
Review

Inheritance captures the “is a “ relationship

● A class is defined as a derived class of a base class.

class CSFSUstudent: public FSUstudent {

…

}

● The derived class inherits all public interface of the base class.

– Have access to “protected” members of the base class

– Can redefine the functions in the public interface of the base class.

● What is the order of invoking sequence for constructors/destructor of

base/derived types?

Protection Levels and Constructors
Polymorphism and virtual functions

Motivating virtual functions

Consider the student example in sample5.cpp

● Each type of students prints a different report cards.

Student s

Grad g;

Undergrad u;

– What if we want to iterate through all students and print a report card for each student

Student list[30000];

……

For (i=0; i<size; i++) list[i].GradeReport();

– Two problems with this code:

● List is a homogeneous array, we have to use the most common type (the base type).

The base class does not have all the information about the derived Grad and

Undergrad classes to produce the report.

● The GradeReport called is the Student version (the most generic report), not the

desired customized routine for each derived class.

Motivation

– Iterate through all students and print a report card for each student

Student list[30000];

……

For (i=0; i<size; i++) list[i].GradeReport();

– One potential solution to this: use pointers to create a heterogeneous list

● A pointer can only point at one type

– A pointer to a base class type can be pointed at an object derived from that base class

(an object of the derived class “is-an” object of the base class) !

● Similarly, a base class type reference variable can refer to an object derived

from that base class

Student * list[30000]; // an array of Student pointers

list[0] = &g; // using the earlier Grad object

list[1] = &u; // undergrad object

list[2] = new Grad; // dynamic Grad object

…

● This creates a heterogeneous list that points to different types of objects.

Motivation

– Iterate through all students and print a report card for each student

– One potential solution: use pointers to create a heterogeneous list

Student *list[30000];

…

for (int i = 0; i < size; i++) list[i]->GradeReport();

● List[i] points to different objects, but which version of the GradeReport() is

invoked when we do list[i]->GradeReport()?

Motivation

Student *list[30000];

…

for (int i = 0; i < size; i++) list[i]->GradeReport();

● List[i] points to different objects, but which version of the GradeReport() is

invoked when we do list[i]->GradeReport()?
– When compiler compiles this program, it must make a choice as to which routine to

call. At compile time, what is the logical choice?

– Since list[i] is of Student * type, the GradeReport() in the Student class will be

invoked.

– This is due to the binding requirement: the compiler must decide which version of the

routine is bound before the program executes (static binding), the only logical choice

is to do the binding based on the object type (in this case Student * type) if nothing

special is done.

– To resolve our problem, we need something that makes the binding dynamic at

runtime – a function that can bind to different routines

● Virtual function is the mechanism in C++ for this purpose.

Virtual function

When a function is declared as a “virtual” function, it means that the function
can be bound to different routines dynamically at runtime.

● Polyphorphism refers to the ability to associate many meanings to one (virtual) function.

● Example:

class Student { public: virtual void GradeReport(); ... };

● The GradeReport() funcation can mapped to different functions in the derived
class (the program looks for the target of the object to decide which functions to
be invoked. See sample1.cpp.

Student *sp1, *sp2, *sp3;
Student s;
Grad g;
Undergrad u;
sp1 = &s;
sp2 = &g;
sp3 = &u;
sp1->GradeReport(); // runs Student's version
sp2->GradeReport(); // runs Grad's version
sp3->GradeReport(); // runs Undergrad's version

Solution to the motivation problem

● Create a heterogeneous list, use virtual function to access

different GradeReport() routines in different derived classes.

class Student { public: virtual void GradeReport(); ... };

…

Student *list[30000];

……// assigning the pointer to the right place

for(i=0; i<size; i++) list[i] ->GradeReport();

Pure virtual function

● Normal function members including virtual function members must

have an implementation.

● So the GradeReport() virtual function should normally have an implementation

in the base class.

● This is not always necessary (or possible) since there may not have much to do

in such as function – the functionality should be implemented in the derived

class when more information is available.

● C++ allows a virtual function to be without implementation – this is known as

pure virtual function with the actual implementation done in the derived class

● Pure virtual function syntax with “=0” in the function declaration:

– virtual void GradeReport() = 0;

Pure virtual function and Classes

● When an object is declared to be of a normal class type, we know everything
about the object – what data members, and how each function member
behaves – these are required to define an object.

● What about an object declaring to be of a class with a pure virtual function?

● The object is not well defined.

– The behave of the pure virtual function is NOT defined – so we don’t know everything
about the object.

– C++ does not allow this to happen.

● C++ differentiates normal classes from the classes with pure virtual functions, which
is called an abstract class.

Abstract Classes

● An abstract class is a class with at least one pure virtual function

● An abstract class cannot instantiate an object.

– Student st; // illegal, student is an abstract class, the object cannot be created.

● An abstract class can be used to declare pointers.

– A pointer does not require an object to be created

– A pointer of a base class may point to an object of an derived object

– Student *st; // legal, st may point to derived objects.

● Check out sample2.cpp and sample3.cpp

Case study

● Look at the employee example.

