
Some random reviews

● Why do we have 2 overloads for operator[]?

● What is the difference between a shallow copy and a deep copy?
● Which happens by default?

● When is the copy constructor implicitly called on an object?

● Why is the parameter to the copy constructor passed by const
reference?
● What would happen if we passed by value?

● What are the differences between operator= and the copy constructor?
● What does operator=() return?

Protection Levels and Constructors
Inheritance

Introduction

Relation among objects: the “has a “ relationship
● PlayList “has a” Song

● PokerHand “has a” Card

How does C++ capture the “has a” relationship?

pokerhand

card1 card2 card3 card4 card5

rank suit

Introduction

Another common relationship between objects is the “is-a” relationship.
● A FSU CS student is a FSU student

● A FSU student is a student.

Need a way to capture this relationship.

Animal

human cow horse fish seal

student banker programmer

Introduction

The “inheritance” in C++ allows programmers to define the “is-a”
relationship.
● A class can be defined as a derived class of another class (called based class).

● The derived class then becomes a type/kind of the base class.

– An object of a derived class “is an” object of the base class.

● Another way of thinking of this is that the derived class is everything the base
class is and (possibly) more.

● This allows us to use the derived class object as though it were a base class
object in certain scenarios.

Inheritance, base and derived class.
The “is a” relationship is realized though Inheritance using the following

declaration syntax, which means a derivedClass object is a baseClass object
(can use all functions in the base class interface).
class derivedClassName : public baseClassName

class Mammal {
public:
 void PrintInfo() const;
};

class Cow: public Mammal { // Cow is a derived class of Mammal
 public:
 void sound() const;
}
…
Cow xyz;
xyz.PrintInfo(); // any Cow object can call functions in both base class and derived class

See sample1.cpp

Protection Levels

A derived class can access to all public members in the base class, but
not the private members.
● A derived class is however in a way different from the “public”.

● We might want to allow some members to be accessed only by derived classes,
but not the general public.

– A new protection level: protected.

A summary of the three protection levels:
public - Members that can be accessed by name from within any function.

private - Members that can only be accessed within member and friend functions of the
class in which they are declared.

protected - Members that can only be accessed within member and friend functions of the
class in which they are declared AND from within derived class's member and friend
functions.

See sample2.cpp

Constructors/Destructors

Since a derived class instance (object) is also a base class instance, both
the base and derived class constructors must run when a derived object
is instantiated.

Constructors run from most general (most base) to most derived.

Destructors run from most specific (most derived) to most base.
See sample3.cpp

What about constructors with parameters?
Control with initialization list

See sample4.cpp

Function Overriding

One of the most useful features Inheritance include and allows us to
customize the behavior of derived objects.

A derived class can declare it's own version of a function declared in the
base class from which it inherits.
The derived class version of the function will supersede (override) the version in

the base class.

See sample5.cpp

We can even still access the original base class version of the function
through an explicit call.
This is because a derived class must, by definition, be everything the base class is

and (possibly) more.

See sample6.cpp

	Some random reviews
	Slide Number 2
	Introduction
	Introduction
	Introduction
	Inheritance, base and derived class.
	Protection Levels
	Constructors/Destructors
	Function Overriding

