines, comments or delimiters.

Comments are enclosed in (* ... *), and cannot be nested. An identifier is a sequence of (at least one) upper
or lower case letters followed by zero, one or more digits. Upper and lower cases are not distinguished in
PASC. There is no limit on the length of identifiers. However, you may impose limits on the total number
of distinct identifiers and string lexemes and on the total number of characters in all distinct identifiers and
string taken together. There should be no other limitation on the number of lexemes that the lexical analyzer
will process.

An integer constant is an unsigned sequence of digits representing a 10-based number. A float constant can
either be a simple float constant or a scientific notation float constant. A simple float constant consists of an
unsigned sequence of (at least one) digits, followed by a ’.’, followed by another unsigned sequence of (at least
one) digits representing a 10-based floating point number. A scientific notation float constant is a simple
float constant followed by a letter ’e’ or ’E’, followed by a signed integer or an unsigned integer. A signed
integer consists of a sign (’+’ or ’-’ character) followed by an integer constant. Examples of float constants in
PASC include 2.0, 1000.00001, 10000.0001e−10, 10000.0001e20, and 10000.0001e+10. A character constant
is a character enclosed in single quotes (e.g., ’a’ is a character constant a). A string constant is a sequence
of characters surrounded by single quotes (e.g. ’Hello, world’). The internal representations of character
constant and string constant are different in PASC. Hard-to-type or invisible characters can be represented
in character and string constants by escape sequences; these sequences look like two characters, but represent
only one. The escape sequences supported by the PASC language are \n for newline, \t for tab, \’ for the
single quote and \\ for the backslash itself. Any other character that follows a backslash is not treated as
an escape sequence.

Token attributes

A unique identification of each token (integer aliased with the symbolic token name) must be returned by the
lexical analyzer. In addition, the lexical analyzer must pass extra information for identifier, integer constant,
floating point constant, string constant, and character constant tokens to the parser. For identifier, integer
constant, string constant, and character constant, the extra information is passed to the parser as a single
value of the integer type, through a global variable as described below (yylval.semantic value). For integer
constants, the numeric value of the constant is passed. For character constants, the numeric value of the
character in the local set is passed. In order to allow other phases of the compiler to access the original
identifier lexeme, the lexical analyzer passes an integer uniquely identifying the identifier. String constants
are treated in the same way, with a unique identifying number being passed. The unique identifying number,
for both identifiers and string constants, should be an index into a string table created by the lexical analyzer
to record the lexemes. For floating point constant, the extra information is passed to the parser as a single
value of the float type, through a global variable (yylval.fvalue), that is the numeric value of the floating
point constant.

1

Implementation

The central routine of the scanner is yylex, an integer function that returns a token number, indicating the
type (identifier, integer constant, semicolon, etc.), of the next token in the input stream. In addition to
the token type, yylex must set the global variables yyline and yycolumn to the line and column number
at which that token appears, and – in the case of identifiers and constants –, put the extra information
needed, as described above, into a global integer variable yylval.semantic value, and a global float variable
yylval.fvalue. Lex will write yylex for you, using the patterns and rules defined in your lex input file (which
should be called lexer.l). Your rules must include the code to maintain yyline, yycolumn and yylval.

You are to write a routine Lex error that takes a message and line and column numbers and reports an
error, printing the message and indicating the position of the error. You need only print the line and column
number to indicate the position.

The #define mechanism should be use to allow the lexical analyzer to return token numbers symbolically.
In order to avoid using token names that are reserved or significant in C/C++ or in the parser, the token
names have been specified for you in the subsequent table. The parser and the lexical analyzer must agree
on the token numbers to ensure correct communication between them. The token number can be chosen
by you, as the compiler writer, or, by default, by Yacc. Regardless of how token numbers are chosen, the
end-marker must have token number 0 or negative, and thus, your lexical analyzer must return a 0 (or a
negative) as token number upon reaching the end of input.

Error Handling

Your lexical analyzer should recover from all malformed lexemes, as well as such things as string constants
that extended across a line boundary or comments that are never terminated.

Due date and materials to be handed in

The assignment is due on Thursday, Feb 6. Test cases named hello.pasc, sieve.pasc, hist.pasc, error.pasc,
try.pasc, and lexerror.pasc can be found the class web page. A sample driver file, driver.c, that calls yylex
and prints each token with its value as the input is scanned, can also be found in the class web page. This file
is for your reference. You should either use driver.c to test your lex program or make our output EXACTLY
the same (except the column number in error messages) as the sample lexical analyzer provided (5 points in
the grade).

Note: Do not ask questions about how to make driver.c work with your lex code. It is YOUR choice and
YOUR job if you decide to use the code. The reason that driver.c is provided is to show how the output
is produced so that you can do exactly the same. Nonetheless, for the ones who understand lex and this
project, using driver.c will save some coding and guarantee output matching if all other logics are correct.

Grading policy:

• Recognizing all tokens (in the right order) (60). Identifiers, integer constants, float constants, char
constants, and string constants will account for 40 points.

• Conversion of the special characters (5)

• Report errors with line and column numbers (10).

• Non-recognizable characters error (5)

• Non-closed comment error (5)

• String constant over the line boundary error (5)

2

• Output match with the sample output (5)

• Makefile, README file, and other documentary (5)

Hints

• Make sure that you understand lex in the first week of the project and start coding for the project in
the first week. If you start learning lex in the second week, you will feel the deadline pressure and get
frustrated constantly. The deadline will NOT be postponed.

Table 1: Token numbers to be returned by yylex
Token Symbolic name Token Symbolic name

end of file EOFnumber else ELSEnumber
; SEMInumber elsif ELSIFnumber
: COLONnumber end ENDnumber
, COMMMAnumber endif ENDIFnumber
. DOTnumber endloop ENDLOOPnumber
(LPARENnumber endrec ENDRECnumber
) RPARENnumber exit EXITnumber
< LTnumber for FORnumber
> GTnumber forward FORWARDnumber
= EQnumber function FUNCTIONnumber
− MINUSnumber if IFnumber
+ PLUSnumber is ISnumber
∗ TIMESnumber loop LOOPnumber
.. DOTDOTnumber not NOTnumber
:= COLEQnumber of OFnumber
<= LEnumber or ORnumber
>= GEnumber procedure PROCEDUREnumber
<> NEnumber program PROGRAMnumber

identifier IDnumber record RECORDnumber
integer constant ICONSTnumber repeat REPEATnumber
float constant FCONSTnumber float FLOATnumber
char constant CCONSTnumber return RETURNnumber

string constant SCONSTnumber then THENnumber
and ANDnumber to TOnumber

array ARRAYnumber type TYPEnumber
begin BEGINnumber until UNTILnumber

constant CONSTnumber var VARnumber
div DIVnumber while WHILEnumber

downto DOWNTOnumber print PRINTnumber
integer INTnumber

3

