
Review

 C++ exception handling mechanism

 Try-throw-catch block

 How does it work

 What is exception specification?

 What if a exception is not caught?

Some useful C++ concepts and

introduction to data structures

C++ programs with command line

arguments
 int main(int argc, char* argv[]) {}

 argc is the count of command line arguments. argc >=1. Command line

arguments are separated by spaces.

 argv is an array of pointers to character strings that contain the actual

command-line arguments.

 See sample1.c for the use of command line arguments.

C++ header files
 Source files use the #include directive to include the header

files.

 Sometimes using header files can cause problems, see

sample2.cpp.

 Including a header file multiple times may cause “duplicate declaration”

errors.

 Why including stdio.h two times does not have any problem?

 Look at /usr/include/stdio.h, this file is protected.

C++ header files
 The following mechanism prevents the body of a header file

from being included multiple times.

#ifndef MYHEADER

#define MYHEADER

….

/* the body of the header file */

#endif

C++ macros with parameters
 Macros with parameters look/work like functions:

 #define max(a, b) (a>b)?a:b

 Macros with parameters need to be defined carefully, otherwise
weird things can happen.
 What is wrong with the following macro?

 #define sum(a, b) a+b

C++ macros with parameters

 What is wrong with the following macro?

 #define sum(a, b) a +b

 Checkout sample3.c

 How to fix the problem?

C++ bitwise operations
 Memory is made up of bits and bytes.

 A bit is the smallest unit of storage in a computer, it stores a 0 or
1.

 A bytes consists of 8 bits – it is the smallest item that we can
create a variable (char c);

 We can make use of every single bit by using bits wise operations:

 Bitwise AND &: 0xff & 0x00 == 0

 Bitwise OR |: 0xff | 0x00 == 0xff

 Bitwise exclusive OR ^: 0xff ^ 0x00 == 0xff

 Left shift <<

 Right shift >>

 Bitwise complement ~: ~0xf0 = 0x0f

Bitwise operation

 Unsigned char X = 8 (00001000)

 Unsigned Char Y = 192 (11000000)

 X = 00001000 00001000

 Y = 11000000 11000000

 X&Y = 00000000 X | Y = 11001000

 Test whether the second bit in X is 1?

If (X & 0x04 != 0)

 This allows logic based on bits in a variable.

Data structures
 Data structures help us write programs easier

 Program = data structures + algorithms

 Data structures focus on organizing the data in a certain way such
that operations on it can be efficient.
 Picking the right way to store your data is very important for an

efficient program.

 In Computer Science, many common data structures are used in
many different applications – mastering data structures is essential
for one to become a good programmer.
 COP4530 systematically goes through most common data structures.
 Most common data structures have been implemented in the C++

standard template library.
 You are one of us AFTER you pass COP4530.

Data structure – an example
 For the word count program, what is the most important

operations for the efficiency of the code?
 Given a word, where is the word stored?

 Search operation.

 Your solution?
 Array, or link list?

 You have to go through the whole array to find the index that store the word.
We call this an O(N) operation.

 The ideal data structure for this assignment:
 A hash table.

 Give a word “abc”, it is stored at Table[hashfunction(“abc”)].

 The search is an O(1) operation.

 For processing large files, using hashtable to replace the array can
easily speedup the code by a factor of 100.

Data structure – another example
 Consider the problem of scheduling programs to run on CPU

 This is a core function in operating systems. It happens very often
(e.g. 50 times every second) and thus needs to be implemented in the
most effective way.

 You have an array that stores the program information with
priority.

 You want to pick the highest priority program to run

 The operation needs to be supported are
 Insert a new program

 Remove the program with the highest priority

 How can we do both operations efficiently?
 Array (sorted or not) is not efficient.

 We have a data structure called priority queue that is ideal for this.

COP4530
 The class goes through many data structures

 You will understand how to use them and implement them

 Given a practical requirement, you will then know how to
pick the right way to store the data to achieve efficiency.

 This gives you a lot of tools to use in programming – with the
tools, you will be able to write bigger and more efficient
programs.

Abstract data types
 Data structures are usually implemented as abstract data types –

stacks, Queues, Vectors, linked list, trees

 Stacks

 First In Last Out (FILO). Insertions and removals from "top"
position only

 Analgoy - a stack of cafeteria trays. New trays placed on top. Trays
picked up from the top.

 A stack class will have two primary operations:
 push -- adds an item onto the top of the stack

 pop -- removes the top item from the stack

 Typical application areas include compilers, operating systems,
handling of program memory (nested function calls)

Queues

 First In First Out (FIFO). Insertions at the "end" of the

queue, and removals from the "front" of the queue.

 Analogy - waiting in line for a ride at an amusement

park. Get in line at the end. First come, first serve.

 A queue class will have two primary operations:

 enqueue -- adds an item into the queue (i.e. at the back of the

line)

 dequeue -- removes an item from the queue (i.e. from the

front of the line).

 Typical application areas include print job scheduling,

operating systems (process scheduling).

Vector
 A data structure that stores items of the same type, and is based on

storage in an array

 By encapsulating an array into a class (a vector class), we can

 use dynamic allocation to allow the internal array to be flexible in size

 handle boundary issues of the array (error checking for out-of-bounds

indices).

 Advantages: Random access - i.e. quick locating of data if the

index is known.

 Disadvantages: Inserts and Deletes are typically slow, since they

may require shifting many elements to consecutive array slots

Linked list
 A collection of data items linked together with pointers, lined up "in a row". Typically a

list of data of the same type, like an array, but storage is arranged differently.

 Made up of a collection of "nodes", which are created from a self-referential class (or
struct).
 Self-referential class: a class whose member data contains at least one pointer that

points to an object of the same class type.

 Each node contains a piece of data, and a pointer to the next node.

 Nodes can be anywhere in memory (not restricted to consecutive slots, like in an array).

 Nodes generally allocated dynamically, so a linked list can grow to any size, theoretically
(within the boundaries of the program's memory).

 An alternative to array-based storage.

 Advantages: Inserts and Deletes are typically fast. Require only creation of a new node,
and changing of a few pointers.

 Disadvantage: No random access. Possible to build indexing into a linked list class, but
locating an element requires walking through the list.

 Notice that the advantages of the array (vector) are generally the disadvantages of the
linked list, and vice versa

Tree
 A non-linear collection of data items, also linked together

with pointers (like a linked list).

 Made up of self-referential nodes. In this case, each node
may contain 2 or more pointers to other nodes.

 Typical example: a binary tree

 Each node contains a data element, and two pointers, each of
which points to another node.

 Very useful for fast searching and sorting of data, assuming the
data is to be kept in some kind of order.

 Binary search - finds a path through the tree, starting at the
"root", and each chosen path (left or right node) eliminates half
of the stored values.

